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Overview

� What is Discretization?
� Why need Discretization?

� Issues involved
� Traditional Approaches
� DP solution



Background

� Discretization
� reduce the number of values for a given 

continuous attribute by dividing the range of the 
attribute into intervals. 

� Concept hierarchies
� reduce the data by collecting and replacing low 

level concepts (such as numeric values for the 
attribute age) by higher level concepts (such as 
young, middle-aged, or senior).



Why need discretization?

� Data Warehousing and Mining
� Data reduction

� Association Rule Mining
� Sequential Patterns Mining

� In some machine learning algorithms like 
Bayesian approaches and Decision Trees. 

� Granular Computing 



Discretization Issues

� Size of the discretized intervals affect support & 
confidence

{Refund = No, (Income = $51,250)} → {Cheat = No}
{Refund = No, (60K ≤ Income ≤ 80K)} → {Cheat = No}
{Refund = No, (0K ≤ Income ≤ 1B)} → {Cheat = No}

� If intervals too small
� may not have enough support

� If intervals too large
� may not have enough confidence

� Loss of Information (How to minimize?)
� Potential solution: use all possible intervals
� Too many rules!!!



Common Approaches

� Manual
� Equal-Width Partition

� Equal-Depth Partition
� Chi-Square Partition
� Entropy Based Partition
� Clustering



Simple Discretization Methods: Binning

� Equal-width (distance) partitioning:
� It divides the range into N intervals of equal size: 

uniform grid
� if A and B are the lowest and highest values of the 

attribute, the width of intervals will be: W = (B-
A)/N.

� The most straightforward

� Equal-depth (frequency) partitioning:
� It divides the range into N intervals, each 

containing approximately same number of 
samples



Chi-Square Based Partitioning

� The larger the 2 value, the more likely the variables 
are related

� Merge: Find the best neighboring intervals and merge 

them to form larger intervals recursively

�
2 (chi-square) test
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Entropy Based Partition

� Given a set of samples S, if S is partitioned into two 
intervals S1 and S2 using boundary T, the entropy 
after partitioning is
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� The boundary that minimizes the entropy function 
over all possible boundaries is selected as a binary 
discretization.

� The process is recursively applied to partitions 
obtained until some stopping criterion is met 



Clustering

� Partition data set into clusters based on similarity, and store 

cluster representation (e.g., centroid and diameter) only

� Can be very effective if data is clustered but not if data is 

“smeared”

� Can have hierarchical clustering and be stored in multi-

dimensional index tree structures

� There are many choices of clustering definitions and 

clustering algorithms



Notations

� val(i): value of ith data
� num(i): number of occurrences of value val(i)

� R: depth of the output tree
� ub: upper boundary on the number of 

subintervals spawned from an interval
� lb: lower boundary



Example

R = 2, lb = 2, ub = 3



Problem Definition

Given parameters R, ub, and lb and input data val(1), 
val(2), …, val(n) and num(1), num(2), … num(n), our 
goal is to build a minimum volume tree subject to the 
constraints that all leaf nodes must be in level R and that 
the branch degree must be between ub and lb



Distances and Volume
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� Intra-distance of a node containing data from data i to data j

� Inter-distance b/w two adjacent siblings; first node containing 
data from i to u, second node containing data from u+1 to j

� Volume of a tree is the total intra-distance minus total inter-
distance in the tree



Theorem

� The volume of a tree = the intra-distance of the 
root node + the volumes of all its sub-trees - the 
inter-distances among its children



Notations

� T*(i,j,r): the minimum volume tree that 
contains data from data i to data j and has 
depth r

� T(i,j,r,k): the minimum volume tree that 
contains data from data i to data j, has depth 
r, and whose root has k branches

� D*(i,j,r): the volume of T*(i,j,r)
� D(i,j,r,k): the volume of T(i,j,r,k)



Notations Cont.
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Notations Cont.
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Algorithm
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Algorithm Cont.
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The complete DP algorithm
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Steps

� Base Case (r=0):
� D*(i,j,0) = intradist(i,j)
� QD(i,j,0,1) = intradist(i,j)

� For k = 2 to ub
� Compute QDM(i,j,0,k)
� Compute QD(i,j,0,k)

� For r = 1 to R
� Compute D(i,j,r,k)
� Compute D*(i,j,r)
� Compute QDM(i,j,r,1)
� Compute QDM(i,j,r,k)
� Compute QD(i,j,r,k)


