Value Function Approximation
 Mark Schmidt March IO, 2007

Outline

- Context
- Linear Models
- Neural Networks
- Kernel Machines
- Advanced Probabilistic Methods

Notation for ADP

- time: t
- state: x_{t}
- noise: w_{t}
- decision: u_{t}
- probability of transitioning to state Y if decision U is made in state x :
- policy: $\pi=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$
- cost: $g\left(x_{t}, u_{t}\left(x_{t}\right), w_{t}\right)$
- goal: $\min _{\pi} \mathbf{E}_{w}\left[\sum_{t} \gamma_{t} g\left(x_{t}, u_{t}\left(x_{t}\right), w_{t}\right)\right]_{\infty}$
- state value/cost-to-go: $J_{\pi}\left(x_{0}\right)=\mathbf{E}_{w}\left[\sum_{t=0} \gamma^{t} g_{t}\left(x_{t}, u_{t}\left(x_{t}\right), w_{t}\right)\right]$
- state-action value/cost-to-go function:

$$
Q_{\pi}\left(x_{0}, u\left(x_{0}\right)\right)=\mathbf{E}_{w}\left[\sum_{t=0}^{\infty} \gamma^{t} g_{t}\left(x_{t}, u_{t}\left(x_{t}\right), w_{t}\right)\right]
$$

Where we are now...

	\{P.g\}	Known:	$P . g$		Unknown:
Prediction:	DP	TD			
Control:	DP	On-Policy:	Off-Policy:		
		Sarsa	Q-Learn		

- $\{P, g\}$ Unknown methods can be applied in $\{P, g\}$ Known cases
- Q only needed in P-Unknown/Control scenarios (unless can't compute expectation)
-TD: Evaluation of Fixed Policy (can later run TD w/ revised policy)
- Sarsa: On-Policy but NOT fixed (depends on Q)
- Sarsa vs. Q: When updating Q, Sarsa computes TD w/ action from new state under current policy, Q maximizes over next action
-TD(lambda), Sarsa(lambda), Q(lambda): used to update past few states/state-actions

Motivating Function Approximation

- In many applications, space of states for $J_{\pi}(x)$ or stateaction pairs for $Q_{\pi}(x, u(x))$ is too large (curse of dimensionality)
- In this case, make use an approximate value/Q function parametrized in terms of a (smaller) vector r.
- $\tilde{J}(x, r) \approx J^{*}(x)$
- $\tilde{Q}(x, u(x), r) \approx Q^{*}(x, u(x))$
- Example:
- $\tilde{J}(x, r)=r^{T} x$ (approximate value function is bilinear in state representation x and parameters r)
- Approximate value $\tilde{J}(x, r)$ generated only when needed

FA for ADP

- Two Issues:
- (I) Decide general structure of $\tilde{J}(x, r)$ (approximation architecture)
- (2) Calculate r so as to minimize some measure of error between $J^{*}(x)$ and $\widetilde{J}(x, r)$ (parameter estimation)
- This talk will focus on issue (I), next slide sketches how to address (2).
- One possible error function is the (weighted) squared error:
- $\sum_{s \in \mathcal{S}} p\left(x_{s}\right)\left[J^{*}\left(x_{s}\right)-\tilde{J}\left(x_{s}, r\right)\right]^{2}$
- $p\left(x_{s}\right)$ might be 'on-policy' distribution
- Problem I: we may be going through data set sequentially:
- First-Order Update for differentiable $\tilde{J}\left(x_{s}, r\right)$:
- $r_{t+1}=r_{t}-\frac{\alpha}{2} \nabla_{r}\left[J^{*}\left(x_{t}\right)-\tilde{J}\left(x_{t}, r_{t}\right)\right]^{2}$

$$
=r_{t}-\alpha\left[J^{*}\left(x_{t}\right)-\tilde{J}\left(x_{t}, r_{t}\right)\right] \nabla_{r} \tilde{J}\left(x_{t}, r_{t}\right)
$$

- Problem 2: we don't have $J^{*}\left(x_{s}\right)$:
- Approximate update:

$$
r_{t+1}=r_{t}-\frac{\alpha}{2} \nabla_{r}\left[\bar{J}\left(x_{t}\right)-\tilde{J}\left(x_{t}, r_{t}\right)\right]^{2}
$$

- Examples of $\bar{J}\left(x_{t}\right)$:
- DP: $\mathbf{E}_{w}\left[g\left(x_{t}, u_{t}\left(x_{t}\right), w_{t}\right)+\gamma J_{t+1}\left(f_{t}\left(x_{t}, u_{t}\left(x_{t}\right), w_{t}\right)\right)\right]$
- TD(0): $g\left(x_{t}, u_{t}\left(x_{t}\right), w_{t}\right)+\gamma J_{t+1}\left(f_{t}\left(x_{t}, u_{t}\left(x_{t}\right), w_{t}\right)\right)$
- Monte Carlo: $G\left(x_{t}\right)$ (average cost of following policy after $\times \mathrm{t}$)

