A* optimality proof,
cycle checking
Alan Mackworth

UBC CS 322 - Search 5
January 18, 2013

Textbook § 3.6 and 3.7.1

Lecture Overview

Recap
« Admissibility of A*

« Cycle checking and multiple path pruning

Slide 2

Search heuristics

Def.: A search heuristic A(n) is an estimate of the cost of
the optimal (cheapest) path from node n to a goal node.

e Think of A(n) as only using readily obtainable
(easy to compute) information about a node.

e h can be extended to paths:

h({ngy,...,n))=h(n,)

Def.: A search heuristic A(n) is admissible if it never
overestimates the actual cost of the cheapest path from a
node to the goal

How to Construct a Heuristic

Identify relaxed version of the problem:
e where one or more constraints have been dropped
e problem with fewer restrictions on the actions

Result:

The cost of an optimal solution to the relaxed

problem is an admissible heuristic for the original
problem.

Because it is always weakly less costly to solve a
less constrained problem!

Slide 4

Example 2

Search problem: robot has to find a route from start
to goal location on a grid with obstacles

Actions: move up, down, left, right from tile to tile

Cost : number of moves

Possible h(n)? Manhattan distance (L, norm)

between two points = sum of the (absolute)
difference of their coordinates =[x,-x;[+ [y>-y,/

Example 2

Search problem: robot has to find a route from start
to goal location on a grid with obstacles

Actions: move up, down, left, right from tile to tile
Cost : number of moves

Possible h(n)? Would the Euclidean distance (straight
line distance, L, norm) be an admissible heuristic?

Would the Euclidean distance (straight line distance) be an
admissible heuristic for the robot grid problem?

It 1s an admissible search heuristic

It 1s a search heuristic, but it 1S not admissible

It 1s not a suitable search heuristic for this
problem

A* Search

e A* search takes into account both
e the cost of the path to a node ¢(p)
e the heuristic value of that path A(p).

o Let f(p) = c(p) + h(p).

e estimate of the cost of a path from the start to a goal
via p.

actual estimate
start —> n —> goal
/ ——) —

c) _ hip))

-~

J(p)

e A* always chooses the path on the frontier with the lowest
estimated distance from the start to a goal node
constrained to go via that path.

Lecture Overview

* Recap of Lecture 8
Admissibility of A*

« Cycle checking and multiple path pruning

Slide 9

Admissibility of A*

« A*is complete (finds a solution, if one exists) and
optimal (finds the optimal path to a goal) if:

* the branching factor is finite
« arccostsare>¢€>0

* h(n) is admissible -> an underestimate of the length of the
shortest path from n to a goal node.

« This property of A* is called admissibility of A*

Slide 10

Why is A* admissible: complete

e It halts (does not get caught in cycles) because:

- Let f,;, be the cost of the (an) optimal solution path s
(unknown but finite if there exists a solution)

- Each sub-path p of s has cost f(p) < f.,,
- Due to admissibility (exercise: prove this at home)

- Let c¢,;, = € >0 be the minimal cost of any arc
- All paths with length > f.,/cnin have cost > f

- A* expands path on the frontier with minimal f(n)
- Always a prefix of s on the frontier
- Only expands paths p with f(p) < f.,
- Terminates when expanding s

See how it works on the “misleading heuristic”

problem in Alspace: p@@@
Compare A* with best-first.

Why is A* admissible: optimal

« Let p* be the optimal solution path, with cost c™.

*

« Let p’ be a suboptimal solution path. Thatis c(p’) > c*

We are going to show that any sub-path p” of p* on the
frontier will be expanded before p’.

Therefore, A* will find p* before p’

. O

Why is A* admissible: optimal
Let p* be the optimal solution path, with cost f(p*).

Let p” be a suboptimal solution path. That is
c(p’) > f(p*).

Let p ” be a sub-path of p* on the frontier.

We know that f(p*) < f(p’) because at a goal node
f(goal) = c(goal)

And f(p”) <= f(p*) because h(.) is admissible

Thus f(p”) <f(p")

Any sub-path of the optimal solution path will be 0
expanded before p’ p

O

O
p*

Analysis of A*

In fact, we can prove something even stronger about A*
(when it is admissible)

A* is optimally efficient among the algorithms that
extend the search path from the initial state.

It finds the goal with the minimum # of path expansions

Why A* is Optimally Efficient

* No other optimal algorithm is guaranteed to expand
fewer paths than A*

« This is because any algorithm that does not expand
every node with f(n) < f* risks missing the optimal
solution.

Effect of Search Heuristic

A search heuristic that is a better approximation to the
actual cost reduces the number of nodes expanded by A*

Example: 8-puzzle
— tiles can move (jump) anywhere:
h,(n) : number of tiles that are out of place

— tiles can move to any adjacent square

h,(n) : sum of number of squares that separate each tile from its
correct position

average number of paths expanded:
(d = depth of the solution)

a=12 BFS: 3,644,035 paths 7l 2 || 4 1
A’(h,) : 227 paths expanded

A’(h,) : 73 paths expanded 5 6 3 ||| 2
d=24 BFS = too many paths

A’(h,) : 39,135 paths expanded 8 ||| 3 || 1 6 ||| 7
A’(h,) : 1,641 paths expanded N S

Time Space Complexity of A

* Time complexity is O(b™) the heuristic could be completely
uninformative and the edge costs could all be the same, meaning that
A" does the same thing as BFS.

e Space complexity is O(bm) like BFS, A" maintains a frontier
which grows with the size of the tree.

Learning Goals for today’s class

« Formally prove A* optimality

« Define optimally efficient

« Construct admissible heuristics for specific problems.

Lecture Overview

* Recap of Lecture 8
« Admissibility of A*

Cycle checking and multiple path pruning

Slide 19

Cycle Checking

You can prune a node n that is on the path from the
start node to n.

This pruning cannot remove an optimal solution =>
cycle check

What is the computational cost of cycle checking?

Computational Cost of Cycle Checking?

Constant time: set a bit to 1 when a node is selected for
expansion, and never expand a node with a bit set to 1

Linear time in the path length: before adding a new node
to the currently selected path, check that the node is not
already part of the path

It depends on the algorithm

None of the above

See P&M text, Section 3.7.1, p.93

