Approximate Linear Programming for Tetris Ivan Sham

Outline

- Approximate Linear Programming
- Tetris
- Project Direction

Why use LP?

• Curse of dimensionality

Eg. Tetris has ~m*2^(w*h) states

• Approximate the cost-to-go function

- Basis functions and weights

$$\widetilde{J} = \sum_{k=1}^{K} r_k \phi_k \approx J^*$$

Approximate Linear Programming

Exact $\max c^{T} J$ such that $TJ \ge J$

Approximationmax $c^T \Phi r$ such that $T \Phi r \ge \Phi r$

 $TJ = \min(g_u + \alpha P_u J)$

State Relevance Weights

Lemma: A vector r solves

max $c^T \Phi r$

such that $T\Phi r \ge \Phi r$

If and only if it solves

$$\min_{r} \quad \left\| J^{*} - \Phi r \right\|_{1,c}$$

such that $T \Phi r \ge \Phi r$

Error Bound for ALP
Loose
$$\|J^* - \Phi \widetilde{r}\|_{1,c} \leq \frac{2}{1-\alpha} \min_r \|J^* - \Phi r^*\|_{\infty}$$

$$\upsilon^{T}(J_{\tilde{\pi}} - J^{*}) \leq \frac{1}{1 - \alpha} \left\| J - J^{*} \right\|_{1,c}$$

Refined $\upsilon(y) = \frac{1}{1 - \alpha} (c(y) - \alpha \sum_{x} c(x) p_{\pi(x)}(x, y))$
 $\tilde{\pi}(x) = \arg \max_{a \in A_{x}} \left(g(x, a) + \alpha \sum_{y \in S} p_{a}(x, y) (\Phi \tilde{r})(y) \right)$

The Linear Programming Approach To Approximation Dynamic Programming D.P. de Farias, B. van Roy, Operations Research 2003

Reduced Linear Programming

max $c^T \Phi r$ such that $g_a(x) + \alpha \sum_{y \in S} P_a(x, y)(\Phi r)(y) \ge (\Phi r)(x)$

All constraints $\forall x \in S, a \in A_x$

Reduced constraints $\forall (x, a) \in \chi$

Constraint Sampling Requirement

$$\Pr\{\|J^* - \Phi \hat{r}\|_{1,c} - \|J^* - \Phi \tilde{r}\|_{1,c} \le \varepsilon\} \ge 1 - \delta$$

Feasibility of RLP

Let x be the set of N constraints and

$$N \ge \frac{4}{\varepsilon} \left(K \ln(\frac{12}{\varepsilon}) + \ln(\frac{2}{\delta}) \right) \qquad \varepsilon, \delta \in (0,1)$$

Then

 $\psi(V) \leq \varepsilon \quad \text{ with probability } 1 - \delta$

Where V is the set of constraints violated by optimal solution r

Error Bound for RLP

$$\left\|J^* - \Phi \hat{r}\right\|_{1,c} \leq \left\|J^* - \Phi \tilde{r}\right\|_{1,c} + \varepsilon \left\|J^*\right\|_{1,c}$$

On Constraint Sampling in the Linear Programming Approach to Approximate Dynamic Programming 11 D.P. de Farias, B. van Roy, Mathematics of Operations Research, August 2004

Tetris

- Intractable number of states ~m*2^(w*h)
- Objective:
 - Maximize rows clear before height reaches threshold
- States:
 - Board configuration
 - Shape of falling object
- Control:
 - Horizontal position
 - Rotation

RLP for Tetris

max $\sum_{x \in \overline{\chi}} (\Phi r)(x)$ such that $(T\Phi r)(x) \ge (\Phi r)(x)$

$\forall x \in \overline{\chi}$

$(TJ)(x) = \min_{a \in A_x} \{g(x,a) + \alpha(P_a J)(x)\}$

Basis Functions

- Height of each column (10)
- Height difference successive columns (9)
- Maximum height (1)
- Number of holes (1)
- Static value of 1 (1)
- Total of 22 basis functions

Sample of States

- Only sample constraint every M time steps
 - Play N games
 - Keep track of states every for every M-th block

Bootstrapping

- Start with policy u₀
- Generate sample of states X_k with u_k
- Solve RLP to get u_{k+1}
- Repeat

Demo

- Only implemented the approximation architecture
- No DP or LP (weights are not updated)

What's the plan?

- Implement RLP solution
- Add a few other basis functions
- Implement other approaches

 Temporal Difference (Bertsekas 1996)
 Others if I have time
- Anything else that come up while l'm coding