
A* optimality proof,
cycle checking

Alan Mackworth

UBC CS 322 – Search 5

January 18, 2013

Textbook § 3.6 and 3.7.1

Lecture Overview

•  Recap

•  Admissibility of A*

•  Cycle checking and multiple path pruning

Slide 2

Search heuristics
Def.: A search heuristic h(n) is an estimate of the cost of

the optimal (cheapest) path from node n to a goal node.

•  Think of h(n) as only using readily obtainable
(easy to compute) information about a node.

•  h can be extended to paths:

h(〈n0,…,nk〉)=h(nk)

Def.: A search heuristic h(n) is admissible if it never
overestimates the actual cost of the cheapest path from a
node to the goal

How to Construct a Heuristic

Slide 4

Identify relaxed version of the problem:
•  where one or more constraints have been dropped
•  problem with fewer restrictions on the actions

Result:
 The cost of an optimal solution to the relaxed
problem is an admissible heuristic for the original
problem.

 Because it is always weakly less costly to solve a
less constrained problem!

Example 2
 Search problem: robot has to find a route from start

to goal location on a grid with obstacles
Actions: move up, down, left, right from tile to tile
Cost : number of moves
Possible h(n)? Manhattan distance (L1 norm)

between two points = sum of the (absolute)
difference of their coordinates =|x2-x1| + |y2-y1|

1 2 3 4 5 6

G

4

3

2

1

Example 2
 Search problem: robot has to find a route from start

to goal location on a grid with obstacles
Actions: move up, down, left, right from tile to tile
Cost : number of moves
Possible h(n)? Would the Euclidean distance (straight

line distance, L2 norm) be an admissible heuristic?

1 2 3 4 5 6

G

4

3

2

1

Would the Euclidean distance (straight line distance) be an
admissible heuristic for the robot grid problem?

It is an admissible search heuristic

It is not a suitable search heuristic for this
problem

It is a search heuristic, but it is not admissible

•  A* search takes into account both
•  the cost of the path to a node c(p)
•  the heuristic value of that path h(p).

•  Let f(p) = c(p) + h(p).
•  estimate of the cost of a path from the start to a goal

via p.

•  A* always chooses the path on the frontier with the lowest
estimated distance from the start to a goal node
constrained to go via that path.

c(p) h(p)
f(p)

A* Search

Lecture Overview

•  Recap of Lecture 8

•  Admissibility of A*

•  Cycle checking and multiple path pruning

Slide 9

•  A* is complete (finds a solution, if one exists) and
optimal (finds the optimal path to a goal) if:

•  the branching factor is finite
•  arc costs are
•  h(n) is admissible -> an underestimate of the length of the

shortest path from n to a goal node.

•  This property of A* is called admissibility of A*

Admissibility of A*

Slide 10

> ε > 0

•  It halts (does not get caught in cycles) because:
-  Let fmin be the cost of the (an) optimal solution path s

(unknown but finite if there exists a solution)
-  Each sub-path p of s has cost f(p) ≤ fmin

-  Due to admissibility (exercise: prove this at home)

-  Let cmin = >0 be the minimal cost of any arc
-  All paths with length > fmin / cmin have cost > fmin

-  A* expands path on the frontier with minimal f(n)
-  Always a prefix of s on the frontier
-  Only expands paths p with f(p) ≤ fmin
-  Terminates when expanding s

See how it works on the “misleading heuristic”
problem in AIspace:

 Compare A* with best-first.

Why is A* admissible: complete

ε

•  Let p* be the optimal solution path, with cost c*.

•  Let p’ be a suboptimal solution path. That is c(p’) > c*.

We are going to show that any sub-path p” of p* on the
frontier will be expanded before p’.

Therefore, A* will find p* before p’

Why is A* admissible: optimal

p”

p*

p’

•  Let p* be the optimal solution path, with cost f(p*).

•  Let p’ be a suboptimal solution path. That is
 c(p’) > f(p*).
•  Let p” be a sub-path of p* on the frontier.
•  We know that f(p*) < f(p’) because at a goal node
 f(goal) = c(goal)
•  And f(p”) <= f(p*) because h(.) is admissible
•  Thus f(p”) < f(p’)
•  Any sub-path of the optimal solution path will be

expanded before p’

Why is A* admissible: optimal

p’

p*

p”

•  In fact, we can prove something even stronger about A*
(when it is admissible)

•  A* is optimally efficient among the algorithms that
extend the search path from the initial state.

•  It finds the goal with the minimum # of path expansions

Analysis of A*

Why A* is Optimally Efficient

•  No other optimal algorithm is guaranteed to expand
fewer paths than A*

•  This is because any algorithm that does not expand
every node with f(n) < f* risks missing the optimal
solution.

Effect of Search Heuristic
•  A search heuristic that is a better approximation to the

actual cost reduces the number of nodes expanded by A*
•  Example: 8-puzzle

–  tiles can move (jump) anywhere:
 h1(n) : number of tiles that are out of place

–  tiles can move to any adjacent square
 h2(n) : sum of number of squares that separate each tile from its
 correct position

•  average number of paths expanded:
 (d = depth of the solution)
•  d=12 BFS: 3,644,035 paths

A*(h1) : 227 paths expanded
A*(h2) : 73 paths expanded

•  d=24 BFS = too many paths
A*(h1) : 39,135 paths expanded

 A*(h2) : 1,641 paths expanded

Time Space Complexity of A*

•  Time complexity is the heuristic could be completely
uninformative and the edge costs could all be the same, meaning that
A* does the same thing as BFS.

•  Space complexity is like BFS, A* maintains a frontier
which grows with the size of the tree.

O(bm)

O(bm)

Learning Goals for today’s class

•  Formally prove A* optimality

•  Define optimally efficient

•  Construct admissible heuristics for specific problems.

Lecture Overview

•  Recap of Lecture 8

•  Admissibility of A*

•  Cycle checking and multiple path pruning

Slide 19

Cycle Checking

•  You can prune a node n that is on the path from the
start node to n.

•  This pruning cannot remove an optimal solution =>
cycle check

•  What is the computational cost of cycle checking?

Computational Cost of Cycle Checking?

None of the above

Linear time in the path length: before adding a new node
to the currently selected path, check that the node is not
already part of the path

Constant time: set a bit to 1 when a node is selected for
expansion, and never expand a node with a bit set to 1

It depends on the algorithm

See P&M text, Section 3.7.1, p.93

