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Lecture Overview 

•  Domain splitting: recap, more details & pseudocode 

•  Local Search 

•  Time-permitting: Stochastic Local Search (start) 
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If domains with multiple values 
      
         Split on one domain  

Searching by domain splitting 
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CSP, apply AC 

CSP1, apply AC CSPn, apply AC 
If domains with multiple values 
        Split on one domain 

If domains with multiple values 
      Split on one domain 

Recurse until no domains  
with multiple values 

Recurse until no domains  
with multiple values 



•  3 variables: A, B, C 
•  Domains: all {1,2,3,4} 
•  A=B, B=C, A≠C 

•  Trace arc consistency + domain splitting 
for this network in AIspace. 

Example “Simple Problem 2” in AIspace 
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Arc consistency + domain splitting: example 

({1,2,3,4}, {1,2,3,4}, {1,2,3,4}) 

({1,3}, {1,2,3,4}, {1,2,3,4}) 

({1,3}, {1,3}, {1,3}) 

({2,4}, {1,2,3,4}, {1,2,3,4}) 

({1,3}, {1}, {1,3}) 

AC 

({}, {}, {}) 

({1,3}, {3}, {1,3}) 

({}, {}, {}) 

AC 

AC 

({2,4}, {2,4}, {2,4}) 

({2,4}, {2}, {2,4}) 

AC 

({}, {}, {}) 

({2,4}, {4}, {2,4}) 

({}, {}, {}) 

AC 

AC 

A ϵ {1,3} A ϵ {2,4} 

B ϵ {1} B ϵ {3} B ϵ {2} B ϵ {4} 

3 variables: A, B, C 
Domains: all {1,2,3,4} 
A=B, B=C, A≠C 

No solution No solution No solution No solution 

({1,2,3,4}, {1,2,3,4}, {1,2,3,4}) 

AC (arc consistency) 



Arc consistency + domain splitting: another example 

({1,2,3,4}, {1,2,3,4}, {1,2,3,4}) 

({1,3}, {1,2,3,4}, {1,2,3,4}) 

({1,3}, {1,3}, {1,3}) 

({2,4}, {1,2,3,4}, {1,2,3,4}) 

({1,3}, {1}, {1,3}) 

AC 

({1}, {1}, {1}) 

({1,3}, {3}, {1,3}) 

({3}, {3}, {3}) 

AC 

AC 

({2,4}, {2,4}, {2,4}) 

({2,4}, {2}, {2,4}) 

AC 

({2}, {2}, {2}) 

({2,4}, {4}, {2,4}) 

({4}, {4}, {4}) 

AC 

AC 

A ϵ {1,3} A ϵ {2,4} 

B ϵ {1} B ϵ {3} B ϵ {2} B ϵ {4} 

3 variables: A, B, C 
Domains: all {1,2,3,4} 
A=B, B=C, A=C 

Solution Solution Solution Solution 

({1,2,3,4}, {1,2,3,4}, {1,2,3,4}) 

AC (arc consistency) 



Third formulation of CSP as search 
•  Arc consistency with domain splitting 

•  States: vector (D(V1), …, D(Vn)) of remaining domains,  
            with D(Vi) ⊆ dom(Vi) for each Vi 

•  Start state: vector of original domains (dom(V1), …, dom(Vn)) 
•  Successor function: 

–  reduce one of the domains + run arc consistency => new CSP 

•  Goal state: vector of unary domains that satisfies all 
constraints 
–  That is, only one value left for each variable 
–  The assignment of each variable to its single value is a model 

•  Solution: that assignment 
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   Procedure  AC_DS(V, dom,C, TDA)  
             Inputs 
                      V : a set of variables  
                       dom: a function such that dom(V) is the domain of variable V  
                       C: set of constraints to be satisfied 
                       TDA: set of possibly arc inconsistent edges of the constraint network 
             Output 
                       set of models of the CSP (empty if no model exists) 
 

1:          dom ← GAC(V,dom,C,TDA)  // run arc consistency initialized with TDA 
  

2:          If dom includes an empty domain then return {} 
  

3:          If for all V1, …, Vn ∈V, dom(Vi) has a single value vi then  
4:                   return the model {V1= v1, …, Vn= vn} 
 
5:          Choose a variable V ∈ V  
6:          [D1, …, Dn] ← Partition dom(V) into non-empty domains 
 
7:          models ← {} 
8:          for i=1, …, n do  
9:                     domi  ← dom with dom(V) replaced by Di 
10:                  TDA = {<Z, c> | Z∈V\{V}  and Z ∈ scope(c) and V ∈ scope(c)} 
11:                  models ← models ∪ AC_DS(V, domi, C, TDA) 
                     

