
Optimal Stopping

-Amit Goyal
27th Feb 2007



2

Overview

� Why?
� What?

� How?
� Example
� References
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WHY?

� House selling: You have a house and wish to sell 
it. Each day you are offered Xn for your house, and 
pay k to continue advertising it. If you sell your 
house on day n, you will earn yn, where yn = (Xn −
nk). You wish to maximise the amount you earn by 
choosing a stopping rule.

� Secretary Problem: You are observing a sequence 
of objects which can be ranked from best to worst. 
You wish to choose a stopping rule which 
maximises your chance of picking the best object. 
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WHAT? 

(Problem Definition)

� Stopping Rule is defined by two objects
� A sequence of random variables, X1, X2, .., whose joint 

distribution is assumed known
� A sequence of real-valued reward functions,

y0, y1(x1), y2(x1,x2), …, y∞(x1,x2,…)

� Given these objects, the problem is as follows:
� You are observing the sequence of random variables, and 

at each step n, you can choose to either stop observing or 
continue

� If you stop observing, you will receive the reward yn

� You want to choose a stopping rule to maximize your 
expected reward (or minimize the expected loss)
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Stopping Rule

� Stopping rule consists of sequence
= ( 0, 1(x1), 2(x1,x2), …)

� n(x1,…,xn) : probability you stop after step n
� 0 <= n(x1,…,xn) <= 1

� If N is random variable over n (time to stop), the 
probability mass function ψ is defined as
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HOW?

(Solution Framework)

� So, the problem is to choose stopping rule 
to maximize the expected return, V( ), 

defined as 
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j = ∞ if we never stop (infinite horizon)
j = T if we stop at T (finite horizon)
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Optimal Stopping in Finite Horizon

� Special case of general problem, by setting 
yT+1 = yT+2 = … y∞ = -∞

� Use DP algorithm
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� Here, Vj(x1,…,xj) represents the maximum 
return one can obtain starting from stage j 
having observed X1=x1,…, Xj=xj. 
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The Classical Secretary Problem (CSP)

� Aka marriage problem, hiring problem, the sultan's dowry problem, the 
fussy suitor problem, and the best choice problem

� Rules of the game:
� There is a single secretarial position to fill.
� There are n applicants for the position, n is known.
� The applicants can be ranked from best to worst with no ties.
� The applicants are interviewed sequentially in a random order, with each 

order being equally likely.
� After each interview, the applicant is accepted or rejected.
� The decision to accept or reject an applicant can be based only on the 

relative ranks of the applicants interviewed so far.
� Rejected applicants cannot be recalled.
� The object is to select the best applicant. Win: If you select the best 

applicant. Lose: otherwise
� Note: An applicant should be accepted only if it is relatively best among 

those already observed
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CSP – Solution Framework

� A relatively best applicant is called a 
candidate

� Reward Function
� yj(x1,…,xn) = j/n if applicant j is a candidate,
� = 0 otherwise

� Lets say the interviewer rejects the first r-1 
applicants and then accept the next relatively 
best applicant. We wish to find the optimal r



10

CSP – Solution Framework Cont.
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CSP – Solution Framework Cont.

� For optimal r,  
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CSP – for large n
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