Reach Sets and the Hamilton-Jacobi Equation

Ian Mitchell

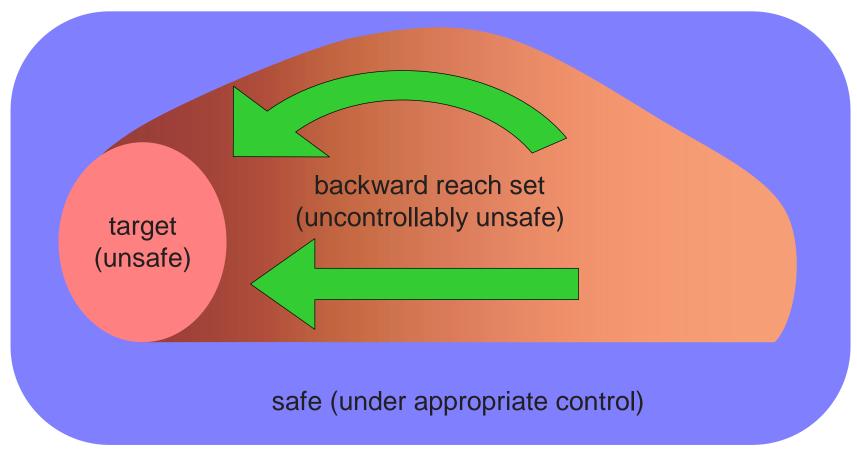
Department of Computer Science The University of British Columbia

Joint work with Alex Bayen, Meeko Oishi & Claire Tomlin (Stanford)

research supported by National Science and Engineering Research Council of Canada DARPA Software Enabled Control Project

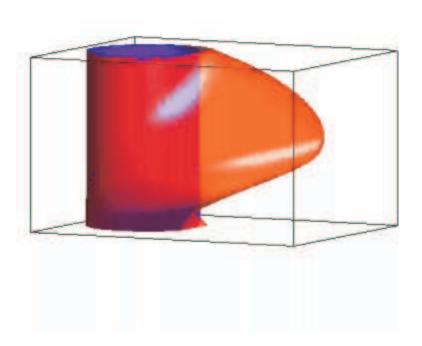
Reachable Sets: What and Why?

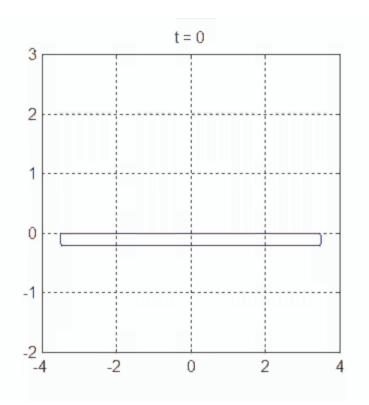
- One application: safety analysis
 - What states are doomed to become unsafe?
 - What states are safe given an appropriate control strategy?



Calculating Reach Sets

- Two primary challenges
 - How to represent set of reachable states
 - How to evolve set according to dynamics
- Discrete systems $x_{k+1} = \delta(x_k)$
 - Enumerate trajectories and states
 - Efficient representations: Binary Decision Diagrams
- Continuous systems dxIdt = f(x)?





Approaches to Continuous Reach Sets

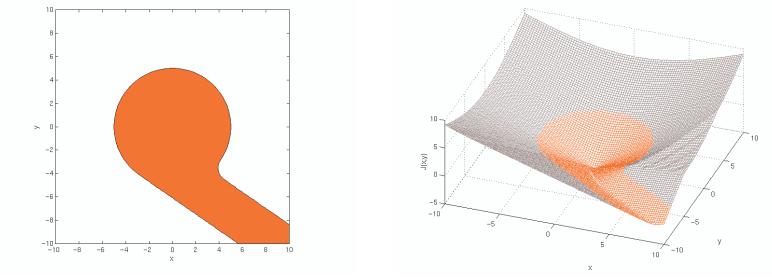
- Lagrangian approaches
 - Forward reach sets
 - Restricted class of dynamics
 - Restricted class of sets with compact representation
 - Guarantees of overapproximation
 - Examples: HyTech (Henzinger), Checkmate (Krogh), d/dt (Dang), ellipsoidal (Kurzhanski)
- Eulerian approaches
 - Backward reach sets
 - General dynamics including competitive inputs
 - General set shapes represented implicitly

