
Value Function
Approximation

Mark Schmidt
March 10, 2007

Outline

• Context

• Linear Models

• Neural Networks

• Kernel Machines

• Advanced Probabilistic Methods

Notation for ADP
• time:

• state:

• noise:

• decision:

• probability of transitioning to state if decision is made in state :

• policy:

• cost:

• goal:

• state value/cost-to-go:

• state-action value/cost-to-go function:

t

xt

wt

ut

Pxy(u)
y u x

min
π

Ew[
∑

t

γtg(xt, ut(xt), wt)]

Jπ(x0) = Ew[
∞∑

t=0

γtgt(xt, ut(xt), wt)]

Qπ(x0, u(x0)) = Ew[
∞∑

t=0

γtgt(xt, ut(xt), wt)]

π = {u1, u2, ..., un}

g(xt, ut(xt), wt)

Where we are now...
{P,g} Known: {P,g} Unknown:

Prediction: DP TD

Control: DP
On-Policy: Off-Policy:

Sarsa Q-Learn

- {P,g} Unknown methods can be applied in {P,g} Known cases
- Q only needed in P-Unknown/Control scenarios (unless can’t compute expectation)
- TD: Evaluation of Fixed Policy (can later run TD w/ revised policy)
- Sarsa: On-Policy but NOT fixed (depends on Q)
- Sarsa vs. Q: When updating Q, Sarsa computes TD w/ action from new state under current
policy, Q maximizes over next action
- TD(lambda), Sarsa(lambda), Q(lambda): used to update past few states/state-actions

Motivating Function Approximation
• In many applications, space of states for or state-

action pairs for is too large (curse of
dimensionality)

• In this case, make use an approximate value/Q function
parametrized in terms of a (smaller) vector :

•

•

• Example:

• (approximate value function is
bilinear in state representation x and parameters r)

• Approximate value generated only when
needed

r

Jπ(x)
Qπ(x, u(x))

J̃(x, r) ≈ J∗(x)

J̃(x, r) = rT x

J̃(x, r)

Q̃(x, u(x), r) ≈ Q∗(x, u(x))

FA for ADP

• Two Issues:

• (1) Decide general structure of (approximation
architecture)

• (2) Calculate r so as to minimize some measure of error
between and (parameter estimation)

• This talk will focus on issue (1), next slide sketches how to
address (2).

J̃(x, r)

J̃(x, r)J
∗(x)

• One possible error function is the (weighted) squared error:

•

• might be ‘on-policy’ distribution

• Problem 1: we may be going through data set sequentially:

• First-Order Update for differentiable :

•

• Problem 2: we don’t have :

• Approximate update:

• Examples of :

• DP:

• TD(0):

• Monte Carlo: (average cost of following policy after x_t)

∑

s∈S

p(xs)[J
∗(xs) − J̃(xs, r)]

2

p(xs)

J̃(xs, r)

rt+1 = rt −
α

2
∇r[J

∗(xt) − J̃(xt, rt)]
2

= rt − α[J∗(xt) − J̃(xt, rt)]∇rJ̃(xt, rt)
J
∗(xs)

rt+1 = rt −
α

2
∇r[J̄(xt) − J̃(xt, rt)]

2

J̄(xt)

Ew[g(xt, ut(xt), wt) + γJt+1(ft(xt, ut(xt), wt))]

g(xt, ut(xt), wt) + γJt+1(ft(xt, ut(xt), wt))

G(xt)

Biased vs. Unbiased

• Unbiased (Monte Carlo):

• can find local optimum of MSE

• Biased, on-policy (TD, Sarsa):

• in some cases, can bound distance to MSE,
and decrease to 0

• Biased, off-policy (DP, Q):

• may diverge

Outline

• Context

• Linear Models

• Neural Networks

• Kernel Machines

• Advanced Probabilistic Methods

Least Squares
• We are now able to formulate the MSE problem as:

•

• with bilinear model , we can turn this into a standard
Least Squares problem:

•

•

•

• Least Squares:

•

• Weighted Least Squares:

•

min
r

∑

t

(J̄(xt) − J̃(xt, r))
2

J̃(xt, r) := rT xt

yt := J̄(xt)

w := r

xt := xt

min
w

∑

t

(wT
xt − yt)

2

min
w

∑

t

p(xt)(w
T
xt − yt)

2

Least Squares
Regression

Least Squares fit to data

Standard Least Squares Solution

• Re-write in matrix notation:

• Use first optimality conditions:

• Show that this is min using second order condition:

• (adding weights is is easy)

• Nice theoretical properties (CLT, consistent, CR-b, MVUE, etc.)

