Using DP for hierarchical discretization of continuous attributes

Amit Goyal (31st March 2008)

Reference

Ching-Cheng Shen and Yen-Liang Chen. A dynamic-programming algorithm for hierarchical discretization of continuous attributes. In European Journal of Operational Research 184 (2008) 636-651 (ElseVier).

Overview

- What is Discretization?
- Why need Discretization?
- Issues involved
- Traditional Approaches
- DP solution

Background

Discretization

 reduce the number of values for a given continuous attribute by dividing the range of the attribute into intervals.

Concept hierarchies

 reduce the data by collecting and replacing low level concepts (such as numeric values for the attribute age) by higher level concepts (such as young, middle-aged, or senior).

Why need discretization?

Data Warehousing and Mining

- Data reduction
- Association Rule Mining
- Sequential Patterns Mining
- In some machine learning algorithms like Bayesian approaches and Decision Trees.
- Granular Computing

Discretization Issues

- Size of the discretized intervals affect support & confidence
 - {Refund = No, (Income = \$51,250} \rightarrow {Cheat = No}
 - {Refund = No, $(60K \le Income \le 80K)$ } \rightarrow {Cheat = No}

{Refund = No, $(0K \le Income \le 1B)$ } \rightarrow {Cheat = No}

- If intervals too small
 - may not have enough support
- If intervals too large
 - may not have enough confidence
- Loss of Information (How to minimize?)
- Potential solution: use all possible intervals
- Too many rules!!!

Common Approaches

Manual

- Equal-Width Partition
- Equal-Depth Partition
- Chi-Square Partition
- Entropy Based Partition
- Clustering

Simple Discretization Methods: Binning

Equal-width (distance) partitioning:

- It divides the range into N intervals of equal size: uniform grid
- if A and B are the lowest and highest values of the attribute, the width of intervals will be: W = (B-A)/N.
- The most straightforward
- Equal-depth (frequency) partitioning:
 It divides the range into N intervals, each containing approximately same number of samples

Chi-Square Based Partitioning

X² (chi-square) test

$$\chi^{2} = \sum \frac{\left(Observed - Expected\right)^{2}}{Expected}$$

- The larger the X² value, the more likely the variables are related
- Merge: Find the best neighboring intervals and merge them to form larger intervals recursively

Entropy Based Partition

 Given a set of samples S, if S is partitioned into two intervals S1 and S2 using boundary T, the entropy after partitioning is

$$E(S,T) = \frac{|S_1|}{|S|} Ent(S_1) + \frac{|S_2|}{|S|} Ent(S_2)$$

- The boundary that minimizes the entropy function over all possible boundaries is selected as a binary discretization.
- The process is recursively applied to partitions obtained until some stopping criterion is met

Clustering

- Partition data set into clusters based on similarity, and store cluster representation (e.g., centroid and diameter) only
- Can be very effective if data is clustered but not if data is "smeared"
- Can have hierarchical clustering and be stored in multidimensional index tree structures
- There are many choices of clustering definitions and clustering algorithms

Notations

- val(i): value of ith data
- *num(i)*: number of occurrences of value val(i)
- *R*: depth of the output tree
- ub: upper boundary on the number of subintervals spawned from an interval
- Ib: lower boundary

Example Any 10 <1600 7 1601~3000 8 >3001 9 2 5 3 6 4 1 <1000 1601~2500 2500~3000 3001~4000 1000~1600 >4000 data 1 data 6 data 8 data 11 data 15 data 17 ~data 5 ~data 16 ~data 7 ~data 10 ~data 14 ~data 20

R = 2, Ib = 2, ub = 3

Problem Definition

Given parameters R, ub, and lb and input data val(1), val(2), ..., val(n) and num(1), num(2), ..., num(n), our goal is to build a minimum volume tree subject to the constraints that all leaf nodes must be in level R and that the branch degree must be between ub and lb

Distances and Volume

Intra-distance of a node containing data from data *i* to data *j* $intradist(i, i) = \sum_{i=1}^{j} (val(x) - mean(i, i)) * num(x)$

intradist
$$(i, j) = \sum_{x=i} (val(x) - mean(i, j)) * num(x)$$

 Inter-distance b/w two adjacent siblings; first node containing data from i to u, second node containing data from u+1 to j

interdist
$$(i, j, u) = \beta \times (val(u+1) - val(u)) \times totalnum(i, j)$$

= $\beta \times (val(u+1) - val(u)) \times (totalnum(i, u) + totalnum(u+1, j))$
= interdist^L (i, u) + interdist^R $(u+1, j)$

 Volume of a tree is the total intra-distance minus total interdistance in the tree

Theorem

The volume of a tree = the intra-distance of the root node + the volumes of all its sub-trees - the inter-distances among its children

Notations

- T^{*}(*i*,*j*,*r*): the minimum volume tree that contains data from data i to data j and has depth r
- *T(i,j,r,k):* the minimum volume tree that contains data from data i to data j, has depth r, and whose root has k branches
- $D^*(i,j,r)$: the volume of $T^*(i,j,r)$
- D(i,j,r,k): the volume of T(i,j,r,k)

Notations Cont.

Notations Cont.

Algorithm

$$QD^{M}(i, j, r, k) = \min_{i \le u < j} \{D^{*}(i, u, r) + QD^{M}(u+1, j, r, k-1)$$

-interdist^R(i, u) - interdist^L(i, u) \}

Algorithm Cont.

 $D(i, j, r, k) = \operatorname{intradist}(i, j) + QD(i, j, r-1, k)$

The complete DP algorithm

$$QD^{M}(i, j, r, k) = \min_{i \le u < j} \{D^{*}(i, u, r) + QD^{M}(u+1, j, r, k-1) - \text{interdist}^{R}(i, u) - \text{interdist}^{L}(i, u)\}$$
$$QD(i, j, r, k) = \min_{i \le u < j} \{D^{*}(i, u, r) + QD^{M}(u+1, j, r, k-1) - \text{interdist}^{L}(i, u)\}$$

 $D(i, j, r, k) = \operatorname{intradist}(i, j) + QD(i, j, r-1, k)$

$$D^*(i, j, r) = \min_{lb \le k \le rb} \{D(i, j, r, k)\}$$

Steps

- Base Case (r=0):
 - $\square D^*(i,j,0) = intradist(i,j)$
 - $\Box \quad QD(i,j,0,1) = intradist(i,j)$
- For k = 2 to ub
 - Compute QD^M(i,j,0,k)
 - Compute QD(i,j,0,k)
- For r = 1 to R
 - Compute D(i,j,r,k)
 - Compute D*(i,j,r)
 - Compute $QD^{M}(i,j,r,1)$
 - Compute QD^M(i,j,r,k)
 - Compute QD(i,j,r,k)