Logic: semantics, proof procedures,
soundness and completeness

Alan Mackworth

UBC CS 322 - Logic 2
March 1, 2013

P & M Textbook §5.2

Lecture Overview

Recap: Propositional Definite Clause Logic (PDCL)
- Syntax
- Semantics

« More on PDCL Semantics

* Proof procedures
- Soundness, Completeness, example

- Bottom-up proof procedure
 Pseudocode and example
« Time-permitting: Soundness

* Time-permitting: Completeness

Problem Type

Static |

Sequential

Constraint
Satisfaction

Logic

Pl g

Static problems,
but with richer
representation

Course QOverview

Course Module

Representation
Environment Reasoning
Deterministic Stochastic Technique
Arc
Consistency
Variables +| Qoarch
Constraints
Bayesian
Logics Networks . .
Search Variable ncertainty
Elimination
Decision
STRIPS Networks
Search Variable Decision
Elimination Theory
As CSP (using Markov Processes
arc consistency) Value
Iteration 3

Representation and Reasoning System (RRS)

Definition (RRS)
A Representation and Reasoning System (RRS) consists of:
« syntax: specifies the symbols used, and how they can
be combined to form legal sentences
« semantics: specifies the meaning of the symbols
« reasoning theory or proof procedure: a (possibly
nondeterministic) specification of how an answer can
be produced.

Propositional definite clause logic (PDCL) is one such
Representation and Reasoning System

Example: Electrical Circuit

light_I.
light_/>.
ok_17.

ok_I2.
ok_cbhi.
ok_cb2.
live_outside.

live_I1 —live_wo.
live_wo —live_wi Aup_s2.

live_wo —live_wz ndown_sz.

live_wi —live_wsz Aup_si.

live_wz —live_wsz ndown_sj.

live_[z —live_ws.

live_wsq —live_wsz AUp_ss.
live_pr —live_ws.

live_ws —live_ws Aok_cbj.
live_pz —live_we.

live_we —live_ws Aok_cbs.
live_ws —[ive_outside.

lit_ 1 —light_I Alive_l1 nok_I;.
It_I2 <light_I2 Alive_[2 A o0k_/>.

L

outside power

circuitd
breaker

Propositional Definite Clauses: Syntax

Definition (atom) Examples: p,. live_l,

An atom is a symbol starting with a lower case letter

Definition (body) |Examples: p. ok_w, Alive_w0. p,Ap,ApsAp,.

A body is an atom or is of the form b, A b, where b,
and b, are bodies.

Definition (definite clause) |Examples: p. p,— p,Ap;Ap,.
" = c li li
A definite clause is an atom L Ve=Wo— Ve wiAup_s,

or is a rule of the form h «— b where h is an atom
(‘head’) and b is a body. (Read this as ‘hif b'.)

Definition (KB) Example: {p,. Ps. Ps. P1 — P2 APsApy. live I}

A knowledge base (KB) is a set of definite clauses

definite
clauses, |
KB

light_I;.
light_/>.
ok_/1.

ok_/>.

ok_cbhi.
ok_cb>.
live_outside.

I

live_l1 —live_wao.

live_wo —live_wi Aup_sz.
live_wo —live_wz ndown_s2.
live_wi —live_wsz Aup_si.
live_wz —live_wsz ndown_s].
live_[2 —live_ws.

live_ws —live_wsz Aup_ss.
live_pi —live_ws.

live_wsz —live_ws Aok_cbi.
live_pz «live_we.

live_wes —live_ws Aok_cbz.
ltve_ws —[live_outside.

it Iy <light_ I Alive_l1 Aok_1.

Iit_[2 <light_I2 Alive_[2 nok_/>.

s

outside power

| e 111

; _ —@_Offswitch
—69 on

Wy | :®_ mf\cﬂnay
] @ light
2 P>

- —0 By
— rules

Lecture Overview

« Recap: Propositional Definite Clause Logic (PDCL)
- Syntax
- Semantics

« More on PDCL Semantics

* Proof procedures
- Soundness, Completeness, example

- Bottom-up proof procedure
 Pseudocode and example
« Time-permitting: Soundness

* Time-permitting: Completeness

Propositional Definite Clauses: Semantics

Semantics allows you to relate the symbols in the logic
to the domain you're trying to model.

