Value Function Approximation

Mark Schmidt March 10, 2007

Outline

- Context
- Linear Models
- Neural Networks
- Kernel Machines
- Advanced Probabilistic Methods

Notation for ADP

- time: t
- state: x_t
- noise: w_t
- decision: u_t
- probability of transitioning to state ${\mathcal Y}$ if decision ${\mathcal U}$ is made in state x :

• policy:
$$\pi = \{u_1, u_2, ..., u_n\}$$

• cost:
$$g(x_t, u_t(x_t), w_t)$$

- goal: $\min_{\pi} \mathbf{E}_{w} [\sum_{t} \gamma_{t} g(x_{t}, u_{t}(x_{t}), w_{t})]_{\infty}$ state value/cost-to-go: $J_{\pi}(x_{0}) = \mathbf{E}_{w} [\sum_{t=0}^{\infty} \gamma^{t} g_{t}(x_{t}, u_{t}(x_{t}), w_{t})]$ t=0
- state-action value/cost-to-go function:

$$Q_{\pi}(x_0, u(x_0)) = \mathbf{E}_w[\sum_{t=0}^{\infty} \gamma^t g_t(x_t, u_t(x_t), w_t)]$$

 $P_{xy}(u)$

Where we are now...

	{P,g} Known:	{P,g} Unknown:	
Prediction:	DP	TD	
Control:	DP	On-Policy:	Off-Policy:
		Sarsa	Q-Learn

- {P,g} Unknown methods can be applied in {P,g} Known cases
- Q only needed in P-Unknown/Control scenarios (unless can't compute expectation)
- TD: Evaluation of Fixed Policy (can later run TD w/ revised policy)
- Sarsa: On-Policy but NOT fixed (depends on Q)
- Sarsa vs. Q: When updating Q, Sarsa computes TD w/ action from new state under current policy, Q maximizes over next action
- TD(lambda), Sarsa(lambda), Q(lambda): used to update past few states/state-actions

Motivating Function Approximation

- In many applications, space of states for $J_{\pi}(x)$ or stateaction pairs for $Q_{\pi}(x, u(x))$ is too large (curse of dimensionality)
- In this case, make use an approximate value/Q function parametrized in terms of a (smaller) vector r:
- $\tilde{J}(x,r) \approx J^*(x)$
- $\tilde{Q}(x, u(x), r) \approx Q^*(x, u(x))$
- Example:
 - $\tilde{J}(x,r) = r^T x$ (approximate value function is bilinear in state representation x and parameters r)
 - Approximate value $\tilde{J}(\boldsymbol{x},r)$ generated only when needed

FA for ADP

- Two Issues:
 - (1) Decide general structure of $\tilde{J}(x,r)$ (approximation architecture)
 - (2) Calculate r so as to minimize some measure of error between $J^*(x)$ and $\tilde{J}(x,r)$ (parameter estimation)
- This talk will focus on issue (1), next slide sketches how to address (2).

• One possible error function is the (weighted) squared error:

•
$$\sum_{s \in \mathcal{S}} p(x_s) [J^*(x_s) - \tilde{J}(x_s, r)]^2$$

- $p(x_s)$ might be 'on-policy' distribution
- Problem I: we may be going through data set sequentially:
 - First-Order Update for differentiable $\tilde{J}(x_s,r)$:

•
$$r_{t+1} = r_t - \frac{\alpha}{2} \nabla_r [J^*(x_t) - \tilde{J}(x_t, r_t)]^2$$

= $r_t - \alpha [J^*(x_t) - \tilde{J}(x_t, r_t)] \nabla_r \tilde{J}(x_t, r_t)$

• Problem 2: we don't have $J^*(x_s)$:

• Approximate update:

$$r_{t+1} = r_t - \frac{\alpha}{2} \nabla_r [\overline{J}(x_t) - \widetilde{J}(x_t, r_t)]^2$$

- Examples of $\bar{J}(x_t)$:
 - DP: $\mathbf{E}_w[g(x_t, u_t(x_t), w_t) + \gamma J_{t+1}(f_t(x_t, u_t(x_t), w_t))]$
 - TD(0): $g(x_t, u_t(x_t), w_t) + \gamma J_{t+1}(f_t(x_t, u_t(x_t), w_t))$
 - Monte Carlo: $G(x_t)$ (average cost of following policy after x_t)

