Approximate Linear Programming for Tetris

Ivan Sham

Outline

- Approximate Linear Programming
- Tetris
- Project Direction

Why use LP?

- Curse of dimensionality
- Eg. Tetris has ~m*2^(w*h) states
- Approximate the cost-to-go function
- Basis functions and weights

$$
\tilde{J}=\sum_{k=1}^{K} r_{k} \phi_{k} \approx J^{*}
$$

Approximate Linear Programming

max $c^{T} J$

Exact

max
$c^{T} \Phi r$
Approximation
such that $T J \geq J$
such that $T \Phi r \geq \Phi r$

$$
T J=\min \left(g_{u}+\alpha P_{u} J\right)
$$

State Relevance Weights

Lemma: A vector r solves

max
$c^{T} \Phi r$
such that $T \Phi r \geq \Phi r$

If and only if it solves

$$
\begin{array}{cc}
\min _{r} & \left\|J^{*}-\Phi r\right\|_{1, c} \\
\text { such that } & T \Phi r \geq \Phi r
\end{array}
$$

Error Bound for ALP

$$
\begin{array}{ll}
\text { Loose } & \left\|J^{*}-\Phi \tilde{r}\right\|_{1, c} \leq \frac{2}{1-\alpha} \min _{r}\left\|J^{*}-\Phi r^{*}\right\|_{\infty} \\
& v^{T}\left(J_{\bar{\pi}}-J^{*}\right) \leq \frac{1}{1-\alpha}\left\|J-J^{*}\right\|_{1, c}
\end{array}
$$

Refined $\quad v(y)=\frac{1}{1-\alpha}\left(c(y)-\alpha \sum_{x} c(x) p_{\pi(x)}(x, y)\right)$

$$
\tilde{\pi}(x)=\arg \max _{a \in A_{x}}\left(g(x, a)+\alpha \sum_{y \in S} p_{a}(x, y)(\Phi \tilde{r})(y)\right)
$$

The Linear Programming Approach To Approximation Dynamic Programming
D.P. de Farias, B. van Roy, Operations Research 2003

Reduced Linear Programming

max

$$
c^{T} \Phi r
$$

such that $\quad g_{a}(x)+\alpha \sum_{y \in S} P_{a}(x, y)(\Phi r)(y) \geq(\Phi r)(x)$

All constraints

$$
\forall x \in S, a \in A_{x}
$$

Reduced constraints $\quad \forall(x, a) \in \chi$

Constraint Sampling Requirement

$$
\operatorname{Pr}\left\{\left\|J^{*}-\Phi \hat{r}\right\|_{1, c}-\left\|J^{*}-\Phi \tilde{r}\right\|_{1, c} \leq \varepsilon\right\} \geq 1-\delta
$$

Feasibility of RLP

Let χ be the set of N constraints and

$$
N \geq \frac{4}{\varepsilon}\left(K \ln \left(\frac{12}{\varepsilon}\right)+\ln \left(\frac{2}{\delta}\right)\right) \quad \varepsilon, \delta \in(0,1)
$$

Then

$$
\psi(V) \leq \varepsilon \quad \text { with probability } \quad 1-\delta
$$

Where V is the set of constraints violated by optimal solution r

Error Bound for RLP

$$
\left\|J^{*}-\Phi \hat{r}\right\|_{1, c} \leq\left\|J^{*}-\Phi \tilde{r}\right\|_{1, c}+\varepsilon\left\|J^{*}\right\|_{1, c}
$$

On Constraint Sampling in the Linear Programming Approach to Approximate Dynamic Programming
D.P. de Farias, B. van Roy, Mathematics of Operations Research, August 2004

Tetris

- Intractable number of states ~m*2^(w*h)
- Objective:
- Maximize rows clear before height reaches threshold
- States:
- Board configuration
- Shape of falling object
- Control:
- Horizontal position
- Rotation

RLP for Tetris

$$
\begin{array}{cc}
\max & \sum_{x \in \bar{x}}(\Phi r)(x) \\
\text { such that } & (T \Phi r)(x) \geq(\Phi r)(x)
\end{array}
$$

$$
\begin{gathered}
\forall x \in \bar{\chi} \\
(T J)(x)=\min _{\{ }\left\{g(x, a)+\alpha\left(P_{a} J\right)(x)\right\}
\end{gathered}
$$

Basis Functions

- Height of each column (10)
- Height difference successive columns (9)
- Maximum height (1)
- Number of holes (1)
- Static value of 1 (1)
- Total of 22 basis functions

Sample of States

- Only sample constraint every M time steps
- Play N games
- Keep track of states every for every M-th block

Bootstrapping

- Start with policy u_{0}
- Generate sample of states X_{k} with u_{k}
- Solve RLP to get u_{k+1}
- Repeat

Demo

- Only implemented the approximation architecture
- No DP or LP (weights are not updated)

What's the plan?

- Implement RLP solution
- Add a few other basis functions
- Implement other approaches
- Temporal Difference (Bertsekas 1996)
- Others if I have time
- Anything else that come up while l'm coding

