
Local Search for CSPs

Alan Mackworth

UBC CS 322 – CSP 5

February 4, 2013

Textbook §4.8

Lecture Overview

•  Domain splitting: recap, more details & pseudocode

•  Local Search

•  Time-permitting: Stochastic Local Search (start)

2

If domains with multiple values

 Split on one domain

Searching by domain splitting

3

CSP, apply AC

CSP1, apply AC CSPn, apply AC
If domains with multiple values
 Split on one domain

If domains with multiple values
 Split on one domain

Recurse until no domains
with multiple values

Recurse until no domains
with multiple values

•  3 variables: A, B, C
•  Domains: all {1,2,3,4}
•  A=B, B=C, A≠C

•  Trace arc consistency + domain splitting
for this network in AIspace.

Example “Simple Problem 2” in AIspace

4

Arc consistency + domain splitting: example

({1,2,3,4}, {1,2,3,4}, {1,2,3,4})

({1,3}, {1,2,3,4}, {1,2,3,4})

({1,3}, {1,3}, {1,3})

({2,4}, {1,2,3,4}, {1,2,3,4})

({1,3}, {1}, {1,3})

AC

({}, {}, {})

({1,3}, {3}, {1,3})

({}, {}, {})

AC

AC

({2,4}, {2,4}, {2,4})

({2,4}, {2}, {2,4})

AC

({}, {}, {})

({2,4}, {4}, {2,4})

({}, {}, {})

AC

AC

A ϵ {1,3} A ϵ {2,4}

B ϵ {1} B ϵ {3} B ϵ {2} B ϵ {4}

3 variables: A, B, C
Domains: all {1,2,3,4}
A=B, B=C, A≠C

No solution No solution No solution No solution

({1,2,3,4}, {1,2,3,4}, {1,2,3,4})

AC (arc consistency)

Arc consistency + domain splitting: another example

({1,2,3,4}, {1,2,3,4}, {1,2,3,4})

({1,3}, {1,2,3,4}, {1,2,3,4})

({1,3}, {1,3}, {1,3})

({2,4}, {1,2,3,4}, {1,2,3,4})

({1,3}, {1}, {1,3})

AC

({1}, {1}, {1})

({1,3}, {3}, {1,3})

({3}, {3}, {3})

AC

AC

({2,4}, {2,4}, {2,4})

({2,4}, {2}, {2,4})

AC

({2}, {2}, {2})

({2,4}, {4}, {2,4})

({4}, {4}, {4})

AC

AC

A ϵ {1,3} A ϵ {2,4}

B ϵ {1} B ϵ {3} B ϵ {2} B ϵ {4}

3 variables: A, B, C
Domains: all {1,2,3,4}
A=B, B=C, A=C

Solution Solution Solution Solution

({1,2,3,4}, {1,2,3,4}, {1,2,3,4})

AC (arc consistency)

Third formulation of CSP as search
•  Arc consistency with domain splitting

•  States: vector (D(V1), …, D(Vn)) of remaining domains,
 with D(Vi) ⊆ dom(Vi) for each Vi

•  Start state: vector of original domains (dom(V1), …, dom(Vn))
•  Successor function:

–  reduce one of the domains + run arc consistency => new CSP

•  Goal state: vector of unary domains that satisfies all
constraints
–  That is, only one value left for each variable
–  The assignment of each variable to its single value is a model

•  Solution: that assignment

7

 Procedure AC_DS(V, dom,C, TDA)  
 Inputs 
 V : a set of variables  
 dom: a function such that dom(V) is the domain of variable V  
 C: set of constraints to be satisfied
 TDA: set of possibly arc inconsistent edges of the constraint network 
 Output 
 set of models of the CSP (empty if no model exists) 

1: dom ← GAC(V,dom,C,TDA) // run arc consistency initialized with TDA

2: If dom includes an empty domain then return {}

3: If for all V1, …, Vn ∈V, dom(Vi) has a single value vi then
4: return the model {V1= v1, …, Vn= vn}

5: Choose a variable V ∈ V
6: [D1, …, Dn] ← Partition dom(V) into non-empty domains

7: models ← {}
8: for i=1, …, n do
9: domi ← dom with dom(V) replaced by Di
10: TDA = {<Z, c> | Z∈V\{V} and Z ∈ scope(c) and V ∈ scope(c)}
11: models ← models ∪ AC_DS(V, domi, C, TDA)

12: return models

Arc consistency with domain splitting algorithm

8

Arcs that could become inconsistent by reducing V’s domain.
Z is some variable, c is some constraint involving both Z and V

