
Uninformed Search Strategies 

Alan Mackworth 
 

UBC CS 322 – Search 2 

January 11, 2013 
 

 

Textbook §3.5 
 

1 



 
Today’s Lecture 

  
•  Lecture 4 (2-Search1) Recap 

•  Uninformed search + criteria to compare search algorithms 

-  Depth first 

-  Breadth first 

 

 

2 



Recap 

3 

	

 

•  Search is a key computational  
mechanism in many AI agents  

•  We will study the basic principles of search on the simple 
deterministic goal-driven search agent model 

•  Generic search approach:  
-  Define a search space graph 

-  Initialize the frontier with an empty path 

-  incrementally expand frontier until goal state is reached 

•  Frontier: 
-  The set of paths which could be explored next 

 
•  The way in which the frontier is expanded defines the 

search strategy 



Search Space: example 

 
•  Operators –left, right, suck  

•  Successor states in the graph describe the effect of each 
action applied to a given state  

•  Possible Goal – no dirt 
  

4 



 

Problem Solving by Graph Searching  

5 



 

Input: a graph 
            a set of start nodes 
            Boolean procedure goal(n) that tests if n is a goal node 
frontier:= [<g>: g is a goal node];  
While frontier is not empty: 
      select and remove path  <no,….,nk> from frontier;  
      If goal(nk)  
              return <no,….,nk>;  

Find a neighbor n of nk 
        add <n> to frontier; 
end 

Bogus version of Generic Search Algorithm 

•  There are several bugs in this version here:  
help me find them!  

6 



 

Input: a graph 
            a set of start nodes 
            Boolean procedure goal(n) that tests if n is a goal node 
frontier:= [<g>: g is a goal node];  
While frontier is not empty: 
      select and remove path  <no,….,nk> from frontier;  
      If goal(nk)  
              return <no,….,nk>;  

Find a neighbor n of nk 
        add <n> to frontier; 
end 

Bogus version of Generic Search Algorithm 

•  Start at the start node(s) 
•  Add all neighbours of nk  to the frontier 
•  Add path(s) to frontier, NOT just the node(s) 

7 



 

Input: a graph 
            a set of start nodes 

            Boolean procedure goal(n) testing if n is a goal node 
 

frontier:= [<s>: s is a start node];  

While frontier is not empty: 

      select and remove path <no,….,nk> from frontier;  
      If goal(nk)  

      Then return <no,….,nk>;  
Else 

        For every neighbor n of nk,  

                     add <no,….,nk, n> to frontier; 

end 

Generic Search Algorithm 

8 



 
Today’s Lecture 

  
•  Lecture 4 Recap 

•  Uninformed search + criteria to compare search algorithms 

-  Depth-first 

-  Breadth-first 

 

 

9 



Depth-first search (DFS) 

10 

•  Frontier: shaded nodes 



Depth-first search (DFS) 

11 

•  Frontier: shaded nodes 
•  Which node will be expanded next? 

(expand = “remove path ending at node from frontier & put its 
successors on”) 

  



Depth-first search (DFS) 

12 

•  Say, node in red box is a goal 
•  How many more nodes will be expanded? 

4 1  3 2 



Depth-first search (DFS) 

13 

•  Say, node in red box is a goal 
•  How many more nodes will be expanded? 

•  3: you only return once the goal is being expanded! 

•  Not when a goal is put onto the frontier! 



Input: a graph 
            a set of start nodes 

            Boolean procedure goal(n)  
       testing if n is a goal node 

frontier:= [<s>: s is a start node];  
While frontier is not empty: 

      select and remove path <no,….,nk> from frontier;  

      If goal(nk)  

        Then return <no,….,nk>;  

Else 

        For every neighbor n of nk,  

                     add <no,….,nk, n> to frontier; 

end 

 

 
DFS as an instantiation of the 

Generic Search Algorithm 

14 



Input: a graph 
            a set of start nodes 

            Boolean procedure goal(n)  
       testing if n is a goal node 

frontier:= [<s>: s is a start node];  
While frontier is not empty: 

      select and remove path <no,….,nk> from frontier;  

      If goal(nk)  

        Then return <no,….,nk>;  

Else 

        For every neighbor n of nk,  

                     add <no,….,nk, n> to frontier; 

end 

 

 
DFS as an instantiation of the 

Generic Search Algorithm 

15 

In DFS, the frontier is a 
last-in-first-out stack 



 Analysis of DFS 

16 

Def. : A search algorithm is complete  if 
        whenever there is at least one solution, the      
        algorithm is guaranteed to find it within a finite     
        amount of time. 
 

Is DFS complete? Yes No 



 Analysis of DFS 

17 

Is DFS optimal? Yes No 

Def.: A search algorithm is optimal if 
        when it finds a solution, it is the best one 

•  E.g., goal nodes: red boxes 



 Analysis of DFS 

18 

•  What is DFS’s time complexity, in terms of m and b ? 

•  E.g., single goal node: red box 

Def.:  The time complexity  of a search algorithm is  
         the worst-case amount of time it will take to run,  
         expressed in terms of  

-  maximum path length m  
-  maximum forward branching factor b. 

O(b+m) O(bm) O(bm) O(mb) 



 Analysis of DFS 

19 

•  What is DFS’s time complexity, in terms of m and b ? 

•  E.g., single goal node: red box 

Def.:  The time complexity  of a search algorithm is  
         the worst-case amount of time it will take to run,  
         expressed in terms of  

-  maximum path length m  
-  maximum forward branching factor b. 

