Optimal Stopping

-Amit Goyal 27th Feb 2007

Overview

- Why?
- What?
- How?
- Example
- References

WHY?

- House selling: You have a house and wish to sell it. Each day you are offered X_n for your house, and pay *k* to continue advertising it. If you sell your house on day *n*, you will earn y_n , where $y_n = (X_n - nk)$. You wish to maximise the amount you earn by choosing a stopping rule.
- Secretary Problem: You are observing a sequence of objects which can be ranked from best to worst. You wish to choose a stopping rule which maximises your chance of picking the best object.

WHAT?

(Problem Definition)

- Stopping Rule is defined by two objects
 - A sequence of random variables, X₁, X₂, ..., whose joint distribution is assumed known
 - A sequence of real-valued reward functions,

 $y_0, y_1(x_1), y_2(x_1, x_2), \dots, y_{\infty}(x_1, x_2, \dots)$

- Given these objects, the problem is as follows:
 - You are observing the sequence of random variables, and at each step n, you can choose to either stop observing or continue
 - \Box If you stop observing, you will receive the reward y_n
 - You want to choose a stopping rule ϕ to maximize your expected reward (or minimize the expected loss)

Stopping Rule

Stopping rule Φ consists of sequence

 $\Phi = (\Phi_0, \ \Phi_1(x_1), \ \Phi_2(x_1, x_2), \ \ldots)$

- Φ_n(x₁,...,x_n) : probability you stop after step n
 0 <= Φ_n(x₁,...,x_n) <= 1
- If N is random variable over n (time to stop), the probability mass function ψ is defined as

$$\boldsymbol{\psi} = (\boldsymbol{\psi}_0, \boldsymbol{\psi}_1, \boldsymbol{\psi}_2, \dots, \boldsymbol{\psi}_\infty)$$

$$\Psi_n(x_1,...,x_n) = P(N = n/X_1 = x_1,...,X_n = x_n)$$

=> $\Psi_n(x_1,...,x_n) = [\prod_{1}^{n-1} (1 - \phi_j(x_1,...,x_j))]\phi_n(x_1,...,x_n)$

HOW?

(Solution Framework)

So, the problem is to choose stopping rule
 Φ to maximize the expected return, V(Φ),
 defined as

$$V(\phi) = E \sum_{j=0}^{\infty} \{ \psi_j(X_1, ..., X_j) * y_j(X_1, ..., X_j) \}$$

 $j = \infty$ if we never stop (infinite horizon) j = T if we stop at T (finite horizon)

Optimal Stopping in Finite Horizon

Special case of general problem, by setting
 y_{T+1} = y_{T+2} = ... y_∞ = -∞
 Use DP algorithm

$$V_T = y_T(x_1, ..., x_T)$$

$$V_j(x_1, ..., x_j) = \max\{y_j(x_1, ..., x_j), E(V_{j+1}(x_1, ..., x_{j+1}))\}$$

Here, V_j(x₁,...,x_j) represents the maximum return one can obtain starting from stage j having observed X₁=x₁,..., X_j=x_j.

The Classical Secretary Problem (CSP)

- Aka marriage problem, hiring problem, the sultan's dowry problem, the fussy suitor problem, and the best choice problem
- Rules of the game:
 - There is a single secretarial position to fill.
 - There are n applicants for the position, n is known.
 - The applicants can be ranked from best to worst with no ties.
 - The applicants are interviewed sequentially in a random order, with each order being equally likely.
 - □ After each interview, the applicant is accepted or rejected.
 - The decision to accept or reject an applicant can be based only on the relative ranks of the applicants interviewed so far.
 - Rejected applicants cannot be recalled.
 - The object is to select the best applicant. Win: If you select the best applicant. Lose: otherwise
- Note: An applicant should be accepted only if it is relatively best among those already observed

CSP – Solution Framework

- A relatively best applicant is called a candidate
- Reward Function
 - □ $y_j(x_1,...,x_n) = j/n$ if applicant j is a candidate, □ = 0 otherwise
- Lets say the interviewer rejects the first r-1 applicants and then accept the next relatively best applicant. We wish to find the optimal r

CSP – Solution Framework Cont.

Probability that the best applicant is selected is

$$P_r = \sum_{k=r}^{n} P(k^{th} \text{ applicant is best and selected})$$

= $\sum_{k=r}^{n} P(k^{th} \text{ applicant is best}) P(k^{th} \text{ applicant is selected | it is best})$
= $\sum_{k=r}^{n} \frac{1}{n} P(\text{best of first } k - 1 \text{ appears before stage } r)$
= $\sum_{k=r}^{n} \frac{1}{n} \frac{r-1}{k-1} = \frac{r-1}{n} \sum_{k=r}^{n} \frac{1}{k-1}$

** (r-1)/(r-1) = 1 if r = 1

CSP – Solution Framework Cont.

• For optimal r,

$$P_{r+1} \leq P_r$$

$$\Rightarrow \frac{r}{n} \sum_{r+1}^n \frac{1}{k-1} \leq \frac{r-1}{n} \sum_r^n \frac{1}{k-1}$$

$$\Rightarrow \sum_{r+1}^n \frac{1}{k-1} \leq 1$$

$$r^* = \min\{r \geq 1 : \sum_{r+1}^n \frac{1}{k-1} \leq 1\}$$

$$n \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$$

$$r^* \quad 1 \quad 1 \quad 2 \quad 2 \quad 3 \quad 3 \quad 4 \quad 4$$

$$P \quad 1.000 \quad 0.500 \quad 0.500 \quad 0.458 \quad 0.433 \quad 0.428 \quad 0.414 \quad 0.410 \quad 0.406$$

CSP – for large n

If n is large,

$$\sum_{r+1}^{n} \frac{1}{k-1} \approx \log(\frac{n}{r})$$

$$\Rightarrow \log(n/r^{*}) = 1$$

$$\Rightarrow r^{*} = n/e$$

$$P_{r^{*}} = e^{-1} = 0.368$$

References

- Optimal Stopping and Applications by Thomas S. Ferguson (<u>http://www.math.ucla.edu/~tom/Stopping/Co</u> <u>ntents.html</u>)
- http://en.wikipedia.org/wiki/Optimal_stopping
- <u>http://en.wikipedia.org/wiki/Secretary_proble</u>
 <u>m</u>