#### Local Search for CSPs

Alan Mackworth

UBC CS 322 - CSP 5 February 4, 2013

Textbook §4.8

#### Lecture Overview

Domain splitting: recap, more details & pseudocode

- Local Search
- Time-permitting: Stochastic Local Search (start)



#### Example "Simple Problem 2" in Alspace



 Trace arc consistency + domain splitting for this network in Alspace.

#### Arc consistency + domain splitting: example



#### Arc consistency + domain splitting: another example



# Third formulation of CSP as search

- Arc consistency with domain splitting
- States: vector (D(V<sub>1</sub>), ..., D(V<sub>n</sub>)) of remaining domains, with D(V<sub>i</sub>) ⊆ dom(V<sub>i</sub>) for each V<sub>i</sub>
- Start state: vector of original domains (dom(V<sub>1</sub>), ..., dom(V<sub>n</sub>))
- Successor function:
  - reduce one of the domains + run arc consistency => new CSP
- Goal state: vector of unary domains that satisfies all constraints
  - That is, only one value left for each variable
  - The assignment of each variable to its single value is a model
- Solution: that assignment

#### Arc consistency with domain splitting algorithm

| Proc     | edure AC_DS(V, dom,                                                                                | C, TDA)                                                                                                 |                     |                  |  |  |  |  |
|----------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------|------------------|--|--|--|--|
|          | Inputs                                                                                             |                                                                                                         |                     |                  |  |  |  |  |
|          | ${\mathcal V}$ : a set of variables                                                                |                                                                                                         |                     |                  |  |  |  |  |
|          |                                                                                                    | such that dom(V) is the domain of                                                                       | variat              | ole V            |  |  |  |  |
|          |                                                                                                    | aints to be satisfied                                                                                   |                     |                  |  |  |  |  |
|          | •                                                                                                  | sibly arc inconsistent edges of the                                                                     | constr              | aint network     |  |  |  |  |
|          | Output                                                                                             | the CSP (empty if no model exists                                                                       | 2)                  |                  |  |  |  |  |
| _        |                                                                                                    |                                                                                                         |                     |                  |  |  |  |  |
| 1:       | dom $\leftarrow$ GAC( $\mathcal{V}$ ,dom,C,TDA) // run arc consistency initialized with TDA        |                                                                                                         |                     |                  |  |  |  |  |
| 2:       | If dom includes an em                                                                              | pty domain then return {}                                                                               |                     | Base case 1:     |  |  |  |  |
|          |                                                                                                    |                                                                                                         | <                   | no solution      |  |  |  |  |
| 3:       | If for all $V_1,, V_n \in \mathcal{V}$ , dom $(V_i)$ has a single value $v_i$ then<br>Base case 2: |                                                                                                         |                     |                  |  |  |  |  |
| 4:       | return the model                                                                                   | $\{V_1 = V_1, \dots, V_n = V_n\}$                                                                       | <                   | single model     |  |  |  |  |
| E.       | Chappe a variable V a                                                                              | $\gamma_{I}$                                                                                            |                     |                  |  |  |  |  |
| 5:<br>6: | Choose a variable V ∈                                                                              | dom(V) into non-empty domains                                                                           | <                   | Domain splitting |  |  |  |  |
| 0.       | $[D_1, \ldots, D_n] \leftarrow r$ arithon                                                          |                                                                                                         |                     |                  |  |  |  |  |
| 7:       | models ← {}                                                                                        | Arcs that could become inconsistent b                                                                   | •                   | -                |  |  |  |  |
| 8:       | for i=1,, n do Z is some variable, c is some constraint involving both Z and V                     |                                                                                                         |                     |                  |  |  |  |  |
| 9:       | $dom_i \leftarrow dom with dom(V)$ replaced by $D_i$                                               |                                                                                                         |                     |                  |  |  |  |  |
| 10:      |                                                                                                    | $Z \in \mathcal{V} \setminus \{V\}$ and $Z \in \text{scope}(c)$ and $V \in \mathcal{V} \setminus \{V\}$ | ∈ <mark>scop</mark> | pe(c)}           |  |  |  |  |
| 11:      | models ← mode                                                                                      | <mark>ls ∪ AC_DS(V, dom<sub>i</sub>, C, TDA)</mark>                                                     |                     | cursive case     |  |  |  |  |
| 12:      | return models                                                                                      |                                                                                                         |                     |                  |  |  |  |  |

### Learning Goals for arc consistency

- Define/read/write/trace/debug the arc consistency algorithm. Compute its complexity and assess its possible outcomes
- Define/read/write/trace/debug domain splitting and its integration with arc consistency

### Lecture Overview

- Domain splitting: recap, more details & pseudocode
  Local Search
- Time-permitting: Stochastic Local Search (start)

#### Local Search: Motivation

- Solving CSPs is NP-hard
  - Search space for many CSPs is huge
  - Exponential in the number of variables
  - Even arc consistency with domain splitting is often not enough
- Alternative: local search
  - Often finds a solution quickly
  - But cannot prove that there is no solution
- Useful method in practice
  - Best available method for many constraint satisfaction and constraint optimization problems
  - Extremely general!
    - Works for problems other than CSPs
    - E.g. arc consistency only works for CSPs

#### Some Successful Application Areas for Local Search



#### Probabilistic Reasoning





Propositional satisfiability (SAT)



Scheduling of Hubble Space Telescope: 1 week → 10 seconds



University Timetabling

Protein Folding

#### Local Search

#### • Idea:

- Consider the space of complete assignments of values to variables (all possible worlds)
- Neighbours of a current node are similar variable assignments
- Move from one node to another according to a function that scores how good each assignment is

| 1 | 8 | 1 | 4 | 8 | 3 | 4 | 3 | 5 |
|---|---|---|---|---|---|---|---|---|
| 7 | 9 | 3 | 6 | 2 | 8 | 1 | 4 | 7 |
| 4 | 6 | 5 | 7 | 1 | 2 | 8 | 5 | 6 |
| 3 | 3 | 7 | 3 | 1 | 4 | 1 | 9 | 3 |
| 8 | 5 | 7 | 8 | 2 | 2 | 9 | 7 | 8 |
| 5 | 4 | 4 | 3 | 7 | 8 | 7 | 6 | 2 |
| 4 | 8 | 7 | 1 | 2 | 8 | 5 | 3 | 6 |
| 1 | 1 | 7 | 5 | 9 | 3 | 4 | 2 | 8 |
| 7 | 5 | 8 | 4 | 8 | 6 | 7 | 3 | 5 |

| 2 | 8 | 1 | 4 | 8 | 3 | 4 | 3 | 5 |
|---|---|---|---|---|---|---|---|---|
| 7 | 9 | 3 | 6 | 2 | 8 | 1 | 4 | 7 |
| 4 | 6 | 5 | 7 | 1 | 2 | 8 | 5 | 6 |
| 3 | 3 | 7 | 3 | 1 | 4 | 1 | 9 | 3 |
| 8 | 5 | 7 | 8 | 2 | 2 | 9 | 7 | 8 |
| 5 | 4 | 4 | 3 | 7 | 8 | 7 | 6 | 2 |
| 4 | 8 | 7 | 1 | 2 | 8 | 5 | 3 | 6 |
| 1 | 1 | 7 | 5 | 9 | 3 | 4 | 2 | 8 |
| 7 | 5 | 8 | 4 | 8 | 6 | 7 | 3 | 5 |

### Local Search Problem: Definition

Definition: A local search problem consists of a:

CSP: a set of variables, domains for these variables, and constraints on their joint values. A node in the search space will be a complete assignment to all of the variables.

Neighbour relation: an edge in the search space will exist when the neighbour relation holds between a pair of nodes.

Scoring function: h(n), judges cost of a node (want to minimize)

- E.g. the number of constraints violated in node n.
- E.g. the cost of a state in an optimization context.

#### Example: Sudoku as a local search problem

CSP: usual Sudoku CSP

- One variable per cell; domains {1,...,9};
- Constraints:

each number occurs once per row, per column, and per 3x3 box

Neighbour relation: value of a single cell differs

Scoring function: number of constraint violations



| 2 | 8 | 1 | 4 | 8 | 3 | 4 | 3 | 5 |
|---|---|---|---|---|---|---|---|---|
| 7 | 9 | 3 | 6 | 2 | 8 | 1 | 4 | 7 |
| 4 | 6 | 5 | 7 | 1 | 2 | 8 | 5 | 6 |
| 3 | 3 | 7 | 3 | 1 | 4 | 1 | 9 | 3 |
| 8 | 5 | 7 | 8 | 2 | 2 | 9 | 7 | 8 |
| 5 | 4 | 4 | 3 | 7 | 8 | 7 | 6 | 2 |
| 4 | 8 | 7 | 1 | 2 | 8 | 5 | 3 | 6 |
| 1 | 1 | 7 | 5 | 9 | 3 | 4 | 2 | 8 |
| 7 | 5 | 8 | 4 | 8 | 6 | 7 | 3 | 5 |

#### **Search Space for Local Search**



Only the current node is kept in memory at each step. Very different from the systematic tree search approaches we have seen so far! Local search does NOT backtrack!

#### Local search: only use local information





#### **Iterative Best Improvement**

- How to determine the neighbor node to be selected?
- Iterative Best Improvement:
  - select the neighbor that optimizes some evaluation function
- Which strategy would make sense? Select neighbour with ...

Maximal number of constraint violations

Similar number of constraint violations as current state

No constraint violations

Minimal number of constraint violations

- Evaluation function: h(n): number of constraint violations in state n
- Greedy descent: evaluate h(n) for each neighbour, pick the neighbour n with minimal h(n)
- Hill climbing: equivalent algorithm for maximization problems
  - Minimizing h(n) is identical to maximizing -h(n)

# Example: Greedy descent for Sudoku

#### Assign random numbers between 1 and 9 to blank fields

Repeat

- For each cell & each number: Evaluate how many constraint violations changing the assignment would yield
- Choose the cell and number that leads to the fewest violated constraints; change it

#### Until solved

| 2 | 8 | 1 | 4 | 8 | 3 | 4 | 3 | 5 |
|---|---|---|---|---|---|---|---|---|
| 7 | 9 | 3 | 6 | 2 | 8 | 1 | 4 | 7 |
| 4 | 6 | 5 | 7 | 1 | 2 | 8 | 5 | 6 |
| 3 | 3 | 7 | 3 | 1 | 4 | 1 | 9 | 3 |
| 8 | 5 | 7 | 8 | 2 | 2 | 9 | 7 | 8 |
| 5 | 4 | 4 | 3 | 7 | 8 | 7 | 6 | 2 |
| 4 | 8 | 7 | 1 | 2 | 8 | 5 | 3 | 6 |
| 1 | 1 | 7 | 5 | 9 | 3 | 4 | 2 | 8 |
| 7 | 5 | 8 | 4 | 8 | 6 | 7 | 3 | 5 |

# Example: Greedy descent for Sudoku

Example for one local search step: Reduces #constraint violations by 3:

- Two 1s in the first column
- Two 1s in the first row
- Two 1s in the top-left box

| 1 | 8 | 1 | 4 | 8 | 3 | 4 | 3 | 5 |
|---|---|---|---|---|---|---|---|---|
| 7 | 9 | 3 | 6 | 2 | 8 | 1 | 4 | 7 |
| 4 | 6 | 5 | 7 | 1 | 2 | 8 | 5 | 6 |
| 3 | 3 | 7 | 3 | 1 | 4 | 1 | 9 | 3 |
| 8 | 5 | 7 | 8 | 2 | 2 | 9 | 7 | 8 |
| 5 | 4 | 4 | 3 | 7 | 8 | 7 | 6 | 2 |
| 4 | 8 | 7 | 1 | 2 | 8 | 5 | 3 | 6 |
| 1 | 1 | 7 | 5 | 9 | 3 | 4 | 2 | 8 |
| 7 | 5 | 8 | 4 | 8 | 6 | 7 | 3 | 5 |

| 2 | 8 | 1 | 4 | 8 | 3 | 4 | 3 | 5 |
|---|---|---|---|---|---|---|---|---|
| 7 | 9 | 3 | 6 | 2 | 8 | 1 | 4 | 7 |
| 4 | 6 | 5 | 7 | 1 | 2 | 8 | 5 | 6 |
| 3 | 3 | 7 | 3 | 1 | 4 | 1 | 9 | 3 |
| 8 | 5 | 7 | 8 | 2 | 2 | 9 | 7 | 8 |
| 5 | 4 | 4 | 3 | 7 | 8 | 7 | 6 | 2 |
| 4 | 8 | 7 | 1 | 2 | 8 | 5 | 3 | 6 |
| 1 | 1 | 7 | 5 | 9 | 3 | 4 | 2 | 8 |
| 7 | 5 | 8 | 4 | 8 | 6 | 7 | 3 | 5 |

# **General Local Search Algorithm**

1: **Procedure** Local-Search(V,dom,C)

| 1.110 |           |                                             |          |                   |
|-------|-----------|---------------------------------------------|----------|-------------------|
| 2:    | Inputs    |                                             |          |                   |
| 3:    | V:        | a set of variables                          |          |                   |
| 4:    | doi       | n: a function such that dom(X) is the doma  | ain of v | ariable X         |
| 5:    | C:        | set of constraints to be satisfied          |          |                   |
| 6:    | Output    | complete assignment that satisfies the co   | nstrain  | ts                |
| 7:    | Local     |                                             |          |                   |
| 8:    | Αſ        | V] an array of values indexed by V          |          |                   |
| 9:    | repeat    |                                             |          | Random            |
| 10:   | fo        | r each variable X do                        |          | initialization    |
| 11:   |           | $A[X] \leftarrow a random value in dom(X);$ |          |                   |
| 12:   |           |                                             |          |                   |
| 13:   | W         | hile (stopping criterion not met & A is not | a satist | fying assignment) |
| 14:   |           | Select a variable Y and a value $V \in dc$  | om(Y)    |                   |
| 15:   |           | Set $A[Y] \leftarrow V$                     |          |                   |
| 16:   |           |                                             |          | Local search      |
| 17:   | if        | (A is a satisfying assignment) then         |          | step              |
| 18:   |           | return A                                    |          |                   |
| 19:   |           |                                             |          |                   |
| 20:   | until ter | mination                                    |          |                   |

# **General Local Search Algorithm**

1: **Procedure** Local-Search(V,dom,C)

| 2:  | Inputs    |                                                                  |                                                                                     |  |  |  |  |  |  |
|-----|-----------|------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 3:  | V: a      | V: a set of variables                                            |                                                                                     |  |  |  |  |  |  |
| 4:  | dor       | dom: a function such that dom(X) is the domain of variable X     |                                                                                     |  |  |  |  |  |  |
| 5:  | C: :      | set of constraints to be satisfied                               |                                                                                     |  |  |  |  |  |  |
| 6:  | Output    | <b>Output</b> complete assignment that satisfies the constraints |                                                                                     |  |  |  |  |  |  |
| 7:  | Local     |                                                                  |                                                                                     |  |  |  |  |  |  |
| 8:  | A         | [] an array of values indexed by V                               |                                                                                     |  |  |  |  |  |  |
| 9:  | repeat    |                                                                  |                                                                                     |  |  |  |  |  |  |
| 10: | fo        | r each variable X do                                             |                                                                                     |  |  |  |  |  |  |
| 11: |           | $A[X] \leftarrow a random value in dom($                         | X);                                                                                 |  |  |  |  |  |  |
| 12: |           |                                                                  |                                                                                     |  |  |  |  |  |  |
| 13: | W         | hile (stopping criterion not met & A                             | is not a satisfying assignment)                                                     |  |  |  |  |  |  |
| 14: |           | Select a variable Y and a value V                                | $V \in dom(Y)$                                                                      |  |  |  |  |  |  |
| 15: |           | Set $A[Y] \leftarrow V$                                          |                                                                                     |  |  |  |  |  |  |
| 16: |           |                                                                  |                                                                                     |  |  |  |  |  |  |
| 17: | if        | (A is a satisfying assignment) <b>then</b>                       | Based on local information.<br>E.g., for each neighbour evaluate                    |  |  |  |  |  |  |
| 18: |           | return A                                                         | how many constraints are unsatisfied.                                               |  |  |  |  |  |  |
| 19: |           |                                                                  |                                                                                     |  |  |  |  |  |  |
| 20: | until ter | mination                                                         | Greedy descent: select Y and V to minimize<br>#unsatisfied constraints at each step |  |  |  |  |  |  |

#### Another example: N-Queens

 Put n queens on an n × n board with no two queens on the same row, column, or diagonal (i.e attacking each other)

 Positions a queen can attack



#### **Example: N-queens**

#### Example: 4-Queens

States: 4 queens in 4 columns ( $4^4 = 256$  states)

Operators: move queen in column

Goal test: no attacks

Evaluation: h(n) =number of attacks



#### **Example: N-Queens**



Each cell lists h (i.e. #constraints unsatisfied) if you move the queen from that column into the cell

# The problem of local minima

- Which move should we pick in this situation?
  - Current cost: h=1
  - No single move can improve on this
  - In fact, every single move only makes things worse (h ≥ 2)
- Locally optimal solution
  - Since we are minimizing: local minimum



### Local minima



Local minima

- Most research in local search concerns effective mechanisms for escaping from local minima
- Want to quickly explore many local minima: global minimum is a local minimum, too

# Different neighbourhoods

- Local minima are defined with respect to a neighbourhood.
- Neighbourhood: states resulting from some small incremental change to current variable assignment
- 1-exchange neighbourhood
  - One stage selection: all assignments that differ in exactly one variable.

How many of those are there for N variables and domain size d?

 O(Nd)
 O(d<sup>N</sup>)
 O(N<sup>d</sup>)
 O(N+d)

- O(dN). N variables, for each of them need to check d-1 values
- Two stage selection: first choose a variable (e.g. the one in the most conflicts), then best value
  - Lower computational complexity: O(N+d). But less progress per step
- 2-exchange neighbourhood
  - All variable assignments that differ in exactly two variables.  $O(N^2d^2)$
  - More powerful: local optimum for 1-exchange neighbourhood might not be local optimum for 2-exchange neighbourhood

# Different neighbourhoods

- How about an 8-exchange neighbourhood?
  - All minima with respect to the 8-exchange neighbourhood are global minima
    - Why?
  - How expensive is the 8exchange neighbourhood?
    - O(N<sup>8</sup>d<sup>8</sup>)
- In general, N-exchange neighbourhood includes all solutions
  - Where N is the number of variables
  - But is exponentially large



#### Lecture Overview

- Domain splitting: recap, more details & pseudocode
- Local Search

Time-permitting: Stochastic Local Search (start)

### **Stochastic Local Search**

- We will use greedy steps to find local minima
  - Move to neighbour with best evaluation function value
- We will use randomness to avoid getting trapped in local minima

# **General Local Search Algorithm**





# **General Local Search Algorithm**

1: **Procedure** Local-Search(V,dom,C)

| 2:  | Inputs                                                                     |
|-----|----------------------------------------------------------------------------|
| 3:  | V: a set of variables                                                      |
| 4:  | dom: a function such that dom(X) is the domain of variable X               |
| 5:  | C: set of constraints to be satisfied                                      |
| 6:  | <b>Output</b> complete assignment that satisfies the constraints           |
| 7:  | Local                                                                      |
| 8:  | A[V] an array of values indexed by V                                       |
| 9:  | repeat Extreme case 2: greedy descent                                      |
| 10: | for each variable X do                                                     |
| 11: | $A[X] \leftarrow a random value in dom(X);$ Stopping criterion is "no more |
| 12: | improvement in eval. function h"                                           |
| 13: | while (stopping criterion not met & A is not a satisfying assignment)      |
| 14: | Select a variable Y and a value $V \in dom(Y)$                             |
| 15: | Set A[Y] ←V                                                                |
| 16: |                                                                            |
| 17: | if (A is a satisfying assignment) then                                     |
| 18: | return A                                                                   |
| 19: |                                                                            |
| 20: | until termination                                                          |

#### Greedy descent vs. Random sampling

#### • Greedy descent is

- good for finding local minima
- bad for exploring new parts of the search space
- Random sampling is
  - good for exploring new parts of the search space
  - bad for finding local minima
- A mix of the two can work very well

### Greedy Descent + Randomness

- Greedy steps
  - Move to neighbour with best evaluation function value
- Next to greedy steps, we can allow for:
  - 1. Random restart:

reassign random values to all variables (i.e. start fresh)

#### 2. Random steps:

move to a random neighbour

# Which randomized method would work best in each of the these two search spaces?





- But these examples are simplified extreme cases for illustration, in reality you don't know what your search space looks like
- Usually integrating both kinds of randomization works best

#### **Stochastic Local Search for CSPs**

- Start node: random assignment
- Goal: assignment with zero unsatisfied constraints
- Heuristic function h: number of unsatisfied constraints
  - Lower values of the function are better
- Stochastic local search is a mix of:
  - Greedy descent: move to neighbor with lowest h
  - Random walk: take some random steps
  - Random restart: reassigning values to all variables

#### Stochastic Local Search for CSPs: details

- Examples of ways to add randomness to local search for a CSP
- In one stage selection of variable and value:
  - instead choose a random variable-value pair
- In two stage selection (first select variable V, then new value for V):
  - Selecting variables:
    - Sometimes choose the variable which participates in the largest
       number of conflicts
    - Sometimes choose a random variable that participates in some conflict
    - Sometimes choose a random variable
  - Selecting values
    - Sometimes choose the best value for the chosen variable
    - Sometimes choose a random value for the chosen variable

#### Learning Goals for local search (started)

- Implement local search for a CSP.
  - Implement different ways to generate neighbors
  - Implement scoring functions to solve a CSP by local search through either greedy descent or hill-climbing.
- Implement SLS with
  - random steps (1-stage, 2-stage versions)
  - random restart
- Assignment #2 is available on Connect today (due Wednesday, February 13<sup>th</sup>)
- Exercise #5 on SLS is available on the home page do it!
- Coming up: more local search, Section 4.8