Williams et.al. – Approximate Dynamic Programming for Communication-Constrained Sensor Network Management An Experimental Review and Visual Tool

Jonatan Schroeder

Project Outline – CPSC532M University of British Columbia

Mar 17, 2008

・ 同 ト ・ ヨ ト ・ ヨ ト

- 2 Dynamic Programming Formulation
- 3 Project

Based on: J. L. Williams, J. W. Fisher III, and A. S. Willsky. Approximate dynamic programming for communication-constrained sensor network management. *IEEE Transactions on Signal Processing*, 55(8):4300–4311, August 2007.

ヘロト 人間 ト ヘヨト ヘヨト

÷.

Sensor Networks

- Spatially distributed autonomous devices
- Sensor to monitor:
 - temperature, sound, pressure
 - pollutants
 - external agents
 - battlefield surveillance
- Wireless communication
- Limited energy

★ E ► ★ E ►

Jonatan Schroeder Approximate DP for Sensor Network Management

Jonatan Schroeder Approximate DP for Sensor Network Management

Project

Example

Jonatan Schroeder Approximate DP for Sensor Network Management

Example

Project

Example

Problem Introduction

Dynamic Programming Formulation Proiect

Problem Introduction

Dynamic Programming Formulation Project

The Problem

- Identify the state (position, velocity) of the object
 - Probability Distribution Function (pdf)
 - Estimate the object's next state
- Subset of sensors and a leader sensor

★ E ► ★ E ►

The Problem

- Identify the state (position, velocity) of the object
 - Probability Distribution Function (pdf)
 - Estimate the object's next state
- Subset of sensors and a leader sensor
- Objectives:
 - Maximize the information estimation performance
 - Minimize the communication cost

・聞き ・ヨト ・ヨト

Dynamic Programming Approach

- Objective function: estimation performance or communication cost
 - Lagrangian relaxation
- State: object actual position
- Policy: leader and sensor subset selection
- Rolling discrete horizon
 - In each step, N steps are calculated, and one is taken

★ 문 ► ★ 문 ►

Object Dynamics

• Object state:
$$x_k = \begin{bmatrix} p_x \\ v_x \\ p_y \\ v_y \end{bmatrix}$$

• Object dynamics: $x_{k+1} = Fx_k + w_k$
• $F = \begin{bmatrix} 1 & T & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & T \\ 0 & 0 & 0 & 1 \end{bmatrix}$

• w_k is a white Gaussian noise process

・ 同 ト ・ ヨ ト ・ ヨ ト

ъ

Measurement Model

• Measurement model: $z_k^s = h(x_k, s) + v_k^s$

$$h(x_k,s) = \frac{a}{\|Lx_k - y^s\|_2^2 + b}$$

- v_k^s is a white Gaussian noise process
- $z_{0:k}$ is the history of all measurements $\{z_0, z_1, \ldots, z_k\}$
- Estimation: in progress

ヘロン 人間 とくほ とくほ とう

Communication

- Cost (per bit) of direct communication: $\tilde{C}_{ij} \propto \|y^i y^j\|_2^2$
- Cost considering path $\{i_0, i_1, \ldots, i_{n_{ij}}\}$:

$$C_{ij} = \sum_{k=1}^{n_{ij}} ilde{C}_{i_{k-1}i_k}$$

- Transmission of probabilistic model: B_p bits
- Transmission of measurements: *B_m* bits

イロト イポト イヨト イヨト 三日

Constrained Dynamic Programming

- Conditional belief state: $\mathbb{X}_k \triangleq p(x_k | z_{0:k-1}) \in \mathcal{P}(\mathcal{X})$
- Control: $u_k = (I_k, S_k), I_k \in S$ and $S_k \subset S$
- Control policy time $k: \mu_k(\mathbb{X}_k, I_{k-1})$
- Control policy set: $\pi_k = \{\mu_k, \dots, \mu_{k+N-1}\}$

(雪) (ヨ) (ヨ)

Optimization Problem

$$\min_{\pi} E\left[\sum_{i=k}^{k+N-1} g\left(\mathbb{X}_{i}, I_{i-1}, \mu_{i}\left(\mathbb{X}_{i}, I_{i-1}\right)\right)\right]$$

s.t. $E\left[\sum_{i=k}^{k+N-1} G\left(\mathbb{X}_{i}, I_{i-1}, \mu_{i}\left(\mathbb{X}_{i}, I_{i-1}\right)\right)\right] \leq M$