Implicit Surface Functions

- Set G(t) is defined implicitly by an isosurface of a scalar function φ(x,t), with several benefits
 - State space dimension does not matter conceptually
 - Surfaces automatically merge and/or separate
 - Geometric quantities are easy to calculate

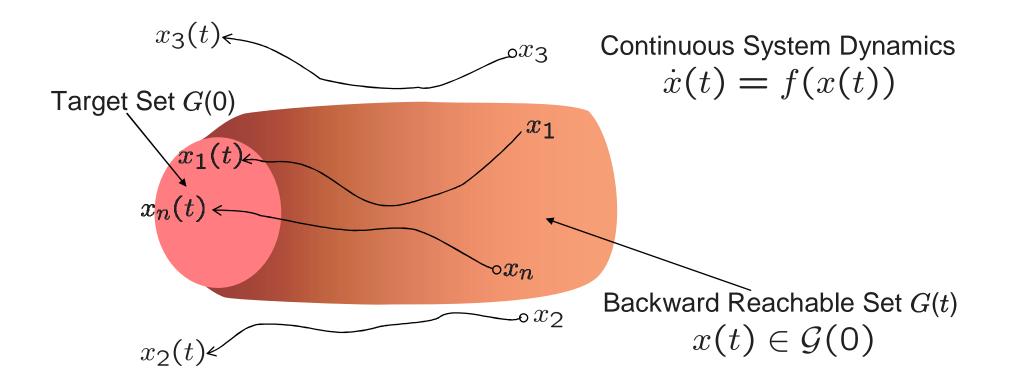
 $\phi: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$

 $\mathcal{G}(t) = \{ x \in \mathbb{R}^n \mid \phi(x, t) \le 0 \}$



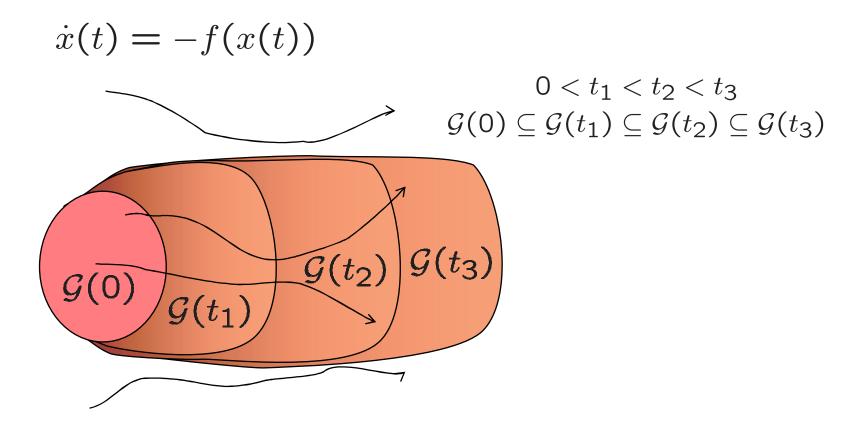
Continuous Backward Reachable Sets

- Set of all states from which trajectories can reach some given target state
 - For example, what states can reach G(t)?