Definition (interpretation)
An interpretation | assigns a truth value to each atom.

Definition (truth values of statements)
* Abody b, A b, is
true in | if and only if b, is true in | and b, is true in |.
* Aruleh—Dbis
false in I if and only if b is true in | and h is false in |.

PDC Semantics: Example

Truth values under different interpretations
F=false, T=true

a, a, a;Aa, h b -b -bvh h«Db
I, |IF F F . |F F T T T
L IF T F , F F F
;T F F ., |T F T T T
L l, F T T

h«—b (“hifb”)is only false
if b is true and h is false

10

PDC Semantics: Example for models

Definition (model)
A model of a knowledge base KB is an interpretation in
which every clause in KB is true.

p—q
KB= - q Which of the interpretations below are models of KB?
I < S
o) q r S P<(q r<s Model of KB
LT T T T T T T yes |no
l, | F F FF T F T yes -
;| T T FF T T T yes .
I, | F T T F F T T yes .
5| T T F T T T F yes .

11

PDC Semantics: Example for models

Definition (model)
A model of a knowledge base KB is an interpretation in
which every clause in KB is true.

p—Q
KB= - q Which of the interpretations below are models of KB?
_IN < S
P q r S P<q q r<s Model of KB
| T T T T T T T yes
P F FF T F T no
5| T T F F T T T yes
I, | F T T F F T T no
I | T T F T T T F no

12

Lecture Overview

« Recap: Propositional Definite Clause Logic (PDCL)
- Syntax
- Semantics

More on PDCL Semantics

* Proof procedures
- Soundness, Completeness, example

- Bottom-up proof procedure
 Pseudocode and example
« Time-permitting: Soundness

* Time-permitting: Completeness

13

PDCL Semantics: Logical Consequence

Definition (model)
A model of a knowledge base KB is an interpretation in
which every clause in KB is true.

Definition (logical consequence)

If KB is a set of clauses and g is a conjunction of atoms,
g is a logical consequence of KB, written KB F g,
If g is true in every model of KB

« We also say that g logically follows from KB,
or that KB entails g

* In other words, KB * g if there is no interpretation in
which KB is true and g is false

PDCL Semantics: Logical Consequence

Definition (model)
A model of a knowledge base KB is an interpretation in
which every clause in KB is true.

Definition (logical consequence)

If KB is a set of clauses and g is a conjunction of atoms,
g is a logical consequence of KB, written KB * g,
If g is true in every model of KB

- p«q
KB=7 ¢
_ I <« S

Which of the following are true?

KBrp KBtq [KBFr KB:*s

PDCL Semantics: Logical Consequence

Definition (model)
A model of a knowledge base KB is an interpretation in

which every clause in KB is true.

Definition (logical consequence)
If KB is a set of clauses and g is a conjunction of atoms,

g is a logical consequence of KB, written KB * g,
If g is true in every model of KB

P4 |fKBis true, then qis true. Thus KB * q.

KB=7 ¢ If KB is true then both g and p < q are true,
sopistrue (“pifq”). Thus KB * p.

_ I < S

There is a model where r is false, likewise for s
(but there is no model where s is true and r is false)

Motivation for Proof Procedure

« We want a proof procedure that can find all and only the
logical consequences of a knowledge base

 Why?

17

User’s View of Semantics

Choose a task domain: intended interpretation.

. Associate an atom with each proposition you want to
represent.

. Tell the system clauses that are true in the intended
interpretation: axiomatizing the domain.

. Ask questions about the intended interpretation.

— If KB ¢ g, then g must be true in all models, so it is true in the
intended interpretation, which is a model.

— The user can interpret the answer using their intended
interpretation of the symbols.

18

Computer’s view of semantics

The computer doesn’t have access to the intended
Interpretation.
— All'it knows is the knowledge base.

The computer can determine if a formula is a logical
consequence of KB.
— If KB t g then g must be true in the intended interpretation.

— Otherwise, there is a model of KB in which g is false.
This could be the intended interpretation.

