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Abstract

There have been important recent advances in object recog-
nition through the matching of invariant local image fea-
tures. However, the existing approaches are based on
matching to individual training images. This paper presents
a method for combining multiple images of a 3D object into
a single model representation. This provides for recogni-
tion of 3D objects from any viewpoint, the generalization
of models to non-rigid changes, and improved robustness
through the combination of features acquired under a range
of imaging conditions. The decision of whether to cluster
a training image into an existing view representation or to
treat it as a new view is based on the geometric accuracy
of the match to previous model views. A new probabilis-
tic model is developed to reduce the false positive matches
that would otherwise arise due to loosened geometric con-
straints on matching 3D and non-rigid models. A system
has been developed based on these approaches that is able
to robustly recognize 3D objects in cluttered natural images
in sub-second times.

1. Introduction

There has recently been considerable progress in develop-
ing real-world object recognition systems based on the use
of invariant local features [12, 6]. The local features are of
intermediate complexity, which means that they are distinc-
tive enough to determine likely matches in a large database
of features but are sufficiently local to be insensitive to clut-
ter and occlusion. Such features can be densely sampled
over the image, clustered with a Hough transform, and veri-
fied with model fitting, leading to efficient and robust recog-
nition in complex real-world scenes.

The existing work in this area has been based upon tak-
ing single training images of objects to be recognized and
storing their features in a database for future recognition.
The local feature approach can be made invariant to image

rotation, translation, and scaling, but can only tolerate mod-
erate object rotation in depth (typically about 20 degrees in
each direction from the training view). One approach to
generalizing to full 3D recognition might be to simply store
training images acquired around the view sphere and select
the best match. However, this means that new views may
have features matching any of several nearby training im-
ages without any ability to integrate the information. As
importantly, robustness can be greatly improved by com-
bining features from multiple images taken under differing
conditions of illumination or object variation, so that each
view model contains many more of the features likely to be
seen in a new image.

This paper describes an approach to combining features
from multiple views to provide for full 3D object recogni-
tion and better modeling of object and imaging variations.
The feature combinations are performed by measuring the
closeness of the geometric fit to previous views, and views
that are similar are combined into view clusters. For nearby
views that are not combined, matching features are linked
across the views so that a match in one view is automati-
cally propagated as a potential match in neighboring views.
The result is that additional training images continue to con-
tribute to the robustness of the system by modeling fea-
ture variation without leading to a continuous increase in
the number of view models. The goal is to eventually use
this approach for on-line learning in which object models
are continuously updated and refined as recognition is per-
formed.

Another possible approach to the problem of 3D object
recognition would be to solve for the explicit 3D structure
of the object from matches between multiple views. This
would have the advantage of leading to a more accurate fit
between a rigid model and the image, leading to more ac-
curate determination of pose and more reliable verification.
However, the approach given in this paper has the advan-
tage of not making rigidity assumptions, and therefore be-
ing able to model non-rigid object deformations. It also is
able to perform recognition starting with just single train-
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ing images, whereas a 3D model approach would likely re-
quire at least several images for an accurate 3D solution. It
is likely that the ultimate performance would be achieved
through a combination of these methods, but we show that
view clustering is sufficient in many cases.

The view clustering approach allows for substantial vari-
ation in feature position during matching to account for 3D
view change as well as non-rigid object variation. One con-
sequence is that the final least-squares solution for model
parameters is less effective at discarding false positive sets
of feature matches than would be the case for a tightly
constrained solution. Therefore, this paper develops a
new probabilistic model for determining valid instances
of recognition that has proved successful for these less-
constrained models.

2. Related research

There is a long history of research in object recognition
that has modeled 3D objects using multiple 2D views.
This includes the use of aspect graphs [4], which represent
topologically distinct views of image contours; eigenspace
matching [8], which measures distance from a basis set of
eigenvalue images; and histogram matching [11, 14] which
summarize image appearance with histograms of selected
properties. The work in this paper follows most closely
from [10], in which the appearance of a set of images was
modeled as a probability distribution, which in turn was rep-
resented as a conjunction of simpler distributions of inde-
pendent features. This paper uses a different type of feature
that provides more specific matches to a model database,
which allows for a simpler and much more efficient model
representation.

