
Heuristic Search: A*

1

Alan Mackworth

UBC CS 322 – Search 4

January 16, 2013

Textbook §3.6

Lecture Overview

•  Recap

•  Search heuristics: admissibility and examples

•  Recap of BestFS

•  Heuristic search: A*

2

Example for search with costs:

finding routes

3

Lowest-Cost First Search (LCFS)
•  Expand the path with the lowest cost

–  Generalization of Breadth-First Search
–  Implemented as priority queue of cost values

•  Only complete for strictly positive arc costs
-  Otherwise: a cycle with zero cost <= 0 could be followed forever

•  Only optimal for non-negative arc costs
-  Otherwise: a path that initially looks high-cost could end up getting

a `refund’

•  Time and space complexity:
-  E.g., uniform arc costs: identical to Breadth-First Search

Slide 4

O(bm)

Search heuristics

Slide 5

Def.:
A search heuristic h(n) is an estimate of the cost of the optimal
(cheapest) path from node n to a goal node.

Estimate: h(n1)

5

Estimate: h(n2)

Estimate: h(n3)
n3

n2

n1

Lecture Overview

•  Recap

•  Search heuristics: admissibility and examples

•  Recap of BestFS

•  Heuristic search: A*

6

Last lecture’s example: finding routes

7

•  What could we use as h(n)? E.g., the straight-line distance
between source and goal node

Admissibility of a heuristic

8

Def.:
Let c(n) denote the cost of the optimal path from node n to any

goal node. A search heuristic h(n) is called
admissible if h(n) ≤ c(n) for all nodes n, i.e. if for all nodes it
is an underestimate of the cost to any goal.

•  Example: is the
straight-line distance
admissible?

- Yes! The shortest
distance between
two points is a line.

YES NO

Admissibility of a heuristic

9

Def.:
Let c(n) denote the cost of the optimal path from node n to any

goal node. A search heuristic h(n) is called
admissible if h(n) ≤ c(n) for all nodes n, i.e. if for all nodes it
is an underestimate of the cost to any goal.

Another example:
the goal is Urzizeni (red
box), but all we know is the
straight-line distances to
Bucharest (green box)

YES NO

•  Possible h(n) = sld(n, Bucharest) + cost(Bucharest, Urzineni)
•  Admissible?

Example 2: grid world
•  Search problem: robot has to find a route from start

 to goal location G on a grid with obstacles
•  Actions: move up, down, left, right from tile to tile
•  Cost : number of moves
•  Possible h(n)?

-  Manhattan distance (L1 distance) to the goal G:
 sum of the (absolute) difference of their coordinates

-  Admissible?

10 1 2 3 4 5 6

G

4

3

2

1

YES NO

Example 3: Eight Puzzle

11

•  One possible h(n):
 Number of Misplaced Tiles

YES NO •  Is this heuristic admissible?

Example 3: Eight Puzzle

12

•  Another possible h(n):
Sum of number of moves between each tile's current
position and its goal position

YES NO •  Is this heuristic admissible?

How to Construct an Admissible Heuristic

13

•  Identify relaxed version of the problem:
-  where one or more constraints have been dropped
-  problem with fewer restrictions on the actions

•  Grid world: the agent can move through walls
•  Driver: the agent can move straight
•  8 puzzle:

-  “number of misplaced tiles”:
tiles can move everywhere and occupy same spot as others

-  “sum of moves between current and goal position”:
 tiles can occupy same spot as others

•  Why does this lead to an admissible heuristic?
- The problem only gets easier!

Lecture Overview

•  Recap

•  Search heuristics: admissibility and examples

•  Recap of BestFS

•  Heuristic search: A*

14

•  A* search takes into account both
-  the cost of the path to a node c(p)
-  the heuristic value of that path h(p).

•  Let f(p) = c(p) + h(p).
-  f(p) is an estimate of the cost of a path from the start to a goal

via p.

A* Search

c(p) h(p)

f(p)

15

•  A* combines elements of which two search algorithms?

•  It treats the frontier as a priority queue ordered by f(n)

•  It always chooses the path on the frontier with the lowest
estimated distance from the start to a goal node
constrained to go via that path.

•  Let’s see it in action:

A* Search Algorithm

16

Least cost first Breadth-first Best-first Depth-first

A* in Infinite Mario Bros

17

http://www.youtube.com/watch?v=0s3d1LfjWCI
http://www.youtube.com/watch?v=DlkMs4ZHHr8

 Analysis of A*

18

•  What is time complexity of A* in terms of m and b ?

•  E.g., uniform costs and
constant heuristic h(n) = 0

- Behaves exactly like BFS

Def.: The time complexity of a search algorithm is
 the worst-case amount of time it will take to run,
 expressed in terms of

-  maximum path length m
-  maximum forward branching factor b.

O(b+m) O(bm) O(mb) O(bm)

•  A* is complete (finds a solution, if one exists) and
optimal (finds the optimal path to a goal) if:
-  the branching factor is finite
-  arc costs are > >0
-  h(n) is admissible -> an underestimate of the length of the

shortest path from n to a goal node.

•  This property of A* is called admissibility of A*

A* completeness and optimality

19

ε

•  Construct heuristic functions for specific search problems
Define/read/write/trace/debug different search algorithms
- With/without cost
-  Informed/Uninformed

•  Formally prove A* optimality (continued next class)

20

Learning Goals for today’s class