19

Role of semantics

In user’'s mind: In computer:
« |2 broken: light 12 is * |2 broken «— sw3 up
broken A power A unlit_|2.
* sw3_up: switch is up e sSwW3_up.
« power: there is power in « power « lit_I1.
the building
« unlit_I2: light 12 isn't lit e unlit_I2.
« it 11: light 11 is lit o it 1.

Conclusion: 12_broken
- The computer doesn’t know the meaning of the symbols
- The user can interpret the symbols using their meaning

20

Lecture Overview

« Recap: Propositional Definite Clause Logic (PDCL)
- Syntax
- Semantics

« More on PDCL Semantics

Proof procedures
- Soundness, Completeness, example

- Bottom-up proof procedure
 Pseudocode and example
« Time-permitting: Soundness

* Time-permitting: Completeness

21

Proofs

A proof is a mechanically derivable demonstration that a
formula logically follows from a knowledge base.

Given a proof procedure P, KB . g means g can be
derived from knowledge base KB with the proof procedure.

Recall KB £ g means g is true in all models of KB.

Example: simple proof procedure S
— Enumerate all interpretations

— For each interpretation |, check whether all clauses in KB hold
« |f all clauses are true, | is a model
* KB t5 g if g holds in all such models

22

Soundness of a proof procedure

Definition (soundness)
A proof procedure P is sound if KB r, g implies KB * g.

sound: everything it derives follows logically from KB
(i.e. is true in every model)

« Soundness of some proof procedure P: need to prove that

If g can be derived by the procedure (KB t; g)
then g is true in all models of KB (KB * g)

« Example: simple proof procedure S

— For each interpretation |, check whether all clauses in KB hold
« If all clauses are true, | is a model
* KB t4 g if g holds in all such models
* The simple proof procedure S is sound:

If KB t5 g, then it is true in all models, i.e. KB * g

23

Completeness of a proof procedure

Definition (completeness)
A proof procedure P is complete if KB ¢ g implies KB t; g.

complete: everything that logically follows from KB is derived

« Completeness of some proof procedure P: need to prove that

If g is true in all models of KB (KB * g)
then g is derived by the procedure (KB t; g)

« Example: simple proof procedure S

— For each interpretation |, check whether all clauses in KB hold
« If all clauses are true, | is a model
* KB t4 g if g holds in all such models
* The simple proof procedure S is complete:

If KB £ g, i.e. gis true in all models, then KB t5g

24

Another example for a proof procedure

* Unsound proof procedure U:
— U derives every atom: for any g, KB +, g

* Proof procedure U is complete:
If KB ¢ g, then KB t; g (because KB + g for any g)

* Proof procedure U is not sound:
Proof by counterexample: KB = {a < b.}

KB f,a, but not KB F a

(a is false in some model, e.g. a=false, b=false)

25

Problem of the simple proof procedure S

« Simple proof procedure: enumerate all interpretations

— For each interpretation, check whether all clauses in KB hold
« |f all clauses hold, the interpretation is a model
« KB + g if g holds in all such models

« What's the problem with this approach?
Space complexity Time complexity - Not complete

26

Problem of the simple proof procedure S

 Enumerate all interpretations

— For each interpretation, check whether all clauses
of the knowledge base hold

— If all clauses hold, the interpretation is a model
« Very much like the generate-and-test approach for CSPs

« Sound and complete, but there are a lot of interpretations
— For n propositions, there are 2" interpretations

27

Lecture Overview

« Recap: Propositional Definite Clause Logic (PDCL)
- Syntax
- Semantics

« More on PDCL Semantics

* Proof procedures
- Soundness, Completeness, example

- Bottom-up proof procedure
 Pseudocode and example
« Time-permitting: Soundness

* Time-permitting: Completeness

28

Bottom-up proof procedure

* One rule of derivation, a generalized form of modus ponens:

— f*h«<—Db; A ... Ab,"is aclause in the knowledge base,
and each b, has been derived, then h can be derived.

 This rule also covers the case when m = 0.

29

Bottom-up proof procedure

C:={;
repeat

select clause h<— b, A ... A b in KB
such that b, € C for all i, and h ¢ C;

C =C U {h}
until no more clauses can be selected.

KB + g if g € C at the end of this procedure.

