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Lecture Overview 

•  Recap 

•  Admissibility of A* 

•  Cycle checking and multiple path pruning 
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Search heuristics 
Def.:  A search heuristic h(n) is an estimate of the cost of 

the optimal (cheapest) path  from node n to a goal node. 

•  Think of h(n) as only using readily obtainable 
(easy to compute) information about a node. 

•  h can be extended to paths:   
 

h(〈n0,…,nk〉)=h(nk) 

  

Def.:  A search heuristic h(n) is admissible if it never 
overestimates the actual cost of the cheapest path from a 
node to the goal 



How to Construct a Heuristic 
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Identify relaxed version of the problem:  
•  where one or more constraints have been dropped 
•  problem with fewer restrictions on the actions 

Result:  
 The cost of an optimal solution to the relaxed 
problem is an admissible heuristic for the original 
problem.  

 Because it is always weakly less costly to solve a 
less constrained problem! 



Example 2 
 Search problem: robot has to find a route from start 

to goal location on a grid with obstacles 
Actions: move up, down, left, right from tile to tile 
Cost : number of moves 
Possible h(n)? Manhattan distance (L1 norm) 

between two points = sum of the (absolute) 
difference of their coordinates =|x2-x1| + |y2-y1| 
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Example 2 
 Search problem: robot has to find a route from start 

to goal location on a grid with obstacles 
Actions: move up, down, left, right from tile to tile 
Cost : number of moves 
Possible h(n)? Would the Euclidean distance (straight 

line distance, L2 norm) be an admissible heuristic? 
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Would the Euclidean distance (straight line distance) be an 
admissible heuristic for the robot grid problem? 

It is an admissible  search heuristic 

It is not a suitable search heuristic for this 
problem 

It is a search heuristic, but it is not admissible 



 

•  A* search takes into account both  
•  the cost of the path to a node c(p)  
•  the heuristic value of that path h(p). 

•  Let f(p) = c(p) + h(p).  
•  estimate of the cost of a path from the start to a goal 

via p. 

 

•  A* always chooses the path on the frontier with the lowest 
estimated distance from the start to a goal node 
constrained to go via that path.  

c(p) h(p) 
f(p) 

A* Search 



Lecture Overview 

•  Recap of Lecture 8 

•  Admissibility of A* 

•  Cycle checking and multiple path pruning 
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•  A* is complete (finds a  solution, if one exists) and  
optimal (finds the optimal path to a goal) if: 

•  the branching factor is finite 
•  arc costs are 
•   h(n) is admissible -> an underestimate of the length of the 

shortest path from n to a goal node. 

•  This property of A* is called admissibility of A* 

Admissibility of A* 
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> ε > 0



 

•  It halts (does not get caught in cycles) because:  
-  Let fmin be the cost of the (an) optimal solution path s 

(unknown but finite if there exists a solution) 
-  Each sub-path p of s has cost f(p) ≤ fmin 

-  Due to admissibility (exercise: prove this at home) 

-  Let    cmin  =    >0 be the minimal cost of any arc 
-  All paths with length > fmin / cmin have cost > fmin  

-  A* expands path on the frontier with minimal f(n) 
-  Always a prefix of s on the frontier 
-  Only expands paths p with f(p) ≤ fmin 
-  Terminates when expanding s 

 

See how it works on the “misleading heuristic” 
problem in AIspace:  

   Compare A* with best-first. 

Why is A* admissible: complete 

ε



 
•  Let p* be the optimal solution path, with cost c*.  

•  Let p’ be a suboptimal solution path. That is c(p’) > c*. 

We are going to show that any sub-path p” of p*  on the 
frontier will be expanded before p’. 

Therefore, A* will find p*  before p’  

 

Why is A* admissible: optimal 

p” 

p* 

p’ 



 
•  Let p* be the optimal solution path, with cost f(p*).  

•  Let p’ be a suboptimal solution path. That is  
       c(p’) > f(p*). 
•  Let p” be a sub-path of p* on the frontier. 
•  We know that f(p*) < f(p’) because at a goal node  
       f(goal) = c(goal) 
•  And f(p”) <= f(p*) because h(.) is admissible 
•  Thus f(p”) < f(p’) 
•  Any sub-path of the optimal solution path will be 

expanded before p’ 

        

Why is A* admissible: optimal 

p’ 

p* 

p” 



 

•  In fact, we can prove something even stronger about A* 
(when it is admissible) 

•  A* is optimally efficient among the algorithms that 
extend the search path from the initial state.  

•  It finds the goal with the minimum # of path expansions 

Analysis of A* 



 

Why A* is Optimally Efficient 

•  No other optimal algorithm is guaranteed to expand 
fewer paths than A* 

•  This is because any algorithm that does not expand 
every node with f(n) < f* risks missing the optimal 
solution. 

 



Effect of Search Heuristic 
•  A search heuristic that is a better approximation to the 

actual cost reduces the number of nodes expanded by A* 
•  Example: 8-puzzle 

–  tiles can move (jump) anywhere: 
 h1(n) : number of tiles that are out of place 

–  tiles can move to any adjacent square  
 h2(n) : sum of number of squares that separate each tile from its 
  correct position 

•  average number of paths expanded:  
    (d = depth of the solution) 
•  d=12       BFS: 3,644,035 paths 

A*(h1) : 227 paths expanded 
A*(h2) : 73 paths expanded 

•  d=24       BFS = too many paths  
A*(h1) : 39,135 paths expanded  

     A*(h2) : 1,641 paths expanded 



Time Space Complexity of A* 
 

•  Time complexity is      the heuristic could be completely 
uninformative and the edge costs could all be the same, meaning that 
A* does the same thing as BFS. 

•  Space complexity is          like BFS, A* maintains a frontier 
which grows with the size of the tree. 

O(bm )

O(bm )



Learning Goals for today’s class 

•   Formally prove A* optimality 

•   Define optimally efficient 

•   Construct admissible heuristics for specific problems.  

 



Lecture Overview 

•  Recap of Lecture 8 

•  Admissibility of A* 

•  Cycle checking and multiple path pruning 
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Cycle Checking 

•  You can prune a node n that is on the path from the 
start node to n.  

•  This pruning cannot remove an optimal solution => 
cycle check 

•  What is the computational cost of cycle checking? 



Computational Cost of Cycle Checking? 

None of the above 

Linear time in the path length: before adding a new node 
to the currently selected path, check that the node is not 
already part of the path 

Constant time: set a bit to 1 when a node is selected for 
expansion, and never expand a node with a bit set to 1   

It depends on the algorithm 

See  P&M text, Section 3.7.1, p.93 