12:        return models 

Arc consistency with domain splitting algorithm 

8 

Arcs that could become inconsistent by reducing V’s domain. 
Z is some variable, c is some constraint involving both Z and V 

Domain splitting 

Base case 1: 
no solution 

Base case 2: 
single model 

Recursive case 



Learning Goals for arc consistency 

•  Define/read/write/trace/debug the arc consistency 
algorithm. Compute its complexity and assess its 
possible outcomes  

•  Define/read/write/trace/debug domain splitting and its 
integration with arc consistency 
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Lecture Overview 

•  Domain splitting: recap, more details & pseudocode 

•  Local Search 

•  Time-permitting: Stochastic Local Search (start) 
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•   Solving CSPs is NP-hard 
-  Search space for many CSPs is huge 
-  Exponential in the number of variables 
-  Even arc consistency with domain splitting is often not enough 

•   Alternative: local search 
–  Often finds a solution quickly 
–  But cannot prove that there is no solution 

•   Useful method in practice 
–  Best available method for many constraint satisfaction and 

constraint optimization problems 
–  Extremely general!  

–  Works for problems other than CSPs  
–  E.g. arc consistency only works for CSPs 

Local Search: Motivation 



Some Successful Application Areas for Local Search 

12 

Probabilistic  
Reasoning 

      Protein Folding 

Propositional 
satisfiability (SAT) 

University Timetabling 

RNA structure 
design 

Scheduling of  Hubble 
Space Telescope: 
1 week → 10 seconds 



Local Search 
•   Idea:  

–  Consider the space of complete assignments of values to variables 
(all possible worlds) 

–  Neighbours of a current node are similar variable assignments  
–  Move from one node to another according to a function that scores 

how good each assignment is 
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Local Search Problem: Definition 
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Definition: A local search problem consists of a: 
 

CSP: a set of variables, domains for these variables, and 
constraints on their joint values. A node in the search space will 
be a complete assignment to all of the variables. 
 
Neighbour relation: an edge in the search space will exist 
when the neighbour relation holds between a pair of nodes. 
 
Scoring function: h(n), judges cost of a node (want to minimize)  
   -   E.g. the number of constraints violated in node n.  
   -   E.g. the cost of a state in an optimization context. 
 



Example: Sudoku as a local search problem 
CSP: usual Sudoku CSP 

-  One variable per cell; domains {1,…,9};  
-  Constraints:  

each number occurs once per row, per column, and per 3x3 box 
Neighbour relation: value of a single cell differs 
Scoring function: number of constraint violations 
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V1 = v1 ,V2 = v1 ,.., Vn = v1 

Search Space for Local Search 

V1 = v2 ,V2 = v1 ,.., Vn = v1 

V1 = v4 ,V2 = v1 ,.., Vn = v1 

V1 = v1 ,V2 = vn ,.., Vn = v1 

V1 = v4 ,V2 = v2 ,.., Vn = v1 

V1 = v4 ,V2 = v3 ,.., Vn = v1 

V1 = v4 ,V2 = v1 ,.., Vn = v2 

Only the current node is kept in memory at each step.  
Very different from the systematic tree search approaches we have 
seen so far! Local search does NOT backtrack! 



Local search: only use local information 
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Iterative Best Improvement 
•  How to determine the neighbor node to be selected? 
•  Iterative Best Improvement:  

–  select the neighbor that optimizes some evaluation function 
•  Which strategy would make sense? Select neighbour with … 

•  Evaluation function:  
h(n): number of constraint violations in state n 

•  Greedy descent: evaluate h(n) for each neighbour, pick the neighbour n 
with minimal h(n) 

•  Hill climbing: equivalent algorithm for maximization problems 
–  Minimizing h(n) is identical to maximizing –h(n) 

Minimal number of constraint violations 

Similar number of constraint violations as current state 
Maximal number of constraint violations 

No constraint violations 
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Example: Greedy descent for Sudoku 
Assign random numbers 

between 1 and 9 to blank 
fields 

Repeat 
–  For each cell & each number: 

Evaluate how many constraint 
violations changing the 
assignment would yield 

–  Choose the cell and number 
that leads to the fewest 
violated constraints; change it 

Until solved 
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Example: Greedy descent for Sudoku 
Example for one local search step: 
Reduces #constraint violations by 3: 

