Evaluation of Low Latency Audio Synthesis Using a Native
Java — ASIO Interface

Richard D. Corbett, Kees van den Doel, and Dinesh K. Pai

Department of Computer Science, University of British Columbia
email: {rcorbett, kvdoel, pai} @cs.ubc.ca

Abstract

A real time user interface for sound synthesis should
have the smallest latency achievable. With recent
advances in technology the possible latencies are
becoming impressive for even the standard desktop
computer. This paper discusses a method of low
latency sound synthesis using Java with a native
interface to the audio hardware. We describe the
implementation and report the results achieved for a
test application with mouse interaction.

1 Introduction

With the recent increase in computing power it
has become possble to acarately mode sounds of
the red world in virtual environments, and synthesize
them in red time on desktop computers (Gaver 1993,
Hahn et al 1995, Dodl, Kry, and Pai 2001). It isaso
bewmming increasingly possble to creae responsive
user interfaces with auditory feedbadk that respond
with minima delay. Computations can be performed
fast enough to simulate red world sound events using
any one of many representative models. One limiting
fador, which governs the degree to which a
synthesized sound can be perceived as neturdl, is its
latency. Even the most acairate synthetic sounds are
not redistic if they don't occur at the preci se moment
that they are needed. A good user interface should
take the input from the user and as quickly as
possible synthesize and output the desired sound.

Latency is often measured as the delay in sourd
throughpu (MacMillan, Droettboom, and Fujinaga
2001). In the cae of sound synthesis, where sound
inpu is not required, only the output latency is of
interest. In this paper the use of the word ‘latency’
refers to the interval of time required, onceuser input
is received, before the desired signal is emitted from
the sound card. For instance, in the cae where the
user clicks a button on a windows applicdion, the
latency is defined as the interval in time that passes
between the mouse dick and the emergence of the
bee at the spedkers of the PC.

As ned is remgnized for lower latency sourd
synthesis, more strategies are developed to help get
the synthesized sounds out through the sound card as
fast as possble. In recgnition of the need for lower
latency Microsoft developed the DiredX drivers for

sound cards. More recently, recognizing the need for
even lower latency, Steinberg Media Techndogies
AG creaged ASIO (Audio Streaming Inpu Output)
(Steinberg 1999).

This paper will discuss an implementaion that
uses ASIO in an effort to minimizethe latency of the
Java Audio Synthesis System (JASS) (Doel and Pai,
2001), a previously developed cross-platform sourd
synthesis padkage written in pue Java An
applicdion written in pure Java can run on many
operaing systems and is aso easily deployed on the
web. The downside is that current Java
implementations are dower than C language
programs for certain tasks such as array access We
have foundthat Java audio synthesis applicaions run
15 to 2 times dower than simila C coded
applications. Another disadvantage of using pue Java
for audio synthesisis the high latency. Java provides
a means to output synthesized sound to the audio
hardware through the JavaSound API, which
unfortunately has very high latency of the order of
200ms (at least onthe Windows platform). Therefore,
using only pure Java latency is too high for a usable
red time user interface for sound synthesis, even for
prototyping.

Since we desired lower latency an implementation
using JNI (Java Native Interfacg to accessthe audio
hardware more diredly through ASIO was
undertaken. JNI is an interface that gives Java the
ability to use native methods (usually written in C)
that lie in libraries outside the scope of the Java
programming language. Native methods are used also
in the Java audio synthesis toolkit Jsyn (Burk 1998)
not just for the final rendering of the audio but also
for computation within the unit generators for
efficiency.

The development done for the purposes of this
paper was completed in part to determine if NI is
fast enough, and provides enough functiondity, to
work with ASIO on desktop machines. The study was
conducted with the interest of quantifying
perfformance on standard desktop madhines,
therefore, red-time operating systems were not
evauated. In our tests the operating system spedfic
ASIO interfaceis restricted to a single Java dass,
minimizing the impad on portability. The
implementation with full source code will be made

available on the web for non-commercia use at
www.cs.ubc.ca/~kvdoel/jass.