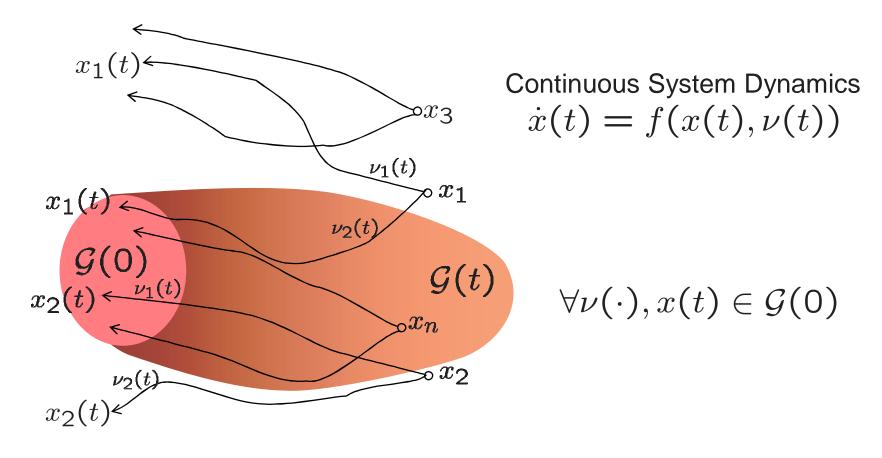
Why "Backward" Reachable Sets?

- To distinguish from forward reachable set
- To compute, run dynamics backwards in time from target set



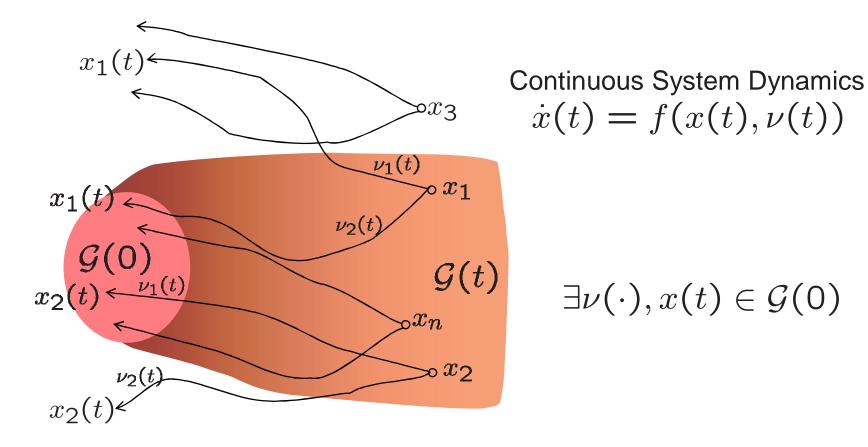
Reachable Sets (controlled input)

- For most of our examples, target set is unsafe
- If we can control the input, choose it to avoid the target set
- Backward reachable set is unsafe no matter what we do



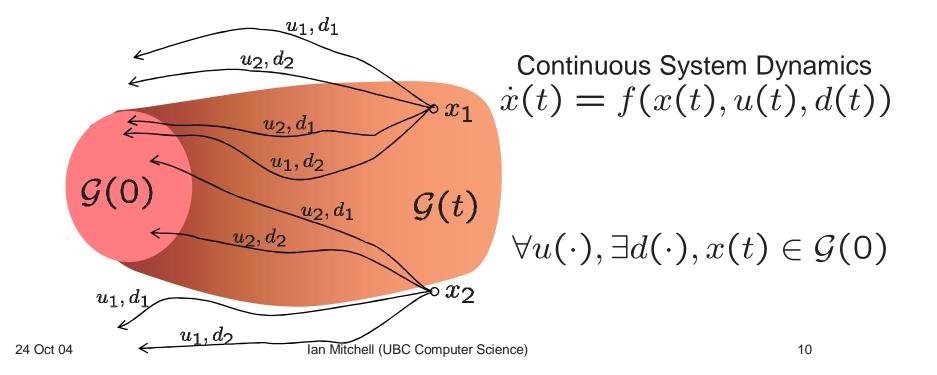
Reachable Sets (uncontrolled input)

- Sometimes we have no control over input signal
 - noise, actions of other agents, unknown system parameters
- It is safest to assume the worst case



