
NAVIGATION ASSISTANCE FOR INTELLIGENT WHEELCHAIRS 

 

Pooja Viswanathan1, Parnian Alimi1, James Little1, Alan Mackworth1,  
Alex Mihailidis2 

1Department of Computer Science, University of British Columbia 
2Department of Occupational Sciences and Occupational Therapy, University of Toronto 

INTRODUCTION 

Many elderly residents in long-term care 
facilities lack the cognitive or visual abilities to 

safely maneuver powered wheelchairs, and are 
thus not permitted to use them. This leads to 
reduced mobility and an increased dependence 
on caregivers. We propose intelligent powered 
wheelchairs to address this issue. Computer 
vision methods are used to avoid collisions and 

provide audio prompts for navigation. We show 
that the system performs with high accuracy 
and precision in a realistic indoor setting. 

RELATED WORK 

Intelligent wheelchairs capable of collision 
avoidance and path planning have been 

developed recently [1-4], however these 
wheelchairs navigate autonomously, thus 
taking control away from the user. On the other 
hand, wheelchairs that leave planning and 
navigation to the user and only provide collision 

avoidance support are not appropriate for users 
with cognitive impairment since they often lack 
planning abilities. We thus suggest a control 
strategy that combines artificial intelligence of 
the wheelchair with driver abilities to provide 
supportive, passive navigation assistance that 

increases independence and ensures safety.   

We seek to build a system that can be 
easily added to any commercial wheelchair, is 
cost-effective, and performs reliably in real-
world settings. Existing smart wheelchairs 
have used various active sensors (acoustic, 

sonar, infrared, laser, etc.). However, these 
sensors are often large, expensive, power-
hungry, unsafe, and prone to cross-talk 
issues. We thus rely on a stereo-vision 
camera to detect obstacles due to its low 
power consumption, ability to perform in 

natural environments, and relatively low cost. 
In addition, cameras capture and provide a 
richer dataset than can be used for high-level 

scene understanding (to build maps and 
determine what type of room the wheelchair 
is in, e.g., kitchen).  

METHODS 

In this paper, we discuss a prototype 
intelligent wheelchair that prevents collisions 
and provides navigation assistance through 
audio prompts to assist the user in reaching 
desired locations. A system diagram is provided 

in Figure 1. We discuss each of the components 
in the system diagram in the following sections. 

 

 

 

 

 

 

 

Figure 1: System diagram of intelligent 

powered wheelchair 

Collision Avoidance 

In order to detect imminent collisions, we 
first compute the distances from the wheelchair 
to visible objects in the environment.  Stereo 
pairs of images are used to construct a local 

occupancy map (Figure 2), a 2D bird‟s-eye view 
representation of obstacles in front of the chair, 
using existing techniques in computer vision 
[5].  In this map, obstacles are black, free 
space is white, and grey areas represent 
unknown regions. The occupancy map is 

updated as the wheelchair moves through the 
environment. When an obstacle is detected 
within a pre-specified distance threshold on the 
occupancy grid, the wheelchair is stopped to 
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avoid a collision. The area around the obstacle 
with the most amount of free space is then 
computed and suggested to the driver through 

an audio prompt (e.g., “try turning right”) until 
the driver successfully avoids the obstacle. 

  

Figure 2: Camera image (left), Occupancy map 
representing bird‟s-eye view of obstacles (right) 

Mapping 

A map of the environment is automatically 
created through the use of a technique in 
robotics called Simultaneous Localization and 
Mapping (SLAM).  This technique requires a 
robot to explore the environment autonomously 
or in a tele-operated fashion, collecting laser 

scans or images in order to create global 
occupancy maps.  These maps are created by 
stitching together multiple local occupancy 
grids using odometry information in order to 
represent larger environments [6].  This map 

must only be constructed once for each home 
or long-term care facility.  Figure 3 shows the 
map of the laboratory created as described 
above and used by subsequent components. 

Localization 

Given the global occupancy map, and an 

estimate of the wheelchair's starting position, 
the wheelchair's location at any given time can 
be computed as follows.  Landmarks from 
incoming stereo images are matched to 
previously seen landmarks. The wheelchair‟s 
position and orientation are then computed 

using information about the camera's geometry 
(a process known as visual odometry) [6].  

Path Planning 

We assume that goal locations are provided 
(by a caregiver, for example) through a 

graphical user interface, which displays the 
global occupancy map. Goal locations are 
specified by clicking on the map.  The optimal 

route to the goal from the wheelchair's current 
location is computed at every step using 
techniques in [7], and used in computing the 

driver's progress towards the goal. 

Prompting 

Once the optimal route is determined, the 
heading of the driver is computed by comparing 
the wheelchair's current orientation (obtained 
from the localization step) to the required 

orientation. Appropriate audio prompts are then 
issued - “off route – turn left”, “off route – turn 
right”, “off route – turn around”, and “on route 
– move forward” (if the wheelchair is heading in 
the correct direction but has not made progress 
towards the goal). Wheelchair motion (e.g., 

stopped or moving) is determined by 
computing the change in wheelchair position. In 
addition, the optimal route is analyzed for 
upcoming turns by discretizing the optimal 
route into direction vectors, and computing the 

angle between subsequent vectors. If a turn is 
detected within a pre-specified distance, an 
appropriate prompt is delivered, such as 
“upcoming left turn” or “upcoming right turn”. 