• In many scenarios we will NOT be using the Normal equations

f(x, w, y) = (Xw − y)T (Xw − y) = wT XT Xw − 2wT XT y + yT y

∇wf(X, w, y) = 0

0 = 2XT Xw − 2XT y

∇2

wf(X, w, y) = 2XT X ≥ 0

XT Xw = XT y (Normal equations)

Stochastic Gradient Descent
• We may be accessing the pairs sequentially, we may have

an immense/infinite amount of data, or dynamics may change over
time

• In these cases, we may want to build FA as we go:

• Stochastic Gradient Update:

• For convergence, need SA conditions:

• in practice, alpha chosen by heuristically (one method: test an
alpha out for a while and see how well it works)

• steepest descent, but different behaviour from on-line updates

(xt, yt)

w := w − α∇wF (xt, w, yt)

∞∑

i=1

αi = ∞

∞∑

i=1

α
2

i < ∞

Basis Functions

• What if relation is non-linear?

• Model non-linear effects in a linear model using
change of basis (‘basis functions’)

• Example: instead of , use

• Still linear in w and nothing changes in solving for w

• Basically the same as having a different
representation for the state

• Some common basis functions: polynomials, radial
basis functions, splines, wavelets, etc.

xt [1 xt x
2

t]
T

(x + ε)Ry

Basis Functions

Least Squares on original basis Least Squares on expanded basis

[1 xt x
2

t]
Txt

Regularization
• If we use a sufficiently expressive basis, we can approximate any function

• If we have a basis that is too expressive (relative to amount of data), we
can fit not only the desired function but noise in process

• Regularization: assign a penalty function to each w:

• Example of Regularization: penalizes weights by squared Euclidean
distance from 0:

• forces minimization to find balance between growing weights and fitting
data

• various strategies to choose lambda (independent data samples, degrees
of freedom, vs. , etc.)

R(w)

min
w

F (X, w, y) + R(w)

R(w) := λ

p∑

i=1

w
2

i

∇F ∇R

Regularizaiton

Original Basis Degree 2 Degree 4 (correct)

Degree 8 Degree 8 (regularized)

Probabilistic View
• Add a constant to all terms and an additional constant Z:

• Take negation and exponentiate:

• Least Squares w corresponds to max likelihood of model:

• With regularizer, corresponds to MAP estimate:

• Dual View:

• min (Loss Function) + Regularizer

• max (Likelihood)(Prior)

• (exists third view based on maximum entropy)

1

2σ
2

Z +
∑

t

1

2σ2
(wT xt − yt)

2

1

Z

∏

t

exp(
1

2σ2
(wT xt − yt)

2)

P (y|X, w) =
∏

t

N(yt|w
T xt, σ

2)

P (y|X, w) = P (y, X|w)P (w) =
∏

t

[N(yt|w
T xt, σ

2)]
∏

i

[N(w|0, λ2)]

Other Losses/Regularizers

• The combination of a Least Squares error and Tikhonov
regularization is not the only possiblity.

• Can mix and match various loss-regularizer/likelihood-prior
combinations:

• (sparse, robust to outliers):

• (worse-case):

• Student T (robust to outliers):

• Min/Max Entropy methods, etc.

L1

L∞

∑

i

|wi|

max
i

|wi|

∑

t

|wT
xt − yt|

max
t

|wT
xt − yt|

∑

t

−log(T (wT xt − yt, η))
∑

i

−log(T (wi, η))

Discrete Output
• Suppose target is binary:

• Rather than having , we can
use a sigmoid function to force output to be
in range

• Logistic function is one example:

• Logistic Regression: maximum likelihood w,
or MAP w with a regularizer on w

yt ∈ {0, 1}

(0, 1)

ŷ ∈ (∞,∞)

p(yt = 1|xt, w) =
1

1 + exp(−wT xt)

p(yt = 0|xt, w) = 1 − p(yt = 1|xt, w)

Outline

• Context

• Linear Models

• Neural Networks

• Kernel Machines

• Advanced Probabilistic Methods

Learning the Basis

• We have assumed that output can be
modeled as linear combination of basis

• What if it can’t? What if we don’t know the
right basis? What if we do know the right
basis but we can’t compute/store it?

• Basic Idea behind Neural Networks:

• Try to estimate a good basis!

• Do this by composing linear models

Composing Linear Models
• Composing 1 function:

• f, g are both parameterized linear models, where g has output
in a fixed range (such as a sigmoid function)

• Example:

•

•

•

• Graphically:

• Weights optimized jointly

f(g(x, rg), rf)

g(x, wg) :=
1

1 + exp(−wT
g x)

f(g(x, wg), wf) := wf (
1

1 + exp(−wT
g x)

)

f(x, wf) := wfx

[wT
g wf]

X wg H wf Y

Neural Networks
• In some sense, ‘H’ compresses what the linear model g knows

about the function into a scalar feature

• In Neural Networks, we seek to jointly learn multiple h values,
that might form a better basis for representing our function than
the original basis:

• Jointly optimize

• Early work motivated by ideas from neuroscience

• Also known as ‘multi-layer perceptron’ (perceptron: linear model)