Another approach has been to use linear interpolation
between edge contours that have been matched between
3 views under an orthographic viewing assumption [17].
While this can produce more accurate geometric constraints
for edge contours of rigid objects, it cannot handle non-rigid
objects and does not incorporate the many features that do
not match between all 3 views.

3. Feature detection and matching

To allow for efficient matching between models and images,
all images are first represented as a set of SIFT (Scale In-
variant Feature Transform) features, which have been de-
scribed in detail in earlier work [6]. Each SIFT feature rep-
resents a vector of local image measurements in a manner
that is invariant to image translation, scaling, and rotation,
and partially invariant to changes in illumination and local
image deformations. A typical image will produce several
thousand overlapping features at a wide range of scales that

form a redundant representation of the original image. The
local and multi-scale nature of the features makes them in-
sensitive to noise, clutter and occlusion, while the detailed
local image properties represented by the features makes
them highly selective for matching to large databases of pre-
viously viewed features.

The SIFT feature locations are efficiently detected
by identifying maxima and minima of a difference-of-
Gaussian function in scale space. At each such location,
an orientation is selected at the peak of a histogram of lo-
cal image gradient orientations. A feature vector is formed
by measuring the local image gradients in a region around
each location in coordinates relative to the location, scale
and orientation of the feature. The gradient locations are
further blurred to reduce sensitivity to small local image
deformations, such as result from 3D viewpoint change. In
summary, the SIFT approach transforms local image fea-
tures relative to coordinate frames that are expected to be
stable across multiple views of an object.

The size of image region that is sampled for each feature
can be varied, but the experiments described in this paper all
use a vector of 128 samples for each feature to sample at 8
gradient orientations over a 4 by 4 sampling region. While
the size of feature vectors is considerable larger than used
by other approaches, our experiments have shown that the
larger vectors are useful for giving a high degree of selec-
tivity when matching features to a large database, resulting
in improved overall accuracy and efficiency. It is possible
to efficiently find matches for large vectors by using a prob-
abilistic version of the k-d tree algorithm [2].

4. View clustering

The view clustering approach can integrate any number of
training images of an object into a single model. Train-
ing images from similar viewpoints are clustered into sin-
gle model views. An object model consists of a set of
these model views representing appearance from a range
of significantly different locations around the view sphere.
Matching features are linked between adjacent model views
to allow for improved matching to intermediate views.

The same matching methods are used for matching train-
ing images as for doing recognition. The training images
are processed sequentially in any order, and training images
from different objects can be interspersed. The training im-
ages are best taken on a uniform background, as few SIFT
features are produced in the uniform regions of the image,
which minimizes the incorporation of spurious features in
the model. Our experiments use a black background, as that
also minimizes shadows cast on the background. However,
spurious features do not cause major problems other than
some extra computation and memory usage, so it is also
possible to use training images of objects in cluttered back-
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grounds, as long as a single object occupies the majority of
the image.

The first training image is used to build an initial model
of an object. The model consists of all SIFT features ex-
tracted from the training view, along with a record of the
location, orientation, and scale of each feature within that
image. This initial model can be used to match and identify
views of the object over a range of rotations in depth of at
least 20 degrees in any direction.

The process of matching models to subsequent images
uses a Hough transform approach followed by least-squares
geometric verification. Each feature is matched to the
neighbor in the database with the closest Euclidean dis-
tance. The matched database feature contains a record of
its model view and the location of the feature within the
model view, allowing a hash table entry in the Hough trans-
form voting for a particular model view and approximate
location, scale, and image orientation. This approach has
been described in detail in earlier work [6].

With view clustering, the features in each model view
are linked to any similar features that were matched in ad-
jacent views. When new images are seen from intermedi-
ate views, the features may match any of several adjacent
model views which could disperse the peak in the Hough
transform hash table. This is avoided by following the links
from each model feature to all matching features in adja-
cent model views and repeating the Hough transform voting
process for each of these other model features. This ensures
that there will be at least one model view that accumulates
votes from all potentially matching features.