Two Competing Inputs

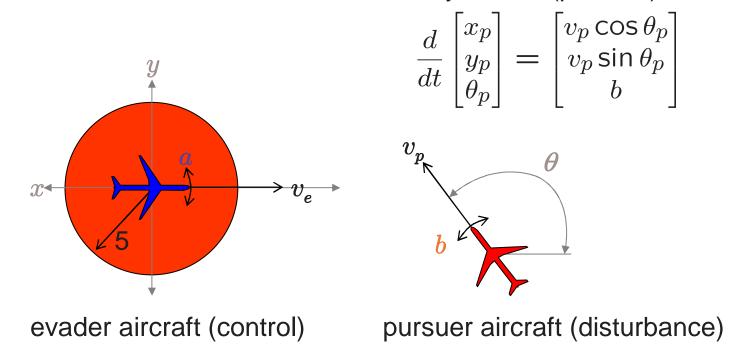
- For some systems there are two classes of inputs v = (u,d)
 - Controllable inputs $u \in U$
 - Uncontrollable (disturbance) inputs $d \in D$
- Equivalent to a zero sum differential game formulation
 - If there is an advantage to input ordering, give it to disturbances



Game of Two Identical Vehicles

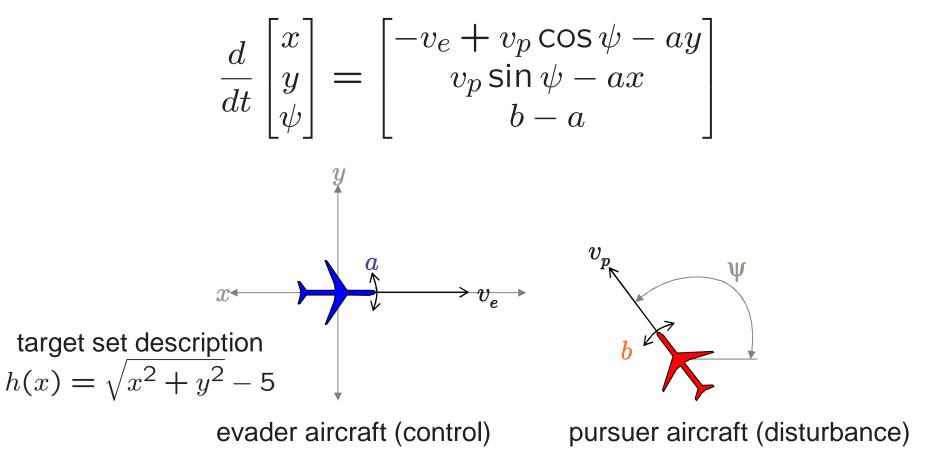
- Classical collision avoidance example
 - Collision occurs if vehicles get within five units of one another
 - Evader chooses turn rate $|a| \le 1$ to avoid collision
 - Pursuer chooses turn rate $|b| \le 1$ to cause collision
 - Fixed equal velocity $v_e = v_p = 5$

dynamics (pursuer)



Collision Avoidance Computation

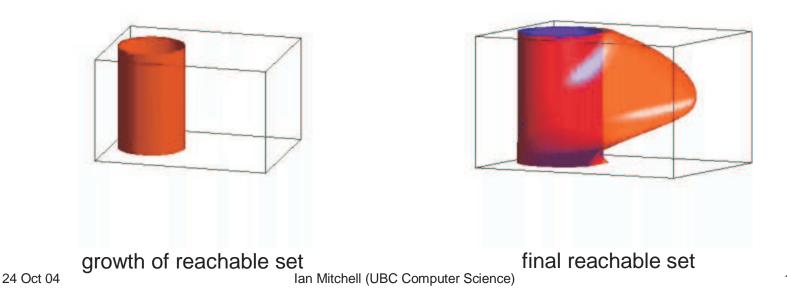
- Work in relative coordinates with evader fixed at origin
 - State variables are now relative planar location (x,y) and relative heading ψ