2 ASIO Interface with Java

JASS was used to create the sounds to be output
through the ASIO system. Much care had to be taken
to make sure that the Java classes could interface
through the INI to have a working connection with
the ASIO system. We have added aclassto JASS that
takes care of the output of the sound buffers, which
are computed in pure Java, using NI to interface to
ASIO.

An investigation was done into the PortAudio API
because it is designed to create a portable audio API
for most platforms. (Burk and Bencina 2001) and
supports ASIO. In the end PortAudio could not be
used because of difficulties in getting it to work
through JNI. Aswill be described, great care must be
taken with the treatment of threads when making
function cdls through JNI, and the PortAudio API,
due to its user-friendly interface designed for C, is
too demanding on JNI.

JASS
Init Buffer[] GetBuffer
A \ 4
GetBuffer
-—
NI Buffer] | ASIO
>
Init

Figure 1: Overview of interaction between JASS and
ASIO

Figure 1 gives abrief description of how JASS was
interfaced with ASIO. ASIO is designed to have the
driver call back to its host application (in our case,
JASS) when it needs more data There is a double
buffer in the driver, and as buffer 1 is being output,
buffer 2 must be filled with the next set of output
data. Once Buffer 1 has been fully output, the
callback is caled again and this time the new datain
buffer 2 is output while the host application is busy
filling buffer 1 with the new data. So, in order to get
the cycle running, an initidization cal is sent to
ASIO through JNI and then ASIO needs some way to
cal back into JASS and ask for the data to fill the
buffers, asthey are required.

Since this system is based on a pull mechanism,
i.e., the ASIO driver pulls the data out of the host
application as it needsit, INI had to be used in away
that would alow calls to the Java Virtuad Machine
(IVM) from ASIO asynchronously.

2.1 Using JNI With ASIO

Timing is an important factor to be considered when
interfacing ASIO with JASS. ASIO can put high

demands on the computing of buffers in the host
application. For instance, running a 48000hz and
using an ASIO buffer size of 48 samples (the
minimum buffer size on a SoundBlaster Audigy)
JASS can expect a request for data once every
millisecond. So, to get this interface to work for al
possible buffer sizes, INI must be able to handle calls
back to JASS from ASIO at a minimum of 1000Hz. It
is very important when putting high demands on JNI
to consider the use of threads. Since the control of
the timing is passed over to ASIO once it is
initialized, JASS must fill the requests for buffers as
fast as possible.

In order to pass control to ASIO, alowing it to
call the host Java functions, the Java Virtual Machine
must remain accessible to the ASIO callback
function. Therefore, once the initidization cal is
received from JASS, a reference to the JVM should
beretained. The VM is used to alow native code to
create its own threads and then use these threads for
asynchronous calls through NI a the demand of
ASIO. If a request for data from ASIO is not
returned before another cal must be made to keep the
ASIO buffer cycle running, unexpected race
conditions may arise, as the calback will attach yet
another thread to the JVM, with unpredictable
behavior.

2.2 Full System Description

Get Buffer

I (j=————— LN
|
—“““‘> ______ - P
{
T

JASS
calculates
buffers

Prepare Sound

mouse interrupl GUI
processes
event

User - input

Figure 2: Block diagram of the full system

The full sound synthesis system starts from user
input a the mouse and finishes with the desired
sound arriving on the speskers. Figure 2 provides a
visual representation starting with the user input.
Once the user input has been receved when the
mouse is clicked on the button (from the Java.awt
library) a mouse interrupt is created in the operating
system. Once this mouse interrupt is interpreted a
message is dispatched to the GUI. The GUI

interprets the message and tells JASS to prepare to
crede the buffersfor the sound

Once ASIO has begun running, it will ask for
buffers, as they are nealed. At this point ASIO
queries JASS for a buffer, while outputting the other
interna buffer. In the diagram the solid lines
conneded to the ASIO buffers represent what the
buffers are doing during cycle 1. Oncethis cycle is
complete, cycle 2 (dotted lines) will occur and this
patern will continue until the @gplicaion is
terminated.