• Specific instance of a model known in Stats as a ‘mixture model’

• If g, f both give probabilistic output, then forms a (Sigmoid) ‘Belief
Network’

f(g1(x, wg1
), g2(x, wg2

), ..., gn(x, wgn
), wf)

[wf wg∗
]

Neural Networks

X

wg1 H1

wf
YH2

H3

H4

wg2

wg3

wg4

Neural Networks

• Optimize parameters jointly using SGD, as before

• Optimization is now non-convex (and h unidentifiable)

• Computing composition called ‘forward-propagation’

• Using chain rule to compute gradient called ‘back-
propagation’

• Applying a regularizer to weights called ‘weight decay’

• Alternative form of regularization: early stopping

• Can make multiple layers of composition (often difficult
to get working, with some exceptions like ‘convolutional
neural networks’)

Neural Networks

X

wg11 H11

wf
YH12

H13

H14

wg12

wg13

wg14

wg21 H21

H22

H23

H24

wg22

wg23

wg24

Recent Work

• ‘Deep Belief Networks’

• use undirected models and stochastic
approximations to build one layer of
hidden units at a time, training each layer
to generate outputs produced by previous
layer

Outline

• Context

• Linear Models

• Neural Networks

• Kernel Machines

• Advanced Probabilistic Methods

Kernel Methods
• Basic Idea:

• Use a large basis and regularize

• Kernel ‘trick’

• Lets us use a large set of basis functions without
storing them

• If we can define an appropriate similarity metric,
we may not even need to know the basis

• Nice theory behind SVMs. I don’t have time to go
over this (previous talk: 1.5 hours) and will just give
an overview of a Support Vector regression model

Support Vector
Regression

• Least Squares Loss:

• Least Absolute Deviation Loss:

• SVR ‘eps-Insensitive’ Loss:

∑

t

(wT
xt − yt)

2

∑

t

|wT
xt − yt|

∑

t

[|wT
xt − yt|− ε]+

Support Vector
Regression

Support Vector Regression
• We will consider the eps-Insensitive loss with

the Quadratic Regularizer:

• Optimal parameters can be found by solving a
Quadratic Program with the same minimum

• ‘Support Vectors’ are points where either of the
slacks z is non-zero, all other points are within
the ‘eps-tube’ and are ‘good enough’

∑

t

[[|wT xt − yt|− ε]+] +
λ

2

∑

i

w2
i

min
w,b,z,ẑ

∑

t

[zt + ẑt] +
λ

2

∑

i

w
2

i

∀tzt ≥ w
T
xt − yt − ε

s.t.∀tzt ≥ 0, ẑt ≥ 0

, ẑt ≥ yt − w
T
xt − ε

Dual Problem

• After introducing Lagrange multipliers and
some algebra, we obtain the following dual
minimization:

• Predictions made using:

• Note: Only inner product between features
is relevant

−
∑

t

ytαt + ε

∑

t

|αt| +
1

2

∑

t

∑

t′

αtαt′x
T

t xt′

s.t.
∑

t

αt = 0,∀t

1

λ
≤ αt ≤

1

λ

f(xs) =
∑

t

αtx
T

t xs

Kernel-Defined Basis
• Kernel ‘trick’: replace with kernel function

• Example:

• Kernel Functions:

• polynomial kernel:

• rbf kernel:

• more generally: some similarity metric between vectors/graphs/
text/images/etc.

• Restriction: ‘Gram Matrix’

• Related to Covariance functions in GMRFs/Kriging, and optimization
in Reproducing Kernel Hilbert Spaces

x
T

s xt k(xs, xt)

(xT
z)2 = x

2

1z
2

1 + x
2

2z
2

2 + 2x1z1x2z2

(xT
z + 1)d

exp(−γ||x − z||2)

k(XT
X) ≥ 0

http://www.youtube.com/watch?v=3liCbRZPrZA

General Advantages of
SV Methods

• convexity

• regularization

• sparsity

• kernels

• efficient and large-scale training

• computational learning theory
(none of these is unique to SV methods)

Recent Work

• Learning the kernel:

• Linear combination of kernels

• Semi-definite programming

Outline

• Context

• Linear Models

• Neural Networks

• Kernel Machines

• Advanced Probabilistic Methods

Advanced Probabilistic Methods

• Hierarchical Bayesian:

• eg. Gaussian Process: regularized kernel linear regression, where we integrate
over w and optimize parameters of kernel based on marginal likelihood (or
approximate integral over kernel parameters)

• Non-Parametric Bayesian:

• eg. Dirichlet Process on mixture coefficients in mixture model: integrates over
all possible values of the number of mixture components

• Structured Output:

• eg. Conditional Random Field: models multiple targets y, including individual
costs and costs based on joint configurations, conditioned on a set of features

• Sequential Monte Carlo:

• eg. Particle Filter: model-free filtering for (non-linear) dynamic systems