Evolving Reachable Sets

• Modified Hamilton-Jacobi partial differential equation

 $D_t \phi(x, t) + \min \left[0, H(x, D_x \phi(x, t))\right] = 0$ with Hamiltonian : $H(x, p) = \max_{a \in \mathcal{A}} \min_{b \in \mathcal{B}} f(x, a, b) \cdot p$ and terminal conditions : $\phi(x, 0) = h(x)$ where $G(0) = \{x \in \mathbb{R}^n \mid h(x) \leq 0\}$ and $\dot{x} = f(x, a, b)$



Time-Dependent Hamilton-Jacobi Eq'n

$D_t\phi(x,t) + H(x, D_x\phi(x,t)) = 0$

- First order hyperbolic PDE
 - Solution can form kinks (discontinuous derivatives)
 - For the backwards reachable set, find the "viscosity" solution [Crandall, Evans, Lions, ...]
- Level set methods
 - Convergent numerical algorithms to compute the viscosity solution [Osher, Sethian, ...]
 - Non-oscillatory, high accuracy spatial derivative approximation
 - Stable, consistent numerical Hamiltonian
 - Variation diminishing, high order, explicit time integration

Solving a Differential Game

- Terminal cost differential game for trajectories $\xi_f(\cdot; x, t, a(\cdot), b(\cdot))$ $\phi(x, t) = \sup_{a(\cdot)} \inf_{b(\cdot)} h\left[\xi_f(0; x, t, a(\cdot), b(\cdot))\right]$ where $\begin{cases} \xi_f(t; x, t, a(\cdot), b(\cdot)) = x \\ \dot{\xi}_f((s; x, t, a(\cdot), b(\cdot)) = f(x, a(s), b(s)) \\ terminal payoff function h(x) \end{cases}$
- Value function solution $\phi(x,t)$ given by viscosity solution to basic Hamilton-Jacobi equation

- [Evans & Souganidis, 1984]

$$D_t \phi(x,t) + H(x, D_x \phi(x,t)) = 0$$
where
$$\begin{cases}
H(x,p) = \max_{a \in \mathcal{A}} \min_{b \in \mathcal{B}} p^T f(x, a, b) \\
\phi(x,0) = h(x)
\end{cases}$$

$$\xi_f(\cdot; x_1, t, a(\cdot), b(\cdot))$$

$$\xi_f(\cdot; x_2, t, a(\cdot), b(\cdot))$$

Modification for Optimal Stopping Time

- How to keep trajectories from passing through G(0)?
 - [Mitchell, Bayen & Tomlin 2004]
 - Augment disturbance input

$$\tilde{b} = \begin{bmatrix} b & \underline{b} \end{bmatrix} \text{ where } \underline{b} : [t, 0] \to [0, 1]$$

$$\tilde{f}(x, a, \tilde{b}) = \underline{b}f(x, a, b)$$

$$x_2^{\sigma}$$

$$\tilde{f}(x, a, \tilde{b}) = \underline{b}f(x, a, b)$$

Augmented Hamilton-Jacobi equation solves for reachable set

$$D_t \phi(x,t) + \tilde{H}(x, D_x \phi(x,t)) = 0 \text{ where } \begin{cases} \tilde{H}(x,p) = \max \min_{a \in \mathcal{A}} \min_{b \in \mathcal{B}} p^T \tilde{f}(x,a,\tilde{b}) \\ \phi(x,0) = h(x) \end{cases}$$

 Augmented Hamiltonian is equivalent to modified Hamiltonian $\tilde{H}(x,p) = \max_{a \in \mathcal{A}} \min_{\tilde{b} \in \tilde{\mathcal{B}}} p^T \tilde{f}(x,a,\tilde{b})$ $= \max_{a \in \mathcal{A}} \min_{b \in \mathcal{B}} \min_{\underline{b} \in [0,1]} \underline{b} p^T f(x, a, b)$ $= \min \left[0, \max_{a \in \mathcal{A}} \min_{b \in \mathcal{B}} p^T f(x, a, b) \right] = \min \left[0, H(x, p) \right]$