3 Latency Measurements

In the mntext of this paper latency is, as sated
before, the delay between the user request for sound
and the detedion d the requested soundat the output.
Since ASIO uses a streaming double-buffered
architedure the theoreticd latency can be cdculated
(asuming no GUI or input latency) as the time it
takes one partition of the douhle buffer to be played.
For instance if the sampleraeis st to 48M0hz, and
ead hdf of the dowble buffer holds 48 samples, then
the latency could be expeded to be 1ms. In fad, this
isthe cae, oncethe output has begun. However, this
value canot be used in ou definition o latency
because it overlooks the latency due to user input,
which as will be shown is quite substantial.

The latencies were measured with a smple GUI ,
which takes user input through a mouse dick on a
button. A microphone was st up next to the mouse,
and the spekers are placal close to the microphore.
In this way, any recording software can record the
sound of the mouse dick and a smdl period of time
later the synthesized sound will appea on the output
of the spekers. The latency can be found as the time
interval from the mouse dick to the emergence of the
sound at the speders. In Figure 3 we show atypicd
recording.

Mouse click Synthesized Sound

Figure 3: Sample data set

3.1 Test Reaults

When investigating the latency two variableswere
manipulated: the ASIO buffer size ad the system
load. Five buffer sizes were investigated a two
different CPU loads. In dl tests the SoundBlaster
Audigy soundcard was used because it isthe degest
sound card on the market that comes with ASIO
drivers. These tests were designed with the intention
of providing information abou standard aff ordable
desktop performance

The JASS system was used to synthesize abell
sound using a modal model, which modelsthe bell as
abank of reson filters with well defined frequencies,
dampings and gains, which is excited by an impulse.
Choaosing the number of adive modes can vary the
sound quality, and the computationa expense. Thisis
how the CPU load was varied.

If the buffer sizeistoo small for a cetain load the
sound will bresk up. The @rred sound is dill
audible, but there are very short gaps in between the
corred sounds that make it sound crakly. By
increasing the buffer size the latency is increased,
but the quality of sound is more dependable. A
familiar example of this is the ‘shock-proofing’ of
portable CD players. They use large buffers @ that if
an interruption in sound occurs (the CD skips) the
user will not hea the bre&k up in sound because there
is enough data stored in the buffer to continue sound
output and allow the hardware to catch up Latency is
not alarge wncern in CD players because they output
continuous und, and as long as the output stream is
unbroken, the austomer is stisfied.

3.2 Minimum buffer Sizes

We have measured the minimum buffer size such
that sound does not bre&k up under various loads
obtained by varying the number of modes that were
synthesized. The results are depicted in Figure 4.

modes | % cpu System 1 System 2
load(Sys 2)
1 3 96 (2) 800 (16.7)
10 5 96 (2) 800(16.7)
100 17 96 (2) 800(16.7)
200 30 150 (3.13) | 800(16.7)
300 43 200 (4.17) | 1200(25)
400 57 800 (16.7) | 1800(37.5)
500 70 1500 (31.3) | 2200(45.8)
600 83 -- 4800(100)

Figure 4: Minimum ASIO buffer sizes for different
system loads as determined by synthesizing a given
number of modes. In parenthesis are the cdculated
latencies for the given bufer sizes in milli seconds.

These tests were performed on two different
madiines to give a idea of variability in
perfformance. System 1 had dua Pentium® Il
750Mhz procesors with 512Mb RAM running
Windows 2000. System 2 had a Pentium® Il
950Mhz processor with 512 Mb RAM and Windows
ME. There is no CPU load data for system 1
becaise it has a dud processor and it was fet that the
CPU load vaues would give inacarate impressons
of the adual computer load. This is becaise one
processor would saturate while the other was idle,
due to the fad that we restricted ASIO to using
mainly ore thread. As gaed before, both machines
used the SoundBlaster Audigy.

The test with 600 modes could na be completed
on system 1. On attempt not even the maximum
buffer size ould produce an unlroken sound It

appeaed that since ASIO and the Java Virtua
Madine are sharing the same thread, only one of the
two procesors was used and it was sturated at this
load.

3.3 Latency Measurements

Latency ¥s Buffer Size at Low Cpu Load
10r

1ot #
SoF
a0t
7o

B0

Latency (ms)

a0

401 *

0F S

a0 . .)
0 500 1000 1500
Buffer Sze (samples)

Figure 5: Latencies at low load

In Figure 5 we plot the measured latency at low
CPU load as afunction o ASIO buffer size. Because
of the unpredictability of the CPU load in
multitasking environments five Separate
measurements were taken. It cen be seen that the
latency incressed linealy with buffer size @
expeded. It can dso be seen tha if linea
extrapolation is used it appears that our GUI has an
inherent latency of roughly 30ms. Since only 10
modes were used, our smallest buffer size of 96
samples was large enough to suppart the synthesis. If
more mputing was required, as in the next set of
data, 96 samplesis not alarge enough bufer and too
much demand is put on the buffer synthesis, resulting
in the breakup o the sound.

Latency vs Buffer Size for High Cpu Load

120

110

100

90

80

T0f

Latency {ms)

6O

50

40

30 x . . L L . . |
200 400 600 go0 1000 1200 1400 1600
Buffer Size {(samples)

Figure 6: Latencies at high load

In Figure 6 we plot the latencies under high load.
A similar trend as with the light load measurements
can be observed, and the GUI latency derived from
this is unchanged a the high load. However, the
smaller buffer sizes (96, 150) were not big enoughto
dlow JASS enough time to synthesize the required
buffers. This is presumably due to process svapping

and might be improved by running the synthesis at
higher priority.

4 Conclusions

We have described an implementation of a low
latency synthesis interfaceto ASIO from pure Java
within the JASS synthesis g/stem. It was found that
JNI interfaceis efficient enough to satisfy the strict
timing requirements for red-time audio synthesis
with low latency. We have tested the latency of the
system triggered by a Java GUI on a Windows
system and found that the minimum latency depends
strondy on the system load. By measuring the
latency at severd ASIO buffer sizes we were ale to
recnstruct the latency of the GUI.

The implementation is made avail able on the web
for anyone to use.

Acknowledgements

This work was supported in part by grants from
the UBC Peter Wall Institute for Advanced Studies
and NSERC.

References

Burk, Phil. 1998.“Jsyn — A Red-time Synthesis API for
Java”. Proceedings of the Internationd Computer
Music Conference International Computer Music
Association.

Burk, Phil and Bencina, Ross. 2001. “PortAudio - an Open
SourceCrossPlatform Audio API”. Proceedings of the
International Computer MusicConfer ence. Internationeal
Computer Music Association.

Gaver, W. 1993. “Synthesizing Auditory lcons’.
Proceedings of the ACM INTERCHI.pp. 228— 235.

Hahn, James K., J. Geigd, J. W. Lee et al. 1995. “An
Integrated Approach to Motion and Sound’. Journal of
Visualization andComputer Animation. 282): 109
123.

MadMillan, K., M. Droettboom, and I. Fujinaga. 2001.
“Audio Latency Measurements of Desktop Operating
Systems’. Proceedings of the Internationd Computer
Music Conference International Computer Music
Association.

Steinberg. 199. “ Steinberg Audio Streaming Input Output
Spedfication: Development Kit 2.0°. Steinberg Soft-
undHardware GmbH.

van den Doel, Kees, and Pai, Dinesh K,. 2001“ JASS A
Java Audio Synthesis System for Programmers” .
Proceedings of the Internationd Conferenceon
Auditory Displays.

van den Dodl, Kess, P. G. Kry, and D. K. Pai. 2001.
“FoleyAutomatic: Physicdly-based SoundEffeds for
Interadive Simulation and Animation”. Computer