Biased vs. Unbiased

- Unbiased (Monte Carlo):
- can find local optimum of MSE
- Biased, on-policy (TD, Sarsa):
- in some cases, can bound distance to MSE, and decrease to 0
- Biased, off-policy (DP, Q):
- may diverge

Outline

- Context
- Linear Models
- Neural Networks
- Kernel Machines
- Advanced Probabilistic Methods

Least Squares

- We are now able to formulate the MSE problem as:
- $\min _{r} \sum_{t}\left(\bar{J}\left(x_{t}\right)-\tilde{J}\left(x_{t}, r\right)\right)^{2}$
- with bilinear model $\tilde{J}\left(x_{t}, r\right):=r^{T} x_{t}$, we can turn this into a standard Least Squares problem:
- $y_{t}:=\bar{J}\left(x_{t}\right)$
- $w:=r$
- $x_{t}:=x_{t}$
- Least Squares:
- $\min _{w} \sum_{t}\left(w^{T} x_{t}-y_{t}\right)^{2}$
- Weighted Least Squares:
- $\min _{w} \sum_{t} p\left(x_{t}\right)\left(w^{T} x_{t}-y_{t}\right)^{2}$

Least Squares

 Regression

Least Squares fit to data

Standard Least Squares Solution

- Re-write in matrix notation:

$$
f(x, w, y)=(X w-y)^{T}(X w-y)=w^{T} X^{T} X w-2 w^{T} X^{T} y+y^{T} y
$$

- Use first optimality conditions: $\nabla_{w} f(X, w, y)=0$

$$
\begin{aligned}
& 0=2 X^{T} X w-2 X^{T} y \\
& \quad X^{T} X w=X^{T} y \quad \text { (Normal equations) }
\end{aligned}
$$

- Show that this is min using second order condition:

$$
\nabla_{w}^{2} f(X, w, y)=2 X^{T} X \geq 0
$$

- (adding weights is is easy)
- Nice theoretical properties (CLT, consistent, CR-b, MVUE, etc.)
- In many scenarios we will NOT be using the Normal equations

Stochastic Gradient Descent

- We may be accessing the pairs $\left(x_{t}, y_{t}\right)$ sequentially, we may have an immense/infinite amount of data, or dynamics may change over time
- In these cases, we may want to build FA as we go:
- Stochastic Gradient Update:

$$
w:=w-\alpha \nabla_{w} F\left(x_{t}, w, y_{t}\right)
$$

- For convergence, need SA conditions:

$$
\sum_{i=1}^{\infty} \alpha_{i}=\infty \quad \sum_{i=1}^{\infty} \alpha_{i}^{2}<\infty
$$

- in practice, alpha chosen by heuristically (one method: test an alpha out for a while and see how well it works)
- steepest descent, but different behaviour from on-line updates

Basis Functions

- What if relation $(x+\epsilon) R y$ is non-linear?
- Model non-linear effects in a linear model using change of basis ('basis functions')
- Example: instead of x_{t}, use $\left[\begin{array}{lll}1 & x_{t} & x_{t}^{2}\end{array}\right]^{T}$
- Still linear in w and nothing changes in solving for w
- Basically the same as having a different representation for the state
- Some common basis functions: polynomials, radial basis functions, splines, wavelets, etc.

Basis Functions

Least Squares on original basis

$$
x_{t}
$$

Least Squares on expanded basis

$$
\left[\begin{array}{lll}
1 & x_{t} & x_{t}^{2}
\end{array}\right]^{T}
$$

Regularization

- If we use a sufficiently expressive basis, we can approximate any function
- If we have a basis that is too expressive (relative to amount of data), we can fit not only the desired function but noise in process
- Regularization: assign a penalty function $R(w)$ to each w:

$$
\min _{w} F(X, w, y)+R(w)
$$

- Example of Regularization: penalizes weights by squared Euclidean distance from 0: $R(w):=\lambda \sum_{i=1} w_{i}^{2}$
- forces minimization to find balance between growing weights and fitting data
- various strategies to choose lambda (independent data samples, degrees of freedom, ∇F vs. ∇R, etc.)

Regularizaiton

Original Basis

Degree 8

Degree 2

Degree 8 (regularized)

Probabilistic View

- Add a constant $\frac{1}{2 \sigma^{2}}$ to all terms and an additional constant Z :

$$
Z+\sum_{t} \frac{1}{2 \sigma^{2}}\left(w^{T} x_{t}-y_{t}\right)^{2}
$$

- Take negation and exponentiate:

$$
\frac{1}{Z} \prod_{t} \exp \left(\frac{1}{2 \sigma^{2}}\left(w^{T} x_{t}-y_{t}\right)^{2}\right)
$$

- Least Squares w corresponds to max likelihood of model:

$$
P(y \mid X, w)=\prod N\left(y_{t} \mid w^{T} x_{t}, \sigma^{2}\right)
$$

- With regularizer, corresponds to $\stackrel{t}{M} \mathrm{AP}$ estimate:

$$
P(y \mid X, w)=P(y, X \mid w) P(w)=\prod_{t}\left[N\left(y_{t} \mid w^{T} x_{t}, \sigma^{2}\right)\right] \prod_{i}\left[N\left(w \mid 0, \lambda^{2}\right)\right]
$$

- DualView:
- min (Loss Function) + Regularizer
- max (Likelihood)(Prior)
- (exists third view based on maximum entropy)

Other Losses/Regularizers

- The combination of a Least Squares error and Tikhonov regularization is not the only possiblity.
- Can mix and match various loss-regularizer/likelihood-prior combinations:
- $L 1$ (sparse, robust to outliers): $\sum_{t}\left|w^{T} x_{t}-y_{t}\right| \sum_{i}\left|w_{i}\right|$
- $L \infty$ (worse-case):

$$
\max _{t}^{t}\left|w^{T} x_{t}-y_{t}\right| \max _{i}^{i}\left|w_{i}\right|
$$

- Student T (robust to outliers): $\sum_{t}-\log \left(T\left(w^{T} x_{t}-y_{t}, \eta\right)\right) \sum_{i}-\log \left(T\left(w_{i}, \eta\right)\right)$
- Min/Max Entropy methods, etc.

Discrete Output

- Suppose target is binary: $y_{t} \in\{0,1\}$
- Rather than having $\hat{y} \in(\infty, \infty)$, we can use a sigmoid function to force output to be in range $(0,1)$
- Logistic function is one example:

$$
\begin{gathered}
p\left(y_{t}=1 \mid x_{t}, w\right)=\frac{1}{1+\exp \left(-w^{T} x_{t}\right)} \\
p\left(y_{t}=0 \mid x_{t}, w\right)=1-p\left(y_{t}=1 \mid x_{t}, w\right)
\end{gathered}
$$

- Logistic Regression: maximum likelihood w, or MAP w with a regularizer on w

Outline

- Context
- Linear Models
- Neural Networks
- Kernel Machines
- Advanced Probabilistic Methods

Learning the Basis

- We have assumed that output can be modeled as linear combination of basis
- What if it can't? What if we don't know the right basis? What if we do know the right basis but we can't compute/store it?
- Basic Idea behind Neural Networks:
- Try to estimate a good basis!
- Do this by composing linear models

Composing Linear Models

- Composing I function:

$$
f\left(g\left(x, r_{g}\right), r_{f}\right)
$$

- f, g are both parameterized linear models, where g has output in a fixed range (such as a sigmoid function)
- Example:
- $f\left(x, w_{f}\right):=w_{f} x$
- $g\left(x, w_{g}\right):=\frac{1}{1+\exp \left(-w_{g}^{T} x\right)}$
- $f\left(g\left(x, w_{g}\right), w_{f}\right):=w_{f}\left(\frac{1}{1+\exp \left(-w_{g}^{T} x\right)}\right)$
- Graphically:

- Weights $\left[\begin{array}{ll}w_{g}^{T} & w_{f}\end{array}\right]$ optimized jointly

Neural Networks

- In some sense, 'H' compresses what the linear model g knows about the function into a scalar feature
- In Neural Networks, we seek to jointly learn multiple h values, that might form a better basis for representing our function than the original basis:

$$
f\left(g_{1}\left(x, w_{g_{1}}\right), g_{2}\left(x, w_{g_{2}}\right), \ldots, g_{n}\left(x, w_{g_{n}}\right), w_{f}\right)
$$

- Jointly optimize $\left[\begin{array}{ll}w_{f} & w_{g_{*}}\end{array}\right]$
- Early work motivated by ideas from neuroscience
- Also known as 'multi-layer perceptron' (perceptron: linear model)
- Specific instance of a model known in Stats as a 'mixture model'
- If g, f both give probabilistic output, then forms a (Sigmoid) 'Belief Network'

Neural Networks

Neural Networks

- Optimize parameters jointly using SGD, as before
- Optimization is now non-convex (and h unidentifiable)
- Computing composition called 'forward-propagation'
- Using chain rule to compute gradient called 'backpropagation'
- Applying a regularizer to weights called 'weight decay'
- Alternative form of regularization: early stopping
- Can make multiple layers of composition (often difficult to get working, with some exceptions like 'convolutional neural networks')

Neural Networks

RecentWork

- 'Deep Belief Networks’
- use undirected models and stochastic approximations to build one layer of hidden units at a time, training each layer to generate outputs produced by previous layer

Outline

- Context
- Linear Models
- Neural Networks
- Kernel Machines
- Advanced Probabilistic Methods

Kernel Methods

- Basic Idea:
- Use a large basis and regularize
- Kernel 'trick'
- Lets us use a large set of basis functions without storing them
- If we can define an appropriate similarity metric, we may not even need to know the basis
- Nice theory behind SVMs. I don't have time to go over this (previous talk: I. 5 hours) and will just give an overview of a Support Vector regression model

Support Vector Regression

- Least Squares Loss:

$$
\sum_{t}\left(w^{T} x_{t}-y_{t}\right)^{2}
$$

- Least Absolute Deviation Loss:

$$
\sum_{t}\left|w^{T} x_{t}-y_{t}\right|
$$

- SVR ‘eps-Insensitive’ Loss:

$$
\sum_{t}\left[\left|w^{T} x_{t}-y_{t}\right|-\epsilon\right]^{+}
$$

Support Vector Regression

Support Vector Regression

- We will consider the eps-Insensitive loss with the Quadratic Regularizer:

$$
\sum_{t}\left[\left[\left|w^{T} x_{t}-y_{t}\right|-\epsilon\right]^{+}\right]+\frac{\lambda}{2} \sum_{i} w_{i}^{2}
$$

- Optimal parameters can be found by solving a Quadratic Program with the same minimum

$$
\begin{gathered}
\min _{w, b, z, \hat{z}} \sum_{t}\left[z_{t}+\hat{z}_{t}\right]+\frac{\lambda}{2} \sum_{i} w_{i}^{2} \\
\text { s.t. } \forall_{t} z_{t} \geq 0, \hat{z}_{t} \geq 0 \\
\forall_{t} z_{t} \geq w^{T} x_{t}-y_{t}-\epsilon, \hat{z}_{t} \geq y_{t}-w^{T} x_{t}-\epsilon
\end{gathered}
$$

- 'Support Vectors' are points where either of the slacks z is non-zero, all other points are within the 'eps-tube' and are 'good enough'

Dual Problem

- After introducing Lagrange multipliers and some algebra, we obtain the following dual minimization:
$-\sum_{t} y_{t} \alpha_{t}+\epsilon \sum_{t}\left|\alpha_{t}\right|+\frac{1}{2} \sum_{t} \sum_{t^{\prime}} \alpha_{t} \alpha_{t^{\prime}} x_{t}^{T} x_{t^{\prime}}$
s.t. $\sum_{t} \alpha_{t}=0, \forall_{t} \frac{1}{\lambda} \leq \alpha_{t} \leq \frac{1}{\lambda}$
- Predictions made using: $f\left(x_{s}\right)=\sum_{t} \alpha_{t} x_{t}^{T} x_{s}$
- Note: Only inner product between features is relevant

Kernel-Defined Basis

- Kernel 'trick': replace $x_{s}^{T} x_{t}$ with kernel function $k\left(x_{s}, x_{t}\right)$
- Example:

$$
\left(x^{T} z\right)^{2}=x_{1}^{2} z_{1}^{2}+x_{2}^{2} z_{2}^{2}+2 x_{1} z_{1} x_{2} z_{2}
$$

- Kernel Functions: http://www.youtube.com/watch?v=3liCbRZPrZA
- polynomial kernel: $\left(x^{T} z+1\right)^{d}$
- rbf kernel: $\exp \left(-\gamma\|x-z\|^{2}\right)$
- more generally: some similarity metric between vectors/graphs/ text/images/etc.
- Restriction: 'Gram Matrix' $k\left(X^{T} X\right) \geq 0$
- Related to Covariance functions in GMRFs/Kriging, and optimization in Reproducing Kernel Hilbert Spaces

General Advantages of SV Methods

- convexity
- regularization
- sparsity
- kernels
- efficient and large-scale training
- computational learning theory (none of these is unique to SV methods)

Recent Work

- Learning the kernel:
- Linear combination of kernels
- Semi-definite programming

Outline

- Context
- Linear Models
- Neural Networks
- Kernel Machines
- Advanced Probabilistic Methods

Advanced Probabilistic Methods

- Hierarchical Bayesian:
- eg. Gaussian Process: regularized kernel linear regression, where we integrate over w and optimize parameters of kernel based on marginal likelihood (or approximate integral over kernel parameters)
- Non-Parametric Bayesian:
- eg. Dirichlet Process on mixture coefficients in mixture model: integrates over all possible values of the number of mixture components
- Structured Output:
- eg. Conditional Random Field: models multiple targets y, including individual costs and costs based on joint configurations, conditioned on a set of features
- Sequential Monte Carlo:
- eg. Particle Filter: model-free filtering for (non-linear) dynamic systems