Biased vs. Unbiased

- Unbiased (Monte Carlo):
 - can find local optimum of MSE
- Biased, on-policy (TD, Sarsa):
 - in some cases, can bound distance to MSE, and decrease to 0
- Biased, off-policy (DP, Q):
 - may diverge

Outline

- Context
- Linear Models
- Neural Networks
- Kernel Machines
- Advanced Probabilistic Methods

Least Squares

• We are now able to formulate the MSE problem as:

•
$$\min_{r} \sum_{t} (\bar{J}(x_t) - \tilde{J}(x_t, r))^2$$

• with bilinear model $\tilde{J}(x_t, r) := r^T x_t$, we can turn this into a standard Least Squares problem:

•
$$y_t := \overline{J}(x_t)$$

•
$$w := r$$

•
$$x_t := x_t$$

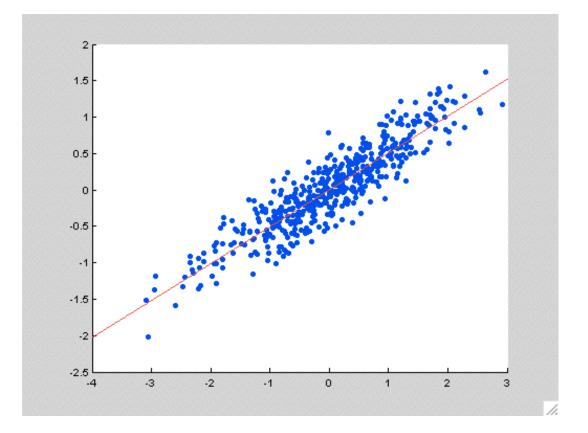
• Least Squares:

•
$$\min_{w} \sum_{t} (w^T x_t - y_t)^2$$

• Weighted Least Squares:

•
$$\min_{w} \sum_{t} p(x_t) (w^T x_t - y_t)^2$$

Least Squares Regression



Least Squares fit to data

Standard Least Squares Solution

• Re-write in matrix notation:

 $f(x, w, y) = (Xw - y)^{T} (Xw - y) = w^{T} X^{T} Xw - 2w^{T} X^{T} y + y^{T} y$

• Use first optimality conditions: $\nabla_w f(X, w, y) = 0$ $0 = 2X^T X w - 2X^T y$

 $X^T X w = X^T y$ (Normal equations)

• Show that this is min using second order condition:

$$\nabla_w^2 f(X, w, y) = 2X^T X \ge 0$$

- (adding weights is is easy)
- Nice theoretical properties (CLT, consistent, CR-b, MVUE, etc.)
- In many scenarios we will NOT be using the Normal equations

Stochastic Gradient Descent

- We may be accessing the pairs (x_t, y_t) sequentially, we may have an immense/infinite amount of data, or dynamics may change over time
- In these cases, we may want to build FA as we go:
 - Stochastic Gradient Update:

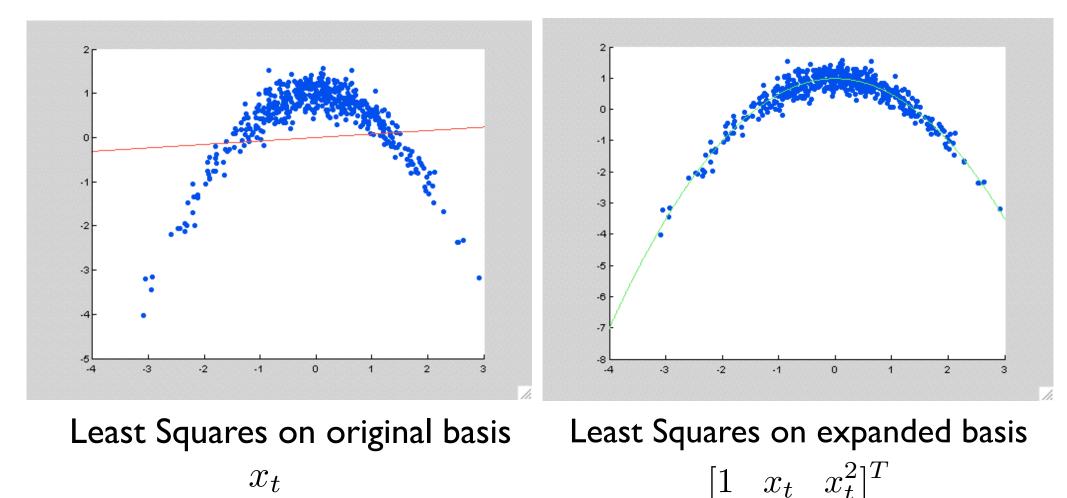
$$w := w - \alpha \nabla_w F(x_t, w, y_t)$$

