Eikonal Equation for Shortest Continuous Path and the Fast Marching Method

> Josna Rao March 3, 2008

Introduction

- Eikonal equation for shortest continuous path
 - Form of the stationary Hamilton Jacobi with certain constraints
 - Solution is value function V(x) which represents minimum cost to go from source x_s to any point x in continuous state space
 - Solution may be discontinuous -> Viscosity solutions
 - Numerous methods for solving equation
- Applications:
 - Path planning
 - Image segmentation (deformable models)

Stationary Hamilton-Jacobi

• Time dependent HJ (from last class):

$$\frac{\partial V(x,t)}{\partial t} + \min_{u \in U} \left[f(x,u) \cdot \nabla_x V(x,t) + g(x,u) \right] = 0$$

- Stationary HJ for path p(s)
 - Note that: $V(x,t) \rightarrow V(x)$ g(x,u) = c(x)
 - Set x = p(s)
 - Define $f(x,u) = u(s) = \frac{dp(s)}{ds}$ to be direction of motion
 - Stationary HJ:

$$\min_{u} \left[\nabla V(x) \cdot u + c(x) \right]_{=0}$$

Eikonal Equation

- Solution V(x) represents optimum cost to go from current point x
- Place constraints on stationary HJ:
 - Path planning example: Path from x to target set T
 - Restrict to isotropic problem: $||u||_2 \le 1$
 - or for some *p*-norm defined for $z \in \mathbb{R}^d$ by:

$$||z||_p = \left(\sum_{i=1}^d |z_i|^p\right)^{\frac{1}{p}}$$

• Choose optimum control:

$$u(\cdot) = \frac{-\nabla V(x)}{\left\|\nabla V(x)\right\|}$$

$$\min_{u} \left[\nabla V(x) \cdot u + c(x) \right]_{=0}$$

$$\frac{-\nabla V(x) \cdot \nabla V(x)}{\left\|\nabla V(x)\right\|} + c(x) = 0$$

resulting in the Eikonal equation:

$$\begin{aligned} \left\| \nabla V(x) \right\|_2 &= c(x) \quad \text{for } x \in \mathbb{R}^2 \setminus \mathcal{T} \\ V(x) &= 0 \quad \text{for } x \in \partial \mathcal{T} \end{aligned}$$

• General form:

$$\left\|\nabla V(x)\right\|_{p^*} = c(x)$$
$$V(x) = 0$$

Approximation of Value Function

 Thus optimum path found by gradient descent of value function:

$$\frac{dp}{ds} = \frac{\nabla V(x)}{\|\nabla V(x)\|}$$

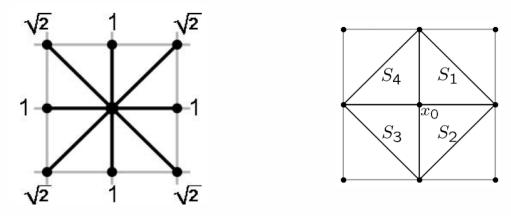
- Value function will have no local minima
- But value function that solves Eikonal equation is rarely differentiable everywhere
- Viscosity solution:
 - Unique weak solution for V(x) exists that is bounded, differentiable
 - Finite difference approximation of V(x)
 - Found through Fast Marching Method

Overview of Fast Marching Method

- Fast marching method considered a 'continuous Dijkstra's method'
- Dijkstra's method keeps track of "current smallest cost" for reaching a grid point and fans out along the edges to touch the adjacent grid points.
- Value function for Dijkstra's not defined on points in domain that are not nodes in the grid
- Action constrained to edges leading to neighbouring states
- Interpolation of actions to allow actions to non-grid nodes may not be optimal
- Solution: Use interpolation during construction of the value function
- FMM creates value function approximation, use gradient descent to find optimum path

Overview of Fast Marching Method

 Instead of nodes, use simplexes where optimum path may cross the face of the simplex



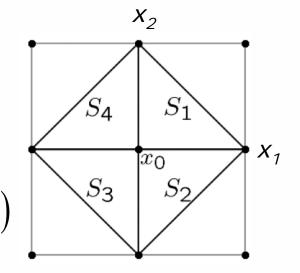
- General method:
 - Follows same general shortest path algorithm but with different update method than Dijkstra's
 - Plug finite difference approximation for $\nabla V(x)$ into Eikonal equation and solve for $V(x_0)$ in terms of $c(x_0)$ and $V(x_i)$ of neighbouring simplexes.

