
CPSC 513: Integrated Systems Design
Introduction to Formal Verification

Ian MitchellIan Mitchell
Department of Computer Science
The University of British Columbia

On behalf of 
Mark Greenstreet & Alan Hu

Integrated Systems Design Lab

Fall Semester, 2009-2010



What is Verification?

product creation
(one engineer’s view)

market research
& funding

product
engineering

sales &
support

design
verification
& validation

production testing

9 Sept 08 Ian Mitchell (UBC Computer Science) 2

informal formal

simulation

emulation

model checking theorem proving

equivalence
checking

Lyapunov
functions



Why Use Formal Verification?
• Preproduction verification & validation

– Physical prototypes are too slow, costly, complex, and/or 
dangerous to use during iterative design

– Much cheaper to discover bugs earlier in the design process

• Simulation for early design work
– User designed test cases can find most bugs
– Random testing can uncover unexpected bugs
– Comprehensive input and/or behavior coverage is often impossible

9 Sept 08 Ian Mitchell (UBC Computer Science) 3

– Comprehensive input and/or behavior coverage is often impossible

• Verification for (some) late design work
– Safety critical or high reliability applications must not fail
– May be easier, cheaper and/or faster to apply formal methods than 

to design comprehensive tests



Potential Course Topics
• Circuit equivalence with BDDs or SAT
• Dynamic models: finite state automata, temporal logics
• Model checking and reachability
• Theorem proving, SAT Modulo Theories
• Safety / liveness / fairness
• Software verification
• Fixpoint methods: synchronous vs asynchronous models, 

9 Sept 08 Ian Mitchell (UBC Computer Science) 4

• Fixpoint methods: synchronous vs asynchronous models, 
weakest precondition

• Timed automata
• Hybrid systems: continuous and discrete, timed automata
• Continuous systems: Lyapunov functions, analog circuits
• Models of computation: soundness / completeness / complexity, 

combining MoCs



Administrivia
• http://www.cs.ubc.ca/~mitchell/Class/CS513.2009W1
• Prerequisites:

– Graduate standing (CS, math, engineering)
– Backgrounds vary, so will try to keep course self-contained
– Be comfortable with logic and proof

• Grades
– Present a paper or two in class
– 0 – 3 homework assignments

9 Sept 08 Ian Mitchell (UBC Computer Science) 5

– 0 – 3 homework assignments
– Course project (proposal, oral presentation, written report)

• Collaboration
– Work together on the problem, but write your own solutions
– Cite your sources

• References
– No required text
– No course notes
– Many research papers



Conceptual Framework
• Models

– How do we describe the behavior of the system?
– Circuits, finite state machines, programs, differential equations, …

• Goals
– What verification or validation task would we like to accomplish?
– Equivalence, safety, liveness, fairness, refinement, …

• Techniques
– What mathematical framework allows us to formally state the 

9 Sept 08 Ian Mitchell (UBC Computer Science) 6

– What mathematical framework allows us to formally state the 
problem and determine a solution?

– Canonical forms, reachable sets, restricted design languages, 
Lyapunov functions, fixpoint iteration, …

• Tools
– How do we implement the operations of our technique?
– Binary decision diagrams, Hamilton-Jacobi PDEs, compilers, …

• Case studies
– Real problems validated or verified



A Digression: 
Approaches to Validating Designs

• By construction
– property is inherent.

• By verification
– property is provable.

• By simulation
– check behavior for all inputs.

9 Sept 08 Ian Mitchell (UBC Computer Science) 7

– check behavior for all inputs.

• By intuition
– property is true. I just know it is.

• By assertion
– property is true. Wanna make something of it?

• By intimidation
– Don’t even try to doubt whether it is true

It is generally better to be higher in this list

slide courtesy of Alberto Sangiovanni-Vincentelli (UC Berkeley)