- For convergence, need SA conditions: $\sum_{i=1}^{\infty} \alpha_i = \infty \quad \sum_{i=1}^{\infty} \alpha_i^2 < \infty$
- in practice, alpha chosen by heuristically (one method: test an alpha out for a while and see how well it works)
- steepest descent, but different behaviour from on-line updates

Basis Functions

- What if relation $(x + \epsilon)Ry$ is non-linear?
- Model non-linear effects in a linear model using change of basis ('basis functions')
- Example: instead of x_t , use $\begin{bmatrix} 1 & x_t & x_t^2 \end{bmatrix}^T$
- Still linear in w and nothing changes in solving for w
- Basically the same as having a different representation for the state
- Some common basis functions: polynomials, radial basis functions, splines, wavelets, etc.

Basis Functions



 x_t

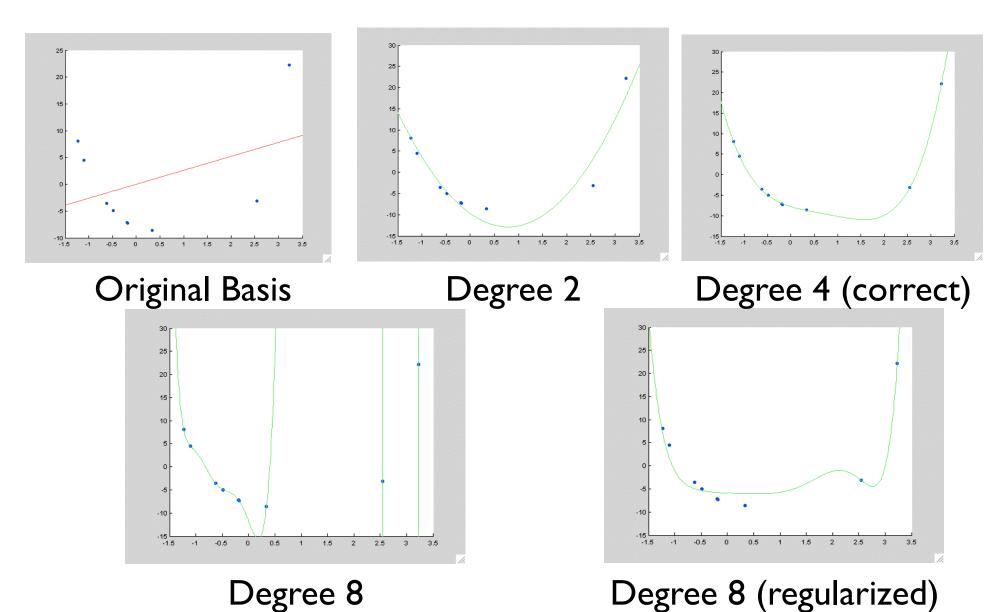
Regularization

- If we use a sufficiently expressive basis, we can approximate any function
- If we have a basis that is too expressive (relative to amount of data), we can fit not only the desired function but noise in process
- Regularization: assign a penalty function R(w) to each w:

$$\min_{w} F(X, w, y) + R(w)$$

- Example of Regularization: penalizes weights by squared Euclidean distance from 0: $R(w) := \lambda \sum_{i=1}^{n} w_i^2$
- forces minimization to find balance between growing weights and fitting data
- various strategies to choose lambda (independent data samples, degrees of freedom, ∇F vs. ∇R , etc.)