Approximation of Value Function

- Example: Specialized case for orthogonal grid of R²:
- V₁₂ is linear interpolant along edge

$$V(x_0) = \min_{\tilde{x} \in [x_1, x_2]} \left(V_{12}(\tilde{x}) + c(x_0) || \tilde{x} - x_0 ||_2 \right)$$

$$\left\|\nabla V(x_0)\right\|_2 = \sqrt{\left(\frac{V_0 - V_1}{\Delta x}\right)^2 + \left(\frac{V_0 - V_2}{\Delta x}\right)^2} = c\left(x_0\right)$$



Solve for V_o for S1 simplex (quadratic solution):

$$(2V_0 - V_1 - V_2)^2 = 2\Delta x^2 c(x_0)^2 - (V_1 - V_2)^2$$
$$V^{(S1)}_0 = \frac{1}{2} \left(V_1 + V_2 + \sqrt{2\Delta x^2 c(x_0)^2 - (V_1 - V_2)^2} \right)$$

FMM for Shortest Path

Standard shortest path method:

```
foreach x_i \in \mathcal{G}_n \setminus \mathcal{T} do V(x_i) = +\infty
foreach x_i \in \mathcal{T} do V(x_i) = 0
\mathcal{Q} \leftarrow \mathcal{G}_n
while \mathcal{Q} \neq \emptyset do
x_i \leftarrow \text{ExtractMin}(\mathcal{Q})
foreach x_j \in \mathcal{N}_n(x_i) do
V(x_j) \leftarrow \text{Update}(x_j, \mathcal{N}(x_j), V, c)
```

- Dijkstra's update: Update $(x_j, \mathcal{N}(x_j), V, c) = c(x_j) + \min_{x_k \in \mathcal{N}_n(x_j)} V(x_k)$
- Fast marching method update:

Input:
$$x_0$$
, $\mathcal{N}(x_0)$, V , c
Output: $V(x_0)$
foreach $S \in \mathcal{N}_s(x_0)$ do
Compute $V^{(S)}(x_0)$ from $V_0|_{p*=2} = \frac{1}{2} \left(V_1 + V_2 + \sqrt{2\Delta x^2 c(x_0)^2 - (V_1 - V_2)^2} \right)$
return $\min_S V^{(S)}(x_0)$

General Approximation

• Finite difference approximation (Sethian 1996):

$$\left\|\nabla V(x_{ij})\right\| = \sqrt{\max\left(D_{ij}^{-x}V, -D_{ij}^{+x}V, 0\right)^2 + \max\left(D_{ij}^{-y}V, -D_{ij}^{+y}V, 0\right)^2}$$

where

$$D_{ij}^{-x}V = \frac{V_{i,j} - V_{i-1,j}}{\Delta x} \quad D_{ij}^{-y}V = \frac{V_{i,j} - V_{i,j-1}}{\Delta x} \qquad V_{i-1,j} \qquad V_{i,j+1}^{-y}V_{i,j} = V(x_{ij}) \qquad V_{i-1,j}^{-y}V_{i-1,j} = V(x_{ij}) \qquad V_{i-1$$

- Produces quadratic equation to solve for $V(x_{ij})$
- Upwind different structure allows information to propagate from smaller V values to larger values

*V*_{*i*,*j*-1}

FMM for Different Norms

 Different norms can be used by modifying finite difference approximation:

$$\|\nabla V_0\|_1 = \frac{1}{\Delta x} (|V_0 - V_1| + |V_0 - V_2|),$$

$$\|\nabla V_0\|_{\infty} = \frac{1}{\Delta x} \max(|V_0 - V_1|, |V_0 - V_2|)$$

Resulting solutions for V₀:

$$V_0|_{p*=1} = \frac{1}{2} (\Delta x c(x_0) + V_1 + V_2),$$

$$V_0|_{p*=\infty} = \Delta x c(x_0) + \min(V_1, V_2)$$

- K. Alton, I. M. Mitchell, 'Optimal path planning under different norms in continuous state spaces', 2006, IEEE Int. Conf. on Robotics and Automation, pp. 866-872.
- J. A. Sethian, 'A fast marching level set method for monotonically advancing fronts', 1995, Proceedings of the National Academy of Sciences, vol. 93, no. 4, pp. 1-17.
- J. A. Sethian, A. Vladimirsky, 'Fast methods for the Eikonal and related Hamilton– Jacobi equations on unstructured meshes', 2000, Proceedings of the National Academy of Sciences, vol. 97, no. 11, pp. 5699–5703.

Questions?