24 Oct 04

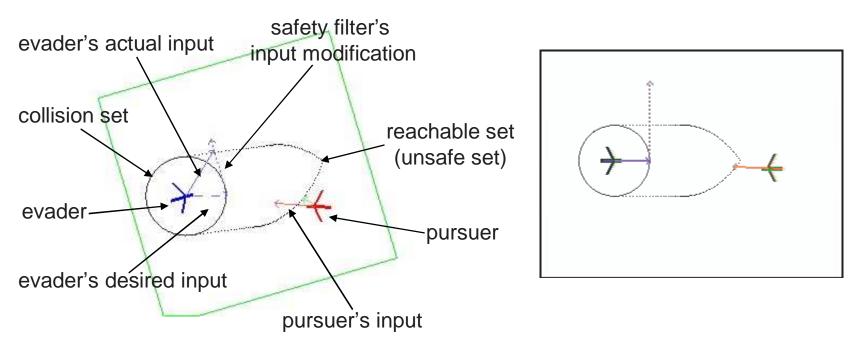
 $\dot{\phi}(x_2,t) \leq 0$

Alternative Eulerian Approaches

- Static Hamilton-Jacobi (Falcone, Sethian, ...)
 - Minimum time to reach
 - (Dis)continuous implicit representation
 - Solution provides information on optimal input choices
- Viability kernels (Aubin, Saint-Pierre, ...)
 - Based on set valued analysis for very general dynamics
 - Discrete implicit representation
 - Overapproximation guarantee
- Time-dependent Hamilton-Jacobi (this method)
 - Continuous solution
 - Information on optimal input choices available throughout entire state space
 - High order accurate approximations
- All three are theoretically equivalent

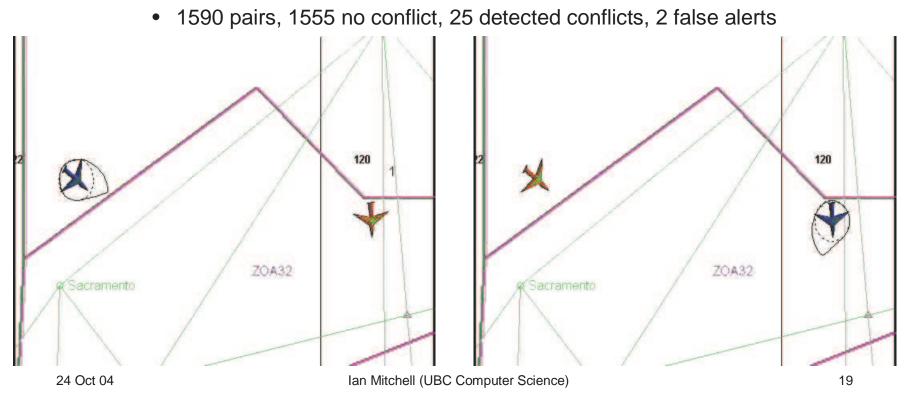
Application: Softwalls for Aircraft Safety

- Use reachable sets to guarantee safety
- Basic Rules
 - Pursuer: turn to head toward evader
 - Evader: turn to head east
- Evader's input is filtered to guarantee that pursuer does not enter the reachable set



Application: Collision Alert for ATC

- Use reachable set to detect potential collisions and warn Air Traffic Control (ATC)
 - Find aircraft pairs in ETMS database whose flight plans intersect
 - Check whether either aircraft is in the other's collision region
 - If so, examine ETMS data to see if aircraft path is deviated
 - One hour sample in Oakland center's airspace—



Validating the Numerical Algorithm

- Analytic solution for reachable set can be found [Merz, 1972]
 - Applies only to identical pursuer and evader dynamics
 - Merz's solution placed pursuer at the origin, game is not symmetric
 - Analytic solution can be used to validate numerical solution
 - [Mitchell, 2001]