Regularizaiton



Probabilistic View

- Add a constant $\frac{1}{2\sigma^2}$ to all terms and an additional constant Z: $Z + \sum \frac{1}{2\sigma^2} (w^T x_t - y_t)^2$
- Take negation and exponentiate:

$$\frac{1}{Z}\prod_{t} exp(\frac{1}{2\sigma^2}(w^T x_t - y_t)^2)$$

• Least Squares w corresponds to max likelihood of model:

$$P(y|X,w) = \prod N(y_t|w^T x_t, \sigma^2)$$

• With regularizer, corresponds to $\overset{t}{M}AP$ estimate:

$$P(y|X,w) = P(y,X|w)P(w) = \prod_{t} [N(y_t|w^T x_t, \sigma^2)] \prod_{i} [N(w|0,\lambda^2)]$$

- Dual View:
 - min (Loss Function) + Regularizer
 - max (Likelihood)(Prior)
 - (exists third view based on maximum entropy)

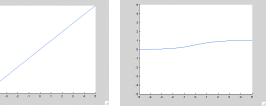
Other Losses/Regularizers

- The combination of a Least Squares error and Tikhonov regularization is not the only possiblity.
- Can mix and match various loss-regularizer/likelihood-prior combinations:
 - L1(sparse, robust to outliers): $\sum_{\substack{t \ max \ w^T x_t y_t|}} |w_i| \sum_{\substack{i \ max \ w^T x_t y_t|}} |w_i|$

 - Student T (robust to outliers): $\sum_{t} -log(T(w^T x_t y_t, \eta)) \sum_{i} -log(T(w_i, \eta))$
 - Min/Max Entropy methods, etc.

Discrete Output

- Suppose target is binary: $y_t \in \{0, 1\}$
- Rather than having $\hat{y} \in (\infty, \infty)$, we can use a sigmoid function to force output to be in range (0, 1)
- Logistic function is one example:



$$p(y_t = 1 | x_t, w) = \frac{1}{1 + \exp(-w^T x_t)}$$
$$p(y_t = 0 | x_t, w) = 1 - p(y_t = 1 | x_t, w)$$

 Logistic Regression: maximum likelihood w, or MAP w with a regularizer on w

Outline

- Context
- Linear Models
- Neural Networks
- Kernel Machines
- Advanced Probabilistic Methods

Learning the Basis

- We have assumed that output can be modeled as linear combination of basis
- What if it can't? What if we don't know the right basis? What if we do know the right basis but we can't compute/store it?
- Basic Idea behind Neural Networks:
 - Try to estimate a good basis!
 - Do this by composing linear models

Composing Linear Models

• Composing I function:

 $f(g(x, r_g), r_f)$

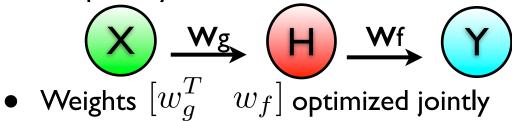
- f, g are both parameterized linear models, where g has output in a fixed range (such as a sigmoid function)
- Example:

•
$$f(x, w_f) := w_f x$$

•
$$g(x, w_g) := \frac{1}{1 + \exp(-w_g^T x)}$$

•
$$f(g(x, w_g), w_f) := w_f(\frac{1}{1 + \exp(-w_g^T x)})$$

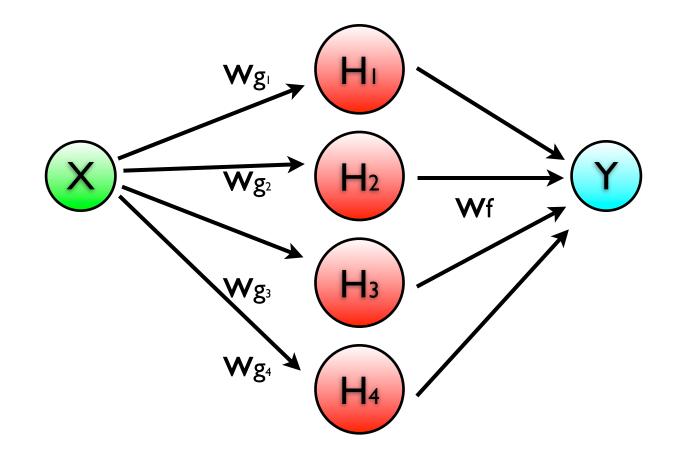
• Graphically:



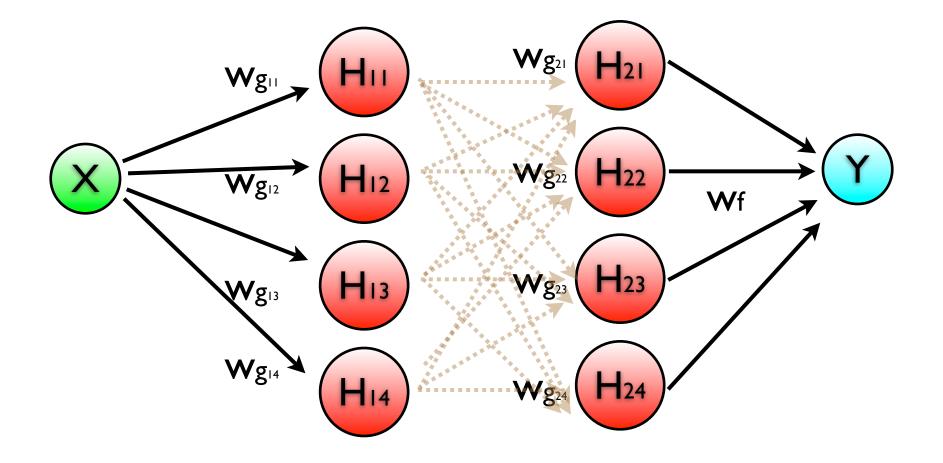
- In some sense, 'H' compresses what the linear model g knows about the function into a scalar feature
- In Neural Networks, we seek to jointly learn multiple h values, that might form a better basis for representing our function than the original basis:

$$f(g_1(x, w_{g_1}), g_2(x, w_{g_2}), ..., g_n(x, w_{g_n}), w_f)$$

- Jointly optimize $\begin{bmatrix} w_f & w_{g_*} \end{bmatrix}$
- Early work motivated by ideas from neuroscience
- Also known as 'multi-layer perceptron' (perceptron: linear model)
- Specific instance of a model known in Stats as a 'mixture model'
- If g, f both give probabilistic output, then forms a (Sigmoid) 'Belief Network'



- Optimize parameters jointly using SGD, as before
- Optimization is now non-convex (and h unidentifiable)
- Computing composition called 'forward-propagation'
- Using chain rule to compute gradient called 'backpropagation'
- Applying a regularizer to weights called 'weight decay'
- Alternative form of regularization: early stopping
- Can make multiple layers of composition (often difficult to get working, with some exceptions like 'convolutional neural networks')



Recent Work

- 'Deep Belief Networks'
 - use undirected models and stochastic approximations to build one layer of hidden units at a time, training each layer to generate outputs produced by previous layer

Outline

- Context
- Linear Models
- Neural Networks
- Kernel Machines
- Advanced Probabilistic Methods

Kernel Methods

- Basic Idea:
 - Use a large basis and regularize
- Kernel 'trick'
 - Lets us use a large set of basis functions without storing them
 - If we can define an appropriate similarity metric, we may not even need to know the basis
- Nice theory behind SVMs. I don't have time to go over this (previous talk: I.5 hours) and will just give an overview of a Support Vector regression model

Support Vector Regression

• Least Squares Loss:

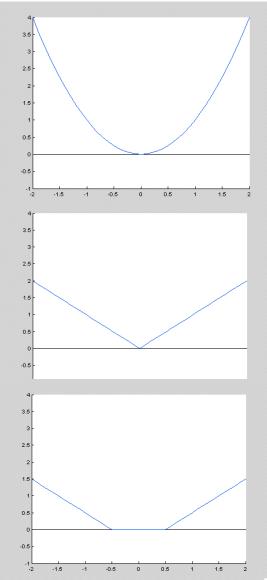
$$\sum_{t} (w^T x_t - y_t)^2$$

• Least Absolute Deviation Loss:

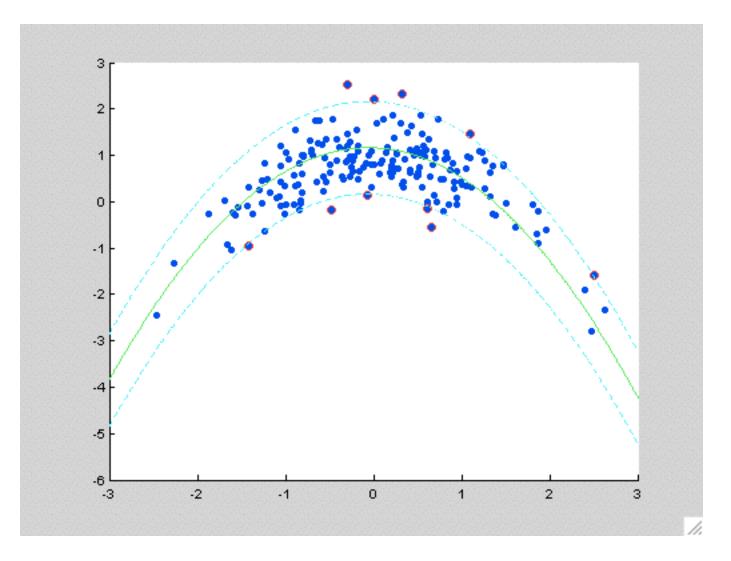
$$\sum_{t} |w^T x_t - y_t|$$

• SVR 'eps-Insensitive' Loss:

$$\sum_{t} [|w^T x_t - y_t| - \epsilon]^+$$



Support Vector Regression



Support Vector Regression

• We will consider the eps-Insensitive loss with the Quadratic Regularizer:

$$\sum_{t} [[|w^{T}x_{t} - y_{t}| - \epsilon]^{+}] + \frac{\lambda}{2} \sum_{i} w_{i}^{2}$$

• Optimal parameters can be found by solving a Quadratic Program with the same minimum $\min \sum [z_i + \hat{z}_i] + \frac{\lambda}{2} \sum w^2$

$$\begin{array}{l} \lim_{w,b,z,\hat{z}} \sum_{t} |z_t + z_t| + 2 \sum_{i} w_i \\ s.t. \forall_t z_t \ge 0, \hat{z}_t \ge 0 \\ \forall_t z_t \ge w^T x_t - y_t - \epsilon, \hat{z}_t \ge y_t - w^T x_t - \epsilon \end{array}$$

 'Support Vectors' are points where either of the slacks z is non-zero, all other points are within the 'eps-tube' and are 'good enough'

Dual Problem

• After introducing Lagrange multipliers and some algebra, we obtain the following dual minimization:

$$-\sum_{t} y_{t} \alpha_{t} + \epsilon \sum_{t} |\alpha_{t}| + \frac{1}{2} \sum_{t} \sum_{t'} \alpha_{t} \alpha_{t'} x_{t'}^{T} x_{t'}$$
$$s.t. \sum_{t} \alpha_{t} = 0, \forall_{t} \frac{1}{\lambda} \le \alpha_{t} \le \frac{1}{\lambda}$$

- Predictions made using: $f(x_s) = \sum \alpha_t x_t^T x_s$
- Note: Only inner product between features is relevant

Kernel-Defined Basis

- Kernel 'trick': replace $x_s^T x_t$ with kernel function $k(x_s, x_t)$
- Example:

$$(x^T z)^2 = x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1 z_1 x_2 z_2$$

• Kernel Functions:

http://www.youtube.com/watch?v=3liCbRZPrZA

- polynomial kernel: $(x^Tz+1)^d$
- rbf kernel: $exp(-\gamma||x-z||^2)$
- more generally: some similarity metric between vectors/graphs/ text/images/etc.
- Restriction: 'Gram Matrix' $k(X^TX) \geq 0$
- Related to Covariance functions in GMRFs/Kriging, and optimization in Reproducing Kernel Hilbert Spaces

General Advantages of SV Methods

- convexity
- regularization
- sparsity
- kernels
- efficient and large-scale training
- computational learning theory (none of these is unique to SV methods)

Recent Work

- Learning the kernel:
 - Linear combination of kernels
 - Semi-definite programming

Outline

- Context
- Linear Models
- Neural Networks
- Kernel Machines
- Advanced Probabilistic Methods

Advanced Probabilistic Methods

- Hierarchical Bayesian:
 - eg. Gaussian Process: regularized kernel linear regression, where we integrate over w and optimize parameters of kernel based on marginal likelihood (or approximate integral over kernel parameters)
- Non-Parametric Bayesian:
 - eg. Dirichlet Process on mixture coefficients in mixture model: integrates over all possible values of the number of mixture components
- Structured Output:
 - eg. Conditional Random Field: models multiple targets y, including individual costs and costs based on joint configurations, conditioned on a set of features
- Sequential Monte Carlo:
 - eg. Particle Filter: model-free filtering for (non-linear) dynamic systems