
Using DP for hierarchical

discretization of continuous

attributes

Amit Goyal (31st March 2008)

Reference

� Ching-Cheng Shen and Yen-Liang Chen. A
dynamic-programming algorithm for
hierarchical discretization of continuous
attributes. In European Journal of Operational
Research 184 (2008) 636-651 (ElseVier).

Overview

� What is Discretization?
� Why need Discretization?

� Issues involved
� Traditional Approaches
� DP solution

Background

� Discretization
� reduce the number of values for a given

continuous attribute by dividing the range of the
attribute into intervals.

� Concept hierarchies
� reduce the data by collecting and replacing low

level concepts (such as numeric values for the
attribute age) by higher level concepts (such as
young, middle-aged, or senior).

Why need discretization?

� Data Warehousing and Mining
� Data reduction

� Association Rule Mining
� Sequential Patterns Mining

� In some machine learning algorithms like
Bayesian approaches and Decision Trees.

� Granular Computing

Discretization Issues

� Size of the discretized intervals affect support &
confidence

{Refund = No, (Income = $51,250)} → {Cheat = No}
{Refund = No, (60K ≤ Income ≤ 80K)} → {Cheat = No}
{Refund = No, (0K ≤ Income ≤ 1B)} → {Cheat = No}

� If intervals too small
� may not have enough support

� If intervals too large
� may not have enough confidence

� Loss of Information (How to minimize?)
� Potential solution: use all possible intervals
� Too many rules!!!

Common Approaches

� Manual
� Equal-Width Partition

� Equal-Depth Partition
� Chi-Square Partition
� Entropy Based Partition
� Clustering

Simple Discretization Methods: Binning

� Equal-width (distance) partitioning:
� It divides the range into N intervals of equal size:

uniform grid
� if A and B are the lowest and highest values of the

attribute, the width of intervals will be: W = (B-
A)/N.

� The most straightforward

� Equal-depth (frequency) partitioning:
� It divides the range into N intervals, each

containing approximately same number of
samples

Chi-Square Based Partitioning

� The larger the 2 value, the more likely the variables
are related

� Merge: Find the best neighboring intervals and merge

them to form larger intervals recursively

�
2 (chi-square) test

∑
−=

Expected

ExpectedObserved 2
2)(χ

Entropy Based Partition

� Given a set of samples S, if S is partitioned into two
intervals S1 and S2 using boundary T, the entropy
after partitioning is

E S T
S

Ent
S

EntS S S S(,)
| |

| |
()

| |

| |
()= +1

1
2

2

� The boundary that minimizes the entropy function
over all possible boundaries is selected as a binary
discretization.

� The process is recursively applied to partitions
obtained until some stopping criterion is met

Clustering

� Partition data set into clusters based on similarity, and store

cluster representation (e.g., centroid and diameter) only

� Can be very effective if data is clustered but not if data is

“smeared”

� Can have hierarchical clustering and be stored in multi-

dimensional index tree structures

� There are many choices of clustering definitions and

clustering algorithms

Notations

� val(i): value of ith data
� num(i): number of occurrences of value val(i)

� R: depth of the output tree
� ub: upper boundary on the number of

subintervals spawned from an interval
� lb: lower boundary

Example

R = 2, lb = 2, ub = 3

Problem Definition

Given parameters R, ub, and lb and input data val(1),
val(2), …, val(n) and num(1), num(2), … num(n), our
goal is to build a minimum volume tree subject to the
constraints that all leaf nodes must be in level R and that
the branch degree must be between ub and lb

Distances and Volume

∑
=

−=
j

ix

xnumjimeanxvalji)(*)),()((),(intradist

),1(interdist),(interdist

j))1,totalnum(uu),totalnum(i())()1((

),(totalnum))()1((),,(interdist

L juui

uvaluval

jiuvaluvaluji

R ++=

++×−+×=
×−+×=

β
β

� Intra-distance of a node containing data from data i to data j

� Inter-distance b/w two adjacent siblings; first node containing
data from i to u, second node containing data from u+1 to j

� Volume of a tree is the total intra-distance minus total inter-
distance in the tree

Theorem

� The volume of a tree = the intra-distance of the
root node + the volumes of all its sub-trees - the
inter-distances among its children

Notations

� T*(i,j,r): the minimum volume tree that
contains data from data i to data j and has
depth r

� T(i,j,r,k): the minimum volume tree that
contains data from data i to data j, has depth
r, and whose root has k branches

� D*(i,j,r): the volume of T*(i,j,r)
� D(i,j,r,k): the volume of T(i,j,r,k)

Notations Cont.

}1nceinterdista

min{

1

1

1

 node))(v node and b/w v(the

) - nodee of v(the volum): QD(i,j,r,k

th
k-

v

th

k

v

th

+∑

∑

=

=

Notations Cont.

)},(nceinterdista

1nceinterdista

min{

1

1

1

ui

 node))(v node and b/w v(the

)nodee of v(the volum (i,j,r,k):QD

R

th
k-

v

th

k

v

thM

−

+

−

∑

∑

=

=

Algorithm

)},(interdist),(interdist

)1,,,1(),,(*{min),,,(

uiui

krjuQDruiDkrjiQD

LR

M

jui

M

−−

−++=
<≤

Algorithm Cont.

)},(interdist

)1,,,1(),,(*{min),,,(

ui

krjuQDruiDkrjiQD

L

M

jui

−

−++=
<≤

Algorithm Cont.

),1,,(),(intradist),,,(krjiQDjikrjiD −+=

The complete DP algorithm

)},(interdist),(interdist

)1,,,1(),,(*{min),,,(

uiui

krjuQDruiDkrjiQD

LR

M

jui

M

−−

−++=
<≤

)},(interdist

)1,,,1(),,(*{min),,,(

ui

krjuQDruiDkrjiQD

L

M

jui

−

−++=
<≤

),1,,(),(intradist),,,(krjiQDjikrjiD −+=

)},,,({min),,(* krjiDrjiD
rbklb ≤≤

=

Steps

� Base Case (r=0):
� D*(i,j,0) = intradist(i,j)
� QD(i,j,0,1) = intradist(i,j)

� For k = 2 to ub
� Compute QDM(i,j,0,k)
� Compute QD(i,j,0,k)

� For r = 1 to R
� Compute D(i,j,r,k)
� Compute D*(i,j,r)
� Compute QDM(i,j,r,1)
� Compute QDM(i,j,r,k)
� Compute QD(i,j,r,k)