In our previous work on matching single training images
[6], the geometric verification was performed by using an
affine transform to test the fit between model and image fea-
tures. However, for the purpose of view clustering, we have
found that it is important to use a similarity transform in-
stead. While an affine transform is a good model for 3D
projection of planar surfaces, it provides a poor approxi-
mation for rotation in depth of more complex 3D objects.
Furthermore, the affine parameters can lead to inaccurate
solutions with large deformations when only a few features
are matched or when some but not all parts of a model are
planar.

The similarity transform gives the mapping of a model
point [x y] to an image point[u v] in terms of an image
scaling,s, an image rotation,�, and an image translation,
[tx ty]:
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We can write the equation above in a linear form collecting
the unknown similarity transform parameters into a vector
[10]:
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This equation describes a single feature match, but any
number of further matches can be added, with each match
contributing two more rows to the first and last matrix.

We can write this linear system as

Ax = b

The least-squares solution for the parametersx can be de-
termined by solving the corresponding normal equations,

x = [AT
A]�1AT

b

which minimizes the sum of the squares of the distances
from the projected model locations to the corresponding im-
age locations.

Using this solution forx, we can estimate the average
error, e, remaining between each projected model feature
and image feature:

e =

r
2 jjAx� bjj2

r � 4

wherer is the number of rows in matrixA, from which we
subtract the 4 degrees of freedom of the similarity trans-
form. The factor 2 in the numerator accounts for the fact
that the squared errors in 2 rows must be summed to mea-
sure a squared image distance.

The decision of whether to cluster a new training image
with an existing model view is based on comparinge to a
threshold,T . We use a valueT equal to 0.05 times the
maximum dimension of the training image, which results in
clustering views that differ by less than roughly 20 degrees
rotation in depth.

As each new training image arrives, it is matched to the
previous model views and one of 3 cases can occur:

1. The training image does not match any previous object
model. In this case, the image is used to form a new
object model.

2. The training image matches an existing model view,
ande > T . In this case, a new model view is formed
from this training image. This is similar to forming
a new object model, except that all matching features
are linked between the current view and the 3 closest
matching model views.
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3. The training image matches an existing model view,
ande � T , which means the new training image is to
be combined with the existing model view. All fea-
tures from the new training image are transformed into
the coordinates of the model view using the similar-
ity transform solution. The new features are added
to those of the existing model view and linked to any
matching features. Any features that are very similar
to previous ones (have a distance that is less than a
third that of the closest non-matching feature) can be
discarded, as they do not add significant new informa-
tion.

The result is that training images that are closely
matched by a similarity transform are clustered into model
views that combine their features for increased robustness.
Otherwise, the training images form new views in which
features are linked to their neighbors.

5. Probability model for verification

One consequence of this approach to view clustering is that
the matching of images to previous model views must be
able to tolerate significant geometric errors in feature posi-
tions, say as much as 20% of the maximum dimension of a
model. This has the additional advantage that it can allow
some degree of non-rigidity in models, such as the changing
expression on a face. However, this also makes the problem
of final verification of a match more difficult, as there is an
increased probability that mistaken matches will happen to
appear in a valid configuration.

It is not sufficient to use a metric such as just the num-
ber or type of feature matches [3, 5] to determine the pres-
ence of a model under these circumstances. Schmid [13]
has proposed a more complete model based on combining
feature reliabilities. However, it does not take account of the
varying probabilities of false matches depending on vari-
able projected model size and image feature density. Here
we give a quite different approach that takes account of the
projected size of the model, the number of features in the
model image region, and the accuracy of the best-fit geo-
metric solution.

We wish to determineP (mjf), wherem is the presence
of the model at the given pose andf is a set ofk features
that have been matched between the model and image.

First, we determine the number of features that are candi-
dates for giving rise to false matches. This is done by simply
counting the number of image features,n, within the pro-
jected outline of the model view, which has proved much
more accurate than measures based on average feature den-
sity. For example, this takes account of the fact that highly
textured image regions or large projected model sizes will
have more potential false matches.