-  Two 1s in the first column 
-  Two 1s in the first row 
-  Two 1s in the top-left box 
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General Local Search Algorithm 

Random 
initialization 

Local search 
step 

1: Procedure Local-Search(V,dom,C)  
2:           Inputs 
3:                     V: a set of variables  
4:                     dom: a function such that dom(X) is the domain of variable X  
5:                     C: set of constraints to be satisfied  
6:           Output     complete assignment that satisfies the constraints  
7:           Local 
8:                     A[V] an array of values indexed by V  
9:           repeat 
10:                     for each variable X do  
11:                               A[X] ←a random value in dom(X);  
12:                      
13:                     while (stopping criterion not met & A is not a satisfying assignment)  
14:                               Select a variable Y and a value V ∈dom(Y)  
15:                               Set A[Y] ←V  
16:                      
17:                     if (A is a satisfying assignment) then  
18:                               return A  
19:                      
20:           until termination 



General Local Search Algorithm 

Based on local information. 
E.g., for each neighbour evaluate  
how many  constraints are unsatisfied. 
 
Greedy descent: select Y and V to minimize 
#unsatisfied constraints at each step 

1: Procedure Local-Search(V,dom,C)  
2:           Inputs 
3:                     V: a set of variables  
4:                     dom: a function such that dom(X) is the domain of variable X  
5:                     C: set of constraints to be satisfied  
6:           Output     complete assignment that satisfies the constraints  
7:           Local 
8:                     A[V] an array of values indexed by V  
9:           repeat 
10:                     for each variable X do  
11:                               A[X] ←a random value in dom(X);  
12:                      
13:                     while (stopping criterion not met & A is not a satisfying assignment)  
14:                               Select a variable Y and a value V ∈dom(Y)  
15:                               Set A[Y] ←V  
16:                      
17:                     if (A is a satisfying assignment) then  
18:                               return A  
19:                      
20:           until termination 



Another example: N-Queens 
•  Put n queens on an n × n board with no two queens 

on the same row, column, or diagonal (i.e attacking 
each other) 

•  Positions a queen 
can attack 



Example: N-queens 

h = 5 h = ? h = ? 
3 1 0 2 



 Example: N-Queens 

h = 17 h = 1 

5 steps 

Each cell lists h (i.e. #constraints unsatisfied) if you move 
the queen from that column into the cell 



The problem of local minima 

•  Which move should we 
pick in this situation? 
-  Current cost: h=1 
-  No single move can 

improve on this 
-  In fact, every single move 

only makes things worse  
(h ≥ 2) 

•  Locally optimal solution 
–  Since we are minimizing: 

local minimum 
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Local minima 

 
                                    Local minima 

•  Most research in local search concerns effective 
mechanisms for escaping from local minima 

•  Want to quickly explore many local minima:  
global minimum is a local minimum, too 

27 

Evaluation function 

State Space (1 variable) 

Evaluation function 

State Space  
(1 variable) 

B 



Different neighbourhoods 
•  Local minima are defined with respect to a neighbourhood. 
•  Neighbourhood: states resulting from some small 

incremental change to current variable assignment 
•  1-exchange neighbourhood 

–  One stage selection: all assignments that differ in exactly one 
variable.  
How many of those are there for N variables and domain size d? 

–  O(dN). N variables, for each of them need to check d-1 values 

–  Two stage selection: first choose a variable (e.g. the one in the 
most conflicts), then best value 

•  Lower computational complexity: O(N+d). But less progress per step 

•  2-exchange neighbourhood 
–  All variable assignments that differ in exactly two variables. O(N2d2) 
–  More powerful: local optimum for 1-exchange neighbourhood might 

not be local optimum for 2-exchange neighbourhood 
28 

O(N+d) O(Nd) O(dN) O(Nd) 



Different neighbourhoods 
•  How about an 8-exchange 

neighbourhood? 
-  All minima with respect to 

the 8-exchange 
neighbourhood are global 
minima 

-  Why? 
-  How expensive is the 8-

exchange neighbourhood? 
-  O(N8d8) 

-  In general, N-exchange 
neighbourhood includes 
all solutions  
-  Where N is the number of 

variables 
-  But is exponentially large 
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Lecture Overview 

•  Domain splitting: recap, more details & pseudocode 

•  Local Search 

•  Time-permitting: Stochastic Local Search (start) 
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Stochastic Local Search 

•  We will use greedy steps to find local minima 
–  Move to neighbour with best evaluation function value 

•  We will use randomness to avoid getting trapped in local 
minima 
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General Local Search Algorithm 

Extreme case 1:  
random sampling. 
Restart at every step:  
Stopping criterion is “true” 

Random 
restart 

1: Procedure Local-Search(V,dom,C)  
2:           Inputs 
3:                     V: a set of variables  
4:                     dom: a function such that dom(X) is the domain of variable X  
5:                     C: set of constraints to be satisfied  
6:           Output     complete assignment that satisfies the constraints  
7:           Local 
8:                     A[V] an array of values indexed by V  
9:           repeat 
10:                     for each variable X do  
11:                               A[X] ←a random value in dom(X);  
12:                      
13:                     while (stopping criterion not met & A is not a satisfying assignment)  
14:                               Select a variable Y and a value V ∈dom(Y)  
15:                               Set A[Y] ←V  
16:                      
17:                     if (A is a satisfying assignment) then  
18:                               return A  
19:                      
20:           until termination 



General Local Search Algorithm 

Extreme case 2: greedy descent 
Only restart in local minima: 
Stopping criterion is “no more 
improvement in eval. function h” 

1: Procedure Local-Search(V,dom,C)  
2:           Inputs 
3:                     V: a set of variables  
4:                     dom: a function such that dom(X) is the domain of variable X  
5:                     C: set of constraints to be satisfied  
6:           Output     complete assignment that satisfies the constraints  
7:           Local 
8:                     A[V] an array of values indexed by V  
9:           repeat 
10:                     for each variable X do  
11:                               A[X] ←a random value in dom(X);  
12:                      
13:                     while (stopping criterion not met & A is not a satisfying assignment)  
14:                               Select a variable Y and a value V ∈dom(Y)  
15:                               Set A[Y] ←V  
16:                      
17:                     if (A is a satisfying assignment) then  
18:                               return A  
19:                      
20:           until termination 



Greedy descent vs. Random sampling  

•  Greedy descent is  
–  good for finding local minima 
–  bad for exploring new parts of the search space 
 

•  Random sampling is  
–  good for exploring new parts of the search space 
–  bad for finding local minima 

•  A mix of the two can work very well 
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Greedy Descent + Randomness 

•  Greedy steps 
–  Move to neighbour with best evaluation function value 

•  Next to greedy steps, we can allow for:  
1. Random restart:  

reassign random values to all variables (i.e. start fresh) 

2. Random steps:  
move to a random neighbour 

35 



 
Which randomized method would work best in each of 

the these two search spaces?  

Hill climbing with random steps best on A 
Hill climbing with random restart best on B 
 Hill climbing with random steps best on B 
Hill climbing with random restart best on A 
 equivalent 

Evaluation function 

State Space (1 variable) 

Evaluation function 

State Space  
(1 variable) 

A B 



•  But these examples are simplified extreme cases for 
illustration, in reality  you don’t know what your search 
space looks like 

•  Usually integrating both kinds of randomization works 
best  

Hill climbing with random steps best on B 
Hill climbing with random restart best on A 
 

Evaluation function 

State Space (1 variable) 

Evaluation function 

State Space  
(1 variable) 

A B 



•  Start node: random assignment 

•  Goal: assignment with zero unsatisfied constraints 

•  Heuristic function h: number of unsatisfied constraints 
–  Lower values of the function are better 

 
•  Stochastic local search is a mix of:  

–  Greedy descent: move to neighbor with lowest h 
–  Random walk: take some random steps  
–  Random restart: reassigning values to all variables  

Stochastic Local Search for CSPs 



Stochastic Local Search for CSPs: details 
•  Examples of ways to add randomness to local search for a 

CSP 

•  In one stage selection of variable and value: 
–  instead choose a random variable-value pair 

•  In two stage selection (first select variable V, then new value for V): 
–  Selecting variables: 

•  Sometimes choose the variable which participates in the largest 
number of conflicts 

•  Sometimes choose a random variable that participates in some conflict 
•  Sometimes choose a random variable 

–  Selecting values 

•  Sometimes choose the best value for the chosen variable 
•  Sometimes choose a random value for the chosen variable 39 



Learning Goals for local search (started) 
•  Implement local search for a CSP.  

–  Implement different ways to generate neighbors 
–  Implement scoring functions to solve a CSP by  local search 

through either greedy descent or hill-climbing. 

•  Implement SLS with 
–  random steps (1-stage, 2-stage versions) 
–  random restart 

 
•  Assignment #2 is available on Connect today 

(due Wednesday , February 13th) 
•  Exercise #5 on SLS is available on the home page - 

do it! 

•  Coming up: more local search, Section 4.8 