30

Bottom-up proof procedure: example

C:={}
repeat

select clause h<— b, A ... A b, in KB
such that b, € C for all i, and h ¢ C;

C:=CU{h}
until no more clauses can be selected.

a—bnac q
a<—enf

b—fak

C—¢€

d— Kk

e.

f—jne

f—c

j—cC

31

Bottom-up proof procedure: example

C:={}
repeat
select clause h«<— b, A ... A b, in KB
such that b, € C for all i, and h ¢ C;
C:=CU{h}
until no more clauses can be selected.
a—bac
a—enf {}
b«—faKk e}
{c.e}
C«— € cef
d—k cef))
S _ {a,c,e,fj}
f—jne
fec Done.

J—¢C

32

Lecture Overview

« Recap: Propositional Definite Clause Logic (PDCL)
- Syntax
- Semantics

« More on PDCL Semantics

* Proof procedures
- Soundness, Completeness, example

- Bottom-up proof procedure
 Pseudocode and example
Time-permitting: Soundness

* Time-permitting: Completeness

33

Soundness of bottom-up proof procedure BU

Definition (soundness)
A proof procedure P is sound if KB r, g implies KB * g.

sound: everything it derives follows logically from KB
(i.e. is true in every model)

C:={k
repeat

select clause h<— b, A ... A b, in KB
such that b, € C for all i, and h ¢ C;

C:=CU{h}
until no more clauses can be selected.

For soundness of bottom-up proof procedure BU:

If g € C at the end of BU procedure,
then g is true in all models of KB (KB * g)

34

Soundness of bottom-up proof procedure BU

C:={}
repeat

select clause h<— b, A ... A b, in KB
such that b, € C for all i, and h ¢ C;

C:=CuU{h}
until no more clauses can be selected.

For soundness of bottom-up proof procedure BU: prove

If g € C at the end of BU procedure,
then g is true in all models of KB (KB ¢ g)

By contradiction: Suppose there is a g such that KB + g but not KB * g.

— Let h be first atom added to C that’s not true in every model of KB
 In particular, suppose | is a model of KB in which h isn’t true.

— There must be a clause in KB of form h«— b, A... A b
— Each b;is true in |. h is false in |. So this clause is false in |.
— Thus, | is not a model of KB. Contradiction: thus no such g exists

Lecture Overview

« Recap: Propositional Definite Clause Logic (PDCL)
- Syntax
- Semantics

« More on PDCL Semantics

* Proof procedures
- Soundness, Completeness, example

- Bottom-up proof procedure
 Pseudocode and example
« Time-permitting: Soundness

Time-permitting: Completeness

36

Minimal Model

* Observe that the C generated at the end of the bottom-up
algorithm is a fixed point

— Further applications of our rule of derivation will not change C!

Definition (minimal model)
The minimal model MM is the interpretation in which

every element of BU’s fixed point C is true and
every other atom is false.

 Lemma: MM is a model of KB.
— Proof by contradiction. Assume that MM is not a model of KB.

Then there must exist some clause of the form h« b, A ... A b, in KB (with
m = 0) which is false in MM.

This can only occur when h is false (and not in C) and each b; is true in MM.
Since each b, belonged to C, we would have added h to C as well.
But MM is a fixed point, so nothing else gets added. Contradiction!

37

Completeness of bottom-up procedure

Definition (completeness)
A proof procedure is complete if KB + g implies KB + g.

complete: everything that logically follows from KB is derived

For completeness of BU, we need to prove:

If g is true in all models of KB (KB ¢ g)
then g is derived by the BU procedure (KB t5; 9)

Direct proof based on Lemma about minimal model:

« Suppose KB * g. Then g is true in all models of KB.
* Thus g is true in the minimal model.

 Thus g is generated by the bottom up algorithm.

« Thus KB g, g.

38

Learning Goals Up To Here

« PDCL syntax & semantics

- Verify whether a logical statement belongs to the language of
propositional definite clauses

- Verify whether an interpretation is a model of a PDCL KB,

- Verify when a conjunction of atoms is a logical consequence of a
knowledge bases

* Bottom-up proof procedure

» Define/read/write/trace/debug the Bottom Up (BU) proof procedure
* Prove that the BU proof procedure is sound and complete