Let p be the probability of accidentally matching a single
image feature to the current model pose. Then

p = dlrs

where d is the probability of accidentally selecting a
database match to the current model, andl; r; and s are
the probabilities of satisfying the location, orientation, and
scale constraints respectively. As we are matching each fea-
ture to its closest neighbor in the database of models,d is
given by the fraction of the database occupied by features
from this model view. For the location constraint, we are
only considering then features that lie within the bounds
of the projected model view, so we need consider only the
additional constraint on location imposed by the pose solu-
tion. For our examples, we constrain location to within a
range of 20% of the average model size in each direction,
giving l = 0:22 = 0:04. Orientation is constrained within a
range of 30 degrees, givingr = 30=360 = 0:085. The scale
constraint is less effective, as keypoint scale can only be
constrained within a one-octave range due to inaccuracy in
scale measurements and since most keypoints are detected
at the finest scales, resulting in an estimate ofs = 0:5.

Let P (f j :m) be the probability that the matched fea-
tures,f , would arise by accident if the model,m, is not
present. We assume thek feature matches arose fromn
possible features, each of which matches by accident with
probabilityp. Therefore, we can use the cumulative bino-
mial distribution for the probability of an event with proba-
bility p occurring at leastk times out ofn trials:

P (f j :m) =

nX
j=k

�
n

j

�
pj(1� p)n�j

This function can be expensive to compute from this for-
mula for larger values ofn, but an efficient method is given
in [9].

To computeP (mjf), we use Bayes’ theorem:

P (mjf) =
P (f jm)P (m)

P (f)

=
P (f jm)P (m)

P (f jm)P (m) + P (f j :m)P (:m)

With only an insignificant effect on the result, we can ap-
proximateP (f jm) as 1, as we normally expect to see at
leastk features present when the model is present (for the
small values ofk for which this evaluation is relevant). We
can also approximateP (:m) with the value 1 as there is a
very low prior probability of a model appearing at a partic-
ular pose. Therefore,

P (mjf) �
P (m)

P (m) + P (f j :m)
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Figure 1. Pairs of model images from different views are shown
on the left. The right image in each row shows the features
matched between the two views on the left as superimposed
on the second image. The large rectangle around the features
shows the boundaries of the first image following application
of the similarity transform to coordinates of the second image.

In other words, we have high confidence in the interpreta-
tion if the probability of the features matching accidentally
is much lower than the prior probability of the model ap-
pearing at this pose.

It is difficult to assign a value toP (m) in isolation, as
the value depends on the range of poses covered by the hy-
pothesism relative to all possible poses. We can simplify
this problem by assuming that one matching feature is used
to determine the initial pose hypothesis (incorporated into
m), and the remaining features are used for verification (re-

ducingk by 1). Then,P (m) is simply the
probability that a single feature match is cor-
rect, which is the ratio of correctly matched
features to all matched features in a typical
image (about 0.01 for our cluttered images).

The final decision of whether to accept a
model interpretation is made according to the
relative utility of avoiding false positives or
false negatives for any particular application.
We useP (mjf) > 0:95.

6. Experimental results

The view clustering and verification ap-
proaches have proven to work well in prac-
tice. Figure 1 shows an example of some
training images collected from common ob-
jects. These are taken with a handheld cam-
era without special lighting on a black back-
ground. In this example, about 20 to 30 im-
ages were taken of each object around at least
a hemisphere of viewing directions. The se-
lection of viewpoints was very approximate,
with some being quite close but an attempt
being made to have none differ by more than
about 45 degrees from their neighbors. Fig-
ure 1 shows a sample of two nearby views of
each object. The right column of this figure
shows the matched set of SIFT features from
the first image overlayed on the second im-
age. Each square shows one matched feature,
with the location, size, and orientation of the
square indicating the corresponding param-
eters for the SIFT feature. In addition, the
similarity transform solution was applied to
the boundaries of the first image to produce a
rectangular outline shown superimposed on
the second image. As can be seen, a large
number of matches are found in the training
phase due to the good resolution and lack of
occlusion.

Figure 2 shows an image containing the
modeled objects in a cluttered background.

The squares correspond to the SIFT features that were
matched between the model and image for each final ver-
ified match. The rectangle drawn around each match is
computed by applying the similarity transform to the image
boundaries of the first training image that was used to con-
struct the matching model view. The features and boundary
for each matched object are displayed with a different line
thickness to visually separate the multiple object matches.
The recognition is quite robust to occlusion, as can be seen
by the many matching features and considering that as few
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Figure 2. Recognition results using view interpolation for 3D
objects showing model boundaries and image features used
for matching. Each model uses a different line thickness to
help separate results.

as 4 matching features are sufficient for verified recognition.

Our implementation of these methods is able to pro-
cess and match each training or recognition image in about
0.8 seconds on a Pentium III 600MHz computer. About
half of the time is devoted to image acquisition and fea-
ture detection, while the remaining time is used for all as-
pects of matching and model formation. Our implementa-
tion can run on a laptop using an inexpensive USB camera,

so this approach has been tested and demon-
strated on large numbers of real-world im-
ages. Recognition has proved quite robust for
most objects, with the major difficulties aris-
ing for objects seen under illumination con-
ditions that greatly differ from those in any
training views, simple objects lacking in vi-
sual texture, or objects that occupy a very
small part of the image. The SIFT features
are insensitive to illumination change for pla-
nar surface markings, but often fail to match
when features are formed by surface relief
that casts different shadows under different
illumination. Therefore, the ability to com-
bine images taken under differing illumina-
tion into a single view cluster has proved
valuable for robustness. We expect further
improvements in the future as we develop
new feature types that incorporate color, tex-
ture, and other properties.

7. Conclusions and future work

There are two major benefits of combin-
ing multiple views into a single model rep-
resentation: (1) the model can be general-
ized across multiple 3D viewpoints and non-
rigid deformations by linking features be-
tween differing views, and (2) increased ro-
bustness is obtained by combining features
obtained under multiple imaging conditions
into a single model view. The decision of
whether to cluster images can be made by
considering the residual of the geometric er-
ror following feature matching. When im-
ages are clustered, all features are placed
within a common view-based coordinate sys-
tem. When images are not clustered, features
are explicitly linked between adjacent views
to improve the reliability of matching for in-
termediate images.

A novel probabilistic model has been
developed to provide final verification of
whether a set of feature matches corresponds
to an object instance. This problem was

found to be particularly important due to the loosened geo-
metric constraints on matching between approximate model
views. The solution takes account of model database size,
projected model size, image complexity, and accuracy of
pose constraints.

Although the current system uses only a single type of
local invariant feature, there are many future directions for
improving robustness by incorporating a range of other fea-
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ture types. Mikolajczyk & Schmid [7] have recently de-
scribed an interesting new scale invariant feature selector,
that may provide improved robustness at the cost of higher
computation. Baumberg [1] has developed a local feature
descriptor that incorporates local affine invariance with ro-
tation invariant Fourier descriptors. Features that incorpo-
rate texture measures and color ratios in addition to image
gradients can be expected to provide better matching relia-
bility under many circumstances. Another valuable feature
type would be one that incorporates figure/ground discrim-
ination by using image properties from only one side of an
edge. This would allow features to be stable near the bound-
aries of objects without being influenced by changes in the
background. All of the different feature types could be used
simultaneously, as is done in human and animal vision [16],
so that each is available in those circumstances in which
they provide the most reliable matches. The invariant lo-
cal feature approach is almost entirely insensitive to failed
matches, so it should show continuing improvements as new
feature types are developed.

The current object models consist of multiple views,
each of which is formed from a cluster of training images.
This works well for object detection, but does not solve for
accurate 6 degree-of-freedompose and other object parame-
ters. Further improvement would result from using multiple
matched training images to explicitly solve for the 3D struc-
ture of a rigid model [15]. This would provide for accu-
rate pose solutions and would improve robustness for small
numbers of feature matches by enforcing more accurate ge-
ometric constraints. However, it may not be as suitable for
modeling non-rigid changes or performing recognition from
only one or two views, so such a solution would need to be
combined with the current approach rather than replace it.
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