O(bm) 



 Analysis of DFS 

20 

Def.: The space complexity of a search algorithm is the  
         worst-case amount of memory that the algorithm will use   

     (i.e., the maximal number of nodes on the frontier),  
     expressed in terms of  

-  maximum path length m  
-  maximum forward branching factor b. 

 

O(b+m) O(bm) O(bm) O(mb) 

•  What is DFS’s space complexity, in terms of m and b ? 

 



 Analysis of DFS 

21 

Def.: The space complexity of a search algorithm is the  
         worst-case amount of memory that the algorithm will use   

     (i.e., the maximal number of nodes on the frontier),  
     expressed in terms of  

-  maximum path length m  
-  maximum forward branching factor b. 

 

O(b+m) O(bm) O(bm) O(mb) 

•  What is DFS’s space complexity, in terms of m and b ? 

-  O(bm) 
-  The longest possible path is m, and for every  

node in that path must maintain a fringe of size b 



 
Today’s Lecture 

  
•  Lecture 4 Recap 

•  Uninformed search + criteria to compare search algorithms 

-  Depth first 

-  Breadth first 

 

 

22 



Breadth-first search (BFS) 

23 



Input: a graph 
            a set of start nodes 

            Boolean procedure goal(n)  
       testing if n is a goal node 

frontier:= [<s>: s is a start node];  
While frontier is not empty: 

      select and remove path <no,….,nk> from frontier;  

      If goal(nk)  

        Then return <no,….,nk>;  

Else 

        For every neighbor n of nk,  

                     add <no,….,nk, n> to frontier; 

end 

 

 
BFS as an instantiation of the 

Generic Search Algorithm 

24 



Input: a graph 
            a set of start nodes 

            Boolean procedure goal(n)  
       testing if n is a goal node 

frontier:= [<s>: s is a start node];  
While frontier is not empty: 

      select and remove path <no,….,nk> from frontier;  

      If goal(nk)  

        Then return <no,….,nk>;  

Else 

        For every neighbor n of nk,  

                     add <no,….,nk, n> to frontier; 

end 

 

 
BFS as an instantiation of the 

Generic Search Algorithm 

25 

In BFS, the frontier is a 
first-in-first-out queue 



 Analysis of BFS 

26 

Def. : A search algorithm is complete  if 
        whenever there is at least one solution, the      
        algorithm is guaranteed to find it within a finite     
        amount of time. 
 

Is BFS complete? Yes No 



 Analysis of BFS 

27 

Def. : A search algorithm is complete  if 
        whenever there is at least one solution, the      
        algorithm is guaranteed to find it within a finite     
        amount of time. 
 

Is BFS complete? Yes 

•  Proof sketch? 



 Analysis of BFS 

28 

Is BFS optimal? Yes No 

Def.: A search algorithm is optimal if 
        when it finds a solution, it is the best one 



 Analysis of BFS 

29 

Is BFS optimal? Yes 

Def.: A search algorithm is optimal if 
        when it finds a solution, it is the best one 

•  Proof sketch? 



 Analysis of BFS 

30 

•  What is BFS’s time complexity, in terms of m and b ? 

•  E.g., single goal node: red box 

Def.:  The time complexity  of a search algorithm is  
         the worst-case amount of time it will take to run,  
         expressed in terms of  

-  maximum path length m  
-  maximum forward branching factor b. 

O(b+m) O(bm) O(bm) O(mb) 



 Analysis of BFS 

31 

•  What is BFS’s time complexity, in terms of m and b ? 

•  E.g., single goal node: red box 

Def.:  The time complexity  of a search algorithm is  
         the worst-case amount of time it will take to run,  
         expressed in terms of  

-  maximum path length m  
-  maximum forward branching factor b. 

O(bm) 



 Analysis of BFS 

32 

Def.: The space complexity of a search algorithm is the  
         worst case amount of memory that the algorithm will use   

     (i.e., the maximal number of nodes on the frontier),  
     expressed in terms of  

-  maximum path length m  
-  maximum forward branching factor b. 

 

O(b+m) O(bm) O(bm) O(mb) 
•  What is BFS’s space complexity, in terms of m and b ? 

-  How many nodes at depth m? 



 Analysis of BFS 

33 

Def.: The space complexity of a search algorithm is the  
         worst case amount of memory that the algorithm will use   

     (i.e., the maximal number of nodes on the frontier),  
     expressed in terms of  

-  maximum path length m  
-  maximum forward branching factor b. 

 

O(b+m) O(bm) O(bm) O(mb) 
•  What is BFS’s space complexity, in terms of m and b ? 

•  How many nodes at depth m? 
O(bm) 



 

When to use BFS vs. DFS? 

34 

•  The search graph has cycles or is infinite 

•  We need the shortest path to a solution 

•  There are only solutions at great depth 

•  There are some solutions at shallow depth: the other one 

•  No way the search graph will fit into memory 

BFS DFS 

BFS DFS 

BFS DFS 

BFS DFS 



Real Example: Solving Sudoku 

35 

 
 
•  E.g. start state on the left 

•  Operators:  
fill in an allowed number 

•  Solution: all numbers filled in, 
with constraints satisfied 

•  Which method would you 
rather use? 

 

 

 

BFS DFS 



Real Example: Eight Puzzle. DFS or BFS? 

36 

•  Which method would you rather use? 

 

BFS DFS 



•  Apply basic properties of search algorithms:  
-  completeness 
-  optimality 
-  time and space complexity of search algorithms 

•  Select the most appropriate search algorithms for specific 
problems.  
–  Depth-First Search  vs. Breadth-First Search 

Learning Goals for today’s class 

37 



Coming up … 

 

•  Read Section 3.6, Heuristic Search 

38 

 

 