RESULTS 

We have previously demonstrated the 

performance of the vision-based collision 
avoidance system in [8], which performed with 
96% accuracy while detecting several objects in 
a controlled setting. In this paper, we thus 
focus on the other components of the system. 
Specifically, we show the performance of the 

planning and prompting system on 12 unique 
routes traveled by the wheelchair, containing 
several deviations, stops and turns. The 
wheelchair was driven by an able-bodied user, 
at a speed of 0.15 m/s, which was determined 
to be a safe driving speed for the intended user 

population. The environment chosen was 
realistic, containing dynamic obstacles (people 
walking around in the lab). In addition, the 
experiments were conducted during varying 
times of the day (morning, evening, and night) 

in order to test the robustness of the system to 
different lighting conditions. We determine true 
positives (TP), false positives (FP), and false 
negatives/missed detections (FN) for each of 
the different types of detections as shown in 
Table 1.  



 

Figure 3: Map of laboratory created by the mapping component.  Locations chosen as start and end 
positions are numbered 1-4.  Blue arrows denote wheelchair position and heading as estimated by 

the localization component while driving along route “1-3”. 

 

Table 1: Navigation Assistance Results 

Route Left 

deviation 

Right 

deviation 

U-turn Upcoming  

left turn 

Upcoming 

right turn 

Stop 

TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN 

1 – 4 3 0 0 2 0 0 3 0 0 1 0 0 0 0 0 3 0 0 

1 – 3 5 1 0 6 2 0 4 4 0 3 0 0 3 0 0 5 0 0 

1 – 2 5 0 0 7 0 0 4 0 0 3 0 0 3 0 0 0 0 0 

2 – 1 3 0 0 8 1 0 2 2 0 4 0 0 0 0 0 2 0 0 

2 – 3 3 0 0 0 0 0 1 0 0 0 0 0 2 0 0 2 0 0 

2 – 4 4 0 0 4 1 0 2 0 0 2 0 0 4 0 0 2 0 1 

3 – 1 5 0 0 4 0 0 2 0 0 3 0 1 5 0 0 3 1 0 

3 – 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

3 – 4 9 1 0 3 1 0 1 2 0 4 0 0 2 0 0 3 0 0 

4 – 1 4 0 0 0 1 0 2 0 0 0 0 0 1 0 0 2 0 0 

4 – 2 4 1 0 8 3 0 4 4 0 2 0 0 3 0 0 3 0 0 

4 – 3 3 0 0 2 2 0 2 0 0 4 0 0 1 0 0 3 0 0 

Totals 50 3 0 44 11 0 27 12 0 26 0 1 24 0 0 28 1 2 

Avg Recall 

(TP/ TP+FN) 

1.0 1.0 1.0 0.96 1.0 0.93 

Avg 

Precision 
(TP/ TP+FP) 

0.94 0.8 0.69 1.0 1.0 0.97 

  

1 
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DISCUSSION 

As seen in Table 1, most deviations and 
turns are detected with high accuracy and 

precision.  Most of the errors (specifically for 
right deviations and u-turns) noted during the 
experiments were caused by the following: 

1) Errors made by the localization module 
due to lack of texture or reflective 
surfaces. 

2) Inaccurate starting position estimates. 

3) Obstacles in the map that did not exist 
in the test environment. 

The first error is a common pitfall of vision-
based systems, since estimating camera motion 
requires the matching of landmarks between 

incoming images. Untextured areas such as 
blank walls, as well as reflective surfaces such 
as windows, result in few, incorrect or no 
matches, thus causing localization errors that 
persist until the system is able to re-localize 

using previously-seen landmarks. Future work 
involves integrating an inertial measurement 
unit, which measures orientation and velocity, 
and can be used to determine wheelchair 
motion in the absence of visual landmarks. 

In these experiments, approximate starting 

positions were specified by clicking on the map 
through a graphical user interface. Since 
localization estimates are relative to the 
starting position, any errors in the starting 
position propagated throughout the route. 
Future work will involve verification of these 

positions using landmarks on the map, or 
acquiring these positions directly during the 
mapping process. Alternatively, positions of 
known landmarks in the environment can be 
used to correct localization estimates when 
these landmarks are detected by the camera. 

Since the map was generated once several 
months prior to the experiments conducted in 
this paper, the positions of many movable 
obstacles such as chairs and boxes had 
changed since the mapping process. Thus, the 

planning and prompting modules occasionally 
instructed the user to move around „invisible‟ 
obstacles that did not exist in the test 
environment. These errors can be reduced by 
reconstructing the global map when the 
environment changes significantly. Unlike the 

errors described previously, invisible objects 
resulted in temporary errors that the system 
was able to recover from when the user moved 

away from them. 

In the current system, prompts were 
provided when a deviation, turn, or stop was 
detected. However, future work involves 
estimating the user's needs and preferences 
through a probabilistic model and providing 

prompts that adapt automatically to the user. 

CONCLUSIONS 

This paper has shown the effectiveness of a 
vision-based system for navigation assistance.  
Experiments are underway to test this system 
with visually and cognitively impaired users. We 

expect that this system will benefit them 
greatly by increasing their mobility and 
independence. 
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