Optimal Stopping

-Amit Goyal $27^{\text {th }}$ Feb 2007

Overview

- Why?
- What?
- How?
- Example
- References

WHY?

- House selling: You have a house and wish to sell it. Each day you are offered X_{n} for your house, and pay k to continue advertising it. If you sell your house on day n, you will earn y_{n}, where $y_{n}=\left(X_{n}-\right.$ $n k$). You wish to maximise the amount you earn by choosing a stopping rule.
- Secretary Problem: You are observing a sequence of objects which can be ranked from best to worst. You wish to choose a stopping rule which maximises your chance of picking the best object.

WHAT?

(Problem Definition)

- Stopping Rule is defined by two objects
- A sequence of random variables, $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots$, whose joint distribution is assumed known
- A sequence of real-valued reward functions,

$$
y_{0}, y_{1}\left(x_{1}\right), y_{2}\left(x_{1}, x_{2}\right), \ldots, y_{\infty}\left(x_{1}, x_{2}, \ldots\right)
$$

- Given these objects, the problem is as follows:
- You are observing the sequence of random variables, and at each step n, you can choose to either stop observing or continue
- If you stop observing, you will receive the reward y_{n}
- You want to choose a stopping rule Φ to maximize your expected reward (or minimize the expected loss)

Stopping Rule

- Stopping rule Φ consists of sequence

$$
\Phi=\left(\Phi_{0}, \Phi_{1}\left(\mathrm{x}_{1}\right), \Phi_{2}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right), \ldots\right)
$$

- $\Phi_{\mathrm{n}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$: probability you stop after step n
- $0<=\Phi_{\mathrm{n}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)<=1$
- If N is random variable over n (time to stop), the probability mass function ψ is defined as

$$
\begin{gathered}
\psi=\left(\psi_{0}, \psi_{1}, \psi_{2}, \ldots, \psi_{\infty}\right) \\
\psi_{n}\left(x_{1}, \ldots, x_{n}\right)=P\left(N=n \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right) \\
=>\psi_{n}\left(x_{1}, \ldots, x_{n}\right)=\left[\prod_{1}^{n-1}\left(1-\phi_{j}\left(x_{1}, \ldots, x_{j}\right)\right)\right] \phi_{n}\left(x_{1}, \ldots, x_{n}\right)
\end{gathered}
$$

HOW?

(Solution Framework)

- So, the problem is to choose stopping rule Φ to maximize the expected return, $\mathrm{V}(\Phi)$, defined as

$$
\mathrm{V}(\phi)=\mathrm{E} \sum_{\mathrm{j}=0}^{\infty}\left\{\psi_{j}\left(X_{1}, \ldots, X_{j}\right) * y_{j}\left(X_{1}, \ldots, X_{j}\right)\right\}
$$

$j=\infty$ if we never stop (infinite horizon)
$\mathrm{j}=\mathrm{T}$ if we stop at T (finite horizon)

Optimal Stopping in Finite Horizon

- Special case of general problem, by setting $y_{T+1}=y_{T+2}=\ldots y_{\infty}=-\infty$
- Use DP algorithm

$$
\begin{aligned}
& V_{T}=y_{T}\left(x_{1}, \ldots, x_{T}\right) \\
& V_{j}\left(x_{1}, \ldots, x_{j}\right)=\max \left\{y_{j}\left(x_{1}, \ldots, x_{j}\right), E\left(V_{j+1}\left(x_{1}, \ldots, x_{j+1}\right)\right)\right\}
\end{aligned}
$$

- Here, $\mathrm{V}_{\mathrm{j}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{j}}\right)$ represents the maximum return one can obtain starting from stage j having observed $\mathrm{X}_{1}=\mathrm{x}_{1}, \ldots, \mathrm{X}_{\mathrm{j}}=\mathrm{x}_{\mathrm{j}}$.

The Classical Secretary Problem (CSP)

- Aka marriage problem, hiring problem, the sultan's dowry problem, the fussy suitor problem, and the best choice problem
- Rules of the game:
- There is a single secretarial position to fill.
- There are n applicants for the position, n is known.
- The applicants can be ranked from best to worst with no ties.
- The applicants are interviewed sequentially in a random order, with each order being equally likely.
- After each interview, the applicant is accepted or rejected.
- The decision to accept or reject an applicant can be based only on the relative ranks of the applicants interviewed so far.
- Rejected applicants cannot be recalled.
- The object is to select the best applicant. Win: If you select the best applicant. Lose: otherwise
- Note: An applicant should be accepted only if it is relatively best among those already observed

CSP - Solution Framework

- A relatively best applicant is called a candidate
- Reward Function
- $y_{j}\left(x_{1}, \ldots, x_{n}\right)=j / n \quad$ if applicant j is a candidate,
- $\quad=0 \quad$ otherwise
- Lets say the interviewer rejects the first r-1 applicants and then accept the next relatively best applicant. We wish to find the optimal r

CSP - Solution Framework Cont.

Probability that the best applicant is selected is

$$
\begin{aligned}
P_{r} & =\sum_{k=r}^{n} P\left(k^{t h} \text { applicant is best and selected }\right) \\
& =\sum_{k=r}^{n} P\left(k^{t h} \text { applicant is best } P\left(k^{\text {th }} \text { applicant is selected } \mid \text { it is best }\right)\right. \\
& =\sum_{k=r}^{n} \frac{1}{n} P(\text { best of first } k-1 \text { appears before stage } r) \\
& =\sum_{k=r}^{n} \frac{1}{\mathrm{n}} \frac{r-1}{k-1}=\frac{r-1}{n} \sum_{k=r}^{n} \frac{1}{k-1}
\end{aligned}
$$

** $(r-1) /(r-1)=1$ if $r=1$

CSP - Solution Framework Cont.

- For optimal r,

$$
\begin{aligned}
& P_{r+1} \leq P_{r} \\
& \Rightarrow \frac{\mathrm{r}}{\mathrm{n}} \sum_{r+1}^{n} \frac{1}{k-1} \leq \frac{r-1}{n} \sum_{r}^{n} \frac{1}{k-1} \\
& \Rightarrow \sum_{r+1}^{n} \frac{1}{k-1} \leq 1
\end{aligned}
$$

$$
r^{*}=\min \left\{r \geq 1: \sum_{r+1}^{n} \frac{1}{k-1} \leq 1\right\}
$$

\boldsymbol{n}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
r^{*}	1	1	2	2	3	3	3	4	4
P	1.000	0.500	0.500	0.458	0.433	0.428	0.414	0.410	0.406

CSP - for large n

$$
\begin{aligned}
& \text { If } n \text { is large, } \\
& \sum_{r+1}^{n} \frac{1}{k-1} \approx \log \left(\frac{n}{r}\right) \\
& \Rightarrow \log \left(n / r^{*}\right)=1 \\
& \Rightarrow r^{*}=n / e \\
& P_{r^{*}}=e^{-1}=0.368
\end{aligned}
$$

References

- Optimal Stopping and Applications by Thomas S. Ferguson
(http://www.math.ucla.edu/~tom/Stopping/Co ntents.html)
- http://en.wikipedia.org/wiki/Optimal stopping
- http://en.wikipedia.org/wiki/Secretary proble m