Jonatan Schroeder Approximate DP for Sensor Network Management

イロン イロン イヨン イヨン

₹ 990

Optimization Problem

$$\min_{\pi} E\left[\sum_{i=k}^{k+N-1} g\left(\mathbb{X}_{i}, I_{i-1}, \mu_{i}\left(\mathbb{X}_{i}, I_{i-1}\right)\right)\right]$$

s.t. $E\left[\sum_{i=k}^{k+N-1} G\left(\mathbb{X}_{i}, I_{i-1}, \mu_{i}\left(\mathbb{X}_{i}, I_{i-1}\right)\right)\right] \leq M$

Constraint addressed through Lagrangian relaxation:

$$L_{k}(\mathbb{X}_{k}, I_{k-1}, \pi_{k}, \lambda) = E\left[\sum_{i=k}^{k+N-1} g\left(\mathbb{X}_{i}, I_{i-1}, \mu_{i}\left(\mathbb{X}_{i}, I_{i-1}\right)\right)\right]$$

$$+ \lambda \left(\sum_{i=k}^{k+N-1} G(\mathbb{X}_i, I_{i-1}, \mu_i(\mathbb{X}_i, I_{i-1})) - M \right) \right]$$

프 🕨 🛛 프

Dynamic Programming Function

$$L_{k}(\mathbb{X}_{k}, I_{k-1}, \pi_{k}, \lambda) = E\left[\sum_{i=k}^{k+N-1} g\left(\mathbb{X}_{i}, I_{i-1}, \mu_{i}\left(\mathbb{X}_{i}, I_{i-1}\right)\right)\right]$$

$$+ \lambda \left(\sum_{i=k}^{k+N-1} G(\mathbb{X}_i, I_{i-1}, \mu_i(\mathbb{X}_i, I_{i-1})) - M \right) \right]$$

ヘロト ヘワト ヘビト ヘビト

3

Dynamic Programming Function

$$L_{k}(\mathbb{X}_{k}, I_{k-1}, \pi_{k}, \lambda) = E\left[\sum_{i=k}^{k+N-1} g(\mathbb{X}_{i}, I_{i-1}, \mu_{i}(\mathbb{X}_{i}, I_{i-1}))\right]$$

$$+ \lambda \left(\sum_{i=k}^{k+N-1} G(\mathbb{X}_i, I_{i-1}, \mu_i(\mathbb{X}_i, I_{i-1})) - M \right) \right]$$

$$J_{k}^{D}(\mathbb{X}_{k}, I_{k-1}, \lambda) = \min_{\pi_{k}} L_{k}(\mathbb{X}_{k}, I_{k-1}, \pi_{k}, \lambda)$$

$$J_{k}^{L}(\mathbb{X}_{k}, I_{k-1}) = \max_{\lambda \geq 0} J_{k}^{D}(\mathbb{X}_{k}, I_{k-1}, \lambda)$$

-

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Complexity Evaluation

- N_s sensors
- N_p samples for each policy
- N steps (horizon)
- N_s2^{N_s} possible controls
- $N_s 2^{N_s} N_p$ new total samples
- $O(N_s^N 2^{N_s N} N_p^N)$

・ 同 ト ・ ヨ ト ・ ヨ ト

Linearized Gaussian Approximation

- Considering the smoothness of $z_k^{S_k}$
- Function for entropy evaluation is simplified
- $O(N_s^N 2^{N_s N})$

・ 回 ト ・ ヨ ト ・ ヨ ト

Greedy Sensor Subnet Selection

- Each stage is divided in substages
- A new problem is defined, algebraically equivalent to the original problem
- Sensors that increase the cost in a substage are discarded
- Sensors are limited to a small neighbourhood
- Worst-case complexity: $O(NN_s^3)$

→ Ξ → < Ξ →</p>

Dynamic Programming Problem Implementation

- Implementation of the problem described in this paper
- Both communication contraint (CC) and information constraint (IC) approaches
- Repeat simulation results
- Obtain extended resuls
- Tool for visualizing:
 - Agents position
 - Object state
 - Leader and subset selection

★ E ► < E ►</p>

Williams et.al. – Approximate Dynamic Programming for Communication-Constrained Sensor Network Management An Experimental Review and Visual Tool

Jonatan Schroeder

Project Outline – CPSC532M University of British Columbia

Mar 17, 2008

・ 同 ト ・ ヨ ト ・ ヨ ト