Domain splitting

Base case 1:
no solution

Base case 2:
single model

Recursive case

Learning Goals for arc consistency

•  Define/read/write/trace/debug the arc consistency
algorithm. Compute its complexity and assess its
possible outcomes

•  Define/read/write/trace/debug domain splitting and its
integration with arc consistency

9

Lecture Overview

•  Domain splitting: recap, more details & pseudocode

•  Local Search

•  Time-permitting: Stochastic Local Search (start)

10

•  Solving CSPs is NP-hard
-  Search space for many CSPs is huge
-  Exponential in the number of variables
-  Even arc consistency with domain splitting is often not enough

•  Alternative: local search
–  Often finds a solution quickly
–  But cannot prove that there is no solution

•  Useful method in practice
–  Best available method for many constraint satisfaction and

constraint optimization problems
–  Extremely general!

–  Works for problems other than CSPs
–  E.g. arc consistency only works for CSPs

Local Search: Motivation

Some Successful Application Areas for Local Search

12

Probabilistic
Reasoning

 Protein Folding

Propositional
satisfiability (SAT)

University Timetabling

RNA structure
design

Scheduling of Hubble
Space Telescope:
1 week → 10 seconds

Local Search
•  Idea:

–  Consider the space of complete assignments of values to variables
(all possible worlds)

–  Neighbours of a current node are similar variable assignments
–  Move from one node to another according to a function that scores

how good each assignment is

13

1

1

1

3

1

1

3

1

8

8

8

8

8

8
8

8

8

8

7

7
7

7
7

7

7
7

7

5

2

2

3

2
2

3

3
4

3

3

4

4 4

4

4

4

5

5

5

5

5 6

6

6

9

2

1

1

3

1

1

3

1

8

8

8

8

8

8
8

8

8

8

7

7
7

7
7

7

7
7

7

5

2

2

3

2
2

3

3
4

3

3

4

4 4

4

4

4

5

5

5

5

5 6

6

6

9

Local Search Problem: Definition

14

Definition: A local search problem consists of a:

CSP: a set of variables, domains for these variables, and
constraints on their joint values. A node in the search space will
be a complete assignment to all of the variables.

Neighbour relation: an edge in the search space will exist
when the neighbour relation holds between a pair of nodes.

Scoring function: h(n), judges cost of a node (want to minimize)
 - E.g. the number of constraints violated in node n.
 - E.g. the cost of a state in an optimization context.

Example: Sudoku as a local search problem
CSP: usual Sudoku CSP

-  One variable per cell; domains {1,…,9};
-  Constraints:

each number occurs once per row, per column, and per 3x3 box
Neighbour relation: value of a single cell differs
Scoring function: number of constraint violations

1

1

1

3

1

1

3

1

8

8

8

8

8

8
8

8

8

8

7

7
7

7
7

7

7
7

7

5

2

2

3

2
2

3

3
4

3

3

4

4 4

4

4

4

5

5

5

5

5 6

6

6

9

2

1

1

3

1

1

3

1

8

8

8

8

8

8
8

8

8

8

7

7
7

7
7

7

7
7

7

5

2

2

3

2
2

3

3
4

3

3

4

4 4

4

4

4

5

5

5

5

5 6

6

6

9

V1 = v1 ,V2 = v1 ,.., Vn = v1

Search Space for Local Search

V1 = v2 ,V2 = v1 ,.., Vn = v1

V1 = v4 ,V2 = v1 ,.., Vn = v1

V1 = v1 ,V2 = vn ,.., Vn = v1

V1 = v4 ,V2 = v2 ,.., Vn = v1

V1 = v4 ,V2 = v3 ,.., Vn = v1

V1 = v4 ,V2 = v1 ,.., Vn = v2

Only the current node is kept in memory at each step.
Very different from the systematic tree search approaches we have
seen so far! Local search does NOT backtrack!

Local search: only use local information

17

Iterative Best Improvement
•  How to determine the neighbor node to be selected?
•  Iterative Best Improvement:

–  select the neighbor that optimizes some evaluation function
•  Which strategy would make sense? Select neighbour with …

•  Evaluation function:
h(n): number of constraint violations in state n

•  Greedy descent: evaluate h(n) for each neighbour, pick the neighbour n
with minimal h(n)

•  Hill climbing: equivalent algorithm for maximization problems
–  Minimizing h(n) is identical to maximizing –h(n)

Minimal number of constraint violations

Similar number of constraint violations as current state
Maximal number of constraint violations

No constraint violations

19

Example: Greedy descent for Sudoku
Assign random numbers

between 1 and 9 to blank
fields

Repeat
–  For each cell & each number:

Evaluate how many constraint
violations changing the
assignment would yield

–  Choose the cell and number
that leads to the fewest
violated constraints; change it

Until solved

1

1

1

3

1

1

3

1

8

8

8

8

8

8
8

8

8

8

7

7
7

7
7

7

7
7

7

5

2

2

3

2
2

3

3
4

3

3

4

4 4

4

4

4

5

5

5

5

5 6

6

6

9

2

Example: Greedy descent for Sudoku
Example for one local search step:
Reduces #constraint violations by 3:

-  Two 1s in the first column
-  Two 1s in the first row
-  Two 1s in the top-left box

1

1

1

3

1

1

3

1

8

8

8

8

8

8
8

8

8

8

7

7
7

7
7

7

7
7

7

5

2

2

3

2
2

3

3
4

3

3

4

4 4

4

4

4

5

5

5

5

5 6

6

6

9

2

1

1

3

1

1

3

1

8

8

8

8

8

8
8

8

8

8

7

7
7

7
7

7

7
7

7

5

2

2

3

2
2

3

3
4

3

3

4

4 4

4

4

4

5

5

5

5

5 6

6

6

9

General Local Search Algorithm

Random
initialization

Local search
step

1: Procedure Local-Search(V,dom,C)
2: Inputs
3: V: a set of variables
4: dom: a function such that dom(X) is the domain of variable X
5: C: set of constraints to be satisfied
6: Output complete assignment that satisfies the constraints
7: Local
8: A[V] an array of values indexed by V
9: repeat
10: for each variable X do
11: A[X] ←a random value in dom(X);
12:
13: while (stopping criterion not met & A is not a satisfying assignment)
14: Select a variable Y and a value V ∈dom(Y)
15: Set A[Y] ←V
16:
17: if (A is a satisfying assignment) then
18: return A
19:
20: until termination

General Local Search Algorithm

Based on local information.
E.g., for each neighbour evaluate
how many constraints are unsatisfied.

Greedy descent: select Y and V to minimize
#unsatisfied constraints at each step

1: Procedure Local-Search(V,dom,C)
2: Inputs
3: V: a set of variables
4: dom: a function such that dom(X) is the domain of variable X
5: C: set of constraints to be satisfied
6: Output complete assignment that satisfies the constraints
7: Local
8: A[V] an array of values indexed by V
9: repeat
10: for each variable X do
11: A[X] ←a random value in dom(X);
12:
13: while (stopping criterion not met & A is not a satisfying assignment)
14: Select a variable Y and a value V ∈dom(Y)
15: Set A[Y] ←V
16:
17: if (A is a satisfying assignment) then
18: return A
19:
20: until termination

Another example: N-Queens
•  Put n queens on an n × n board with no two queens

on the same row, column, or diagonal (i.e attacking
each other)

•  Positions a queen
can attack

Example: N-queens

h = 5 h = ? h = ?
3 1 0 2

 Example: N-Queens

h = 17 h = 1

5 steps

Each cell lists h (i.e. #constraints unsatisfied) if you move
the queen from that column into the cell

The problem of local minima

•  Which move should we
pick in this situation?
-  Current cost: h=1
-  No single move can

improve on this
-  In fact, every single move

only makes things worse
(h ≥ 2)

•  Locally optimal solution
–  Since we are minimizing:

local minimum

26

Local minima

 Local minima

•  Most research in local search concerns effective
mechanisms for escaping from local minima

•  Want to quickly explore many local minima:
global minimum is a local minimum, too

27

Evaluation function

State Space (1 variable)

Evaluation function

State Space
(1 variable)

B

Different neighbourhoods
•  Local minima are defined with respect to a neighbourhood.
•  Neighbourhood: states resulting from some small

incremental change to current variable assignment
•  1-exchange neighbourhood

–  One stage selection: all assignments that differ in exactly one
variable.
How many of those are there for N variables and domain size d?

–  O(dN). N variables, for each of them need to check d-1 values

–  Two stage selection: first choose a variable (e.g. the one in the
most conflicts), then best value

•  Lower computational complexity: O(N+d). But less progress per step

•  2-exchange neighbourhood
–  All variable assignments that differ in exactly two variables. O(N2d2)
–  More powerful: local optimum for 1-exchange neighbourhood might

not be local optimum for 2-exchange neighbourhood
28

O(N+d) O(Nd) O(dN) O(Nd)

Different neighbourhoods
•  How about an 8-exchange

neighbourhood?
-  All minima with respect to

the 8-exchange
neighbourhood are global
minima

-  Why?
-  How expensive is the 8-

exchange neighbourhood?
-  O(N8d8)

-  In general, N-exchange
neighbourhood includes
all solutions
-  Where N is the number of

variables
-  But is exponentially large

29

Lecture Overview

•  Domain splitting: recap, more details & pseudocode

•  Local Search

•  Time-permitting: Stochastic Local Search (start)

30

Stochastic Local Search

•  We will use greedy steps to find local minima
–  Move to neighbour with best evaluation function value

•  We will use randomness to avoid getting trapped in local
minima

31

General Local Search Algorithm

Extreme case 1:
random sampling.
Restart at every step:
Stopping criterion is “true”

Random
restart

1: Procedure Local-Search(V,dom,C)
2: Inputs
3: V: a set of variables
4: dom: a function such that dom(X) is the domain of variable X
5: C: set of constraints to be satisfied
6: Output complete assignment that satisfies the constraints
7: Local
8: A[V] an array of values indexed by V
9: repeat
10: for each variable X do
11: A[X] ←a random value in dom(X);
12:
13: while (stopping criterion not met & A is not a satisfying assignment)
14: Select a variable Y and a value V ∈dom(Y)
15: Set A[Y] ←V
16:
17: if (A is a satisfying assignment) then
18: return A
19:
20: until termination

General Local Search Algorithm

Extreme case 2: greedy descent
Only restart in local minima:
Stopping criterion is “no more
improvement in eval. function h”

1: Procedure Local-Search(V,dom,C)
2: Inputs
3: V: a set of variables
4: dom: a function such that dom(X) is the domain of variable X
5: C: set of constraints to be satisfied
6: Output complete assignment that satisfies the constraints
7: Local
8: A[V] an array of values indexed by V
9: repeat
10: for each variable X do
11: A[X] ←a random value in dom(X);
12:
13: while (stopping criterion not met & A is not a satisfying assignment)
14: Select a variable Y and a value V ∈dom(Y)
15: Set A[Y] ←V
16:
17: if (A is a satisfying assignment) then
18: return A
19:
20: until termination

Greedy descent vs. Random sampling

•  Greedy descent is
–  good for finding local minima
–  bad for exploring new parts of the search space

•  Random sampling is
–  good for exploring new parts of the search space
–  bad for finding local minima

•  A mix of the two can work very well

34

Greedy Descent + Randomness

•  Greedy steps
–  Move to neighbour with best evaluation function value

•  Next to greedy steps, we can allow for:
1. Random restart:

reassign random values to all variables (i.e. start fresh)

2. Random steps:
move to a random neighbour

35

Which randomized method would work best in each of

the these two search spaces?

Hill climbing with random steps best on A
Hill climbing with random restart best on B
 Hill climbing with random steps best on B
Hill climbing with random restart best on A
 equivalent

Evaluation function

State Space (1 variable)

Evaluation function

State Space
(1 variable)

A B

•  But these examples are simplified extreme cases for
illustration, in reality you don’t know what your search
space looks like

•  Usually integrating both kinds of randomization works
best

Hill climbing with random steps best on B
Hill climbing with random restart best on A

Evaluation function

State Space (1 variable)

Evaluation function

State Space
(1 variable)

A B

•  Start node: random assignment

•  Goal: assignment with zero unsatisfied constraints

•  Heuristic function h: number of unsatisfied constraints
–  Lower values of the function are better

•  Stochastic local search is a mix of:

–  Greedy descent: move to neighbor with lowest h
–  Random walk: take some random steps
–  Random restart: reassigning values to all variables

Stochastic Local Search for CSPs

Stochastic Local Search for CSPs: details
•  Examples of ways to add randomness to local search for a

CSP

•  In one stage selection of variable and value:
–  instead choose a random variable-value pair

•  In two stage selection (first select variable V, then new value for V):
–  Selecting variables:

•  Sometimes choose the variable which participates in the largest
number of conflicts

•  Sometimes choose a random variable that participates in some conflict
•  Sometimes choose a random variable

–  Selecting values

•  Sometimes choose the best value for the chosen variable
•  Sometimes choose a random value for the chosen variable 39

Learning Goals for local search (started)
•  Implement local search for a CSP.

–  Implement different ways to generate neighbors
–  Implement scoring functions to solve a CSP by local search

through either greedy descent or hill-climbing.

•  Implement SLS with
–  random steps (1-stage, 2-stage versions)
–  random restart

•  Assignment #2 is available on Connect today

(due Wednesday , February 13th)
•  Exercise #5 on SLS is available on the home page -

do it!

•  Coming up: more local search, Section 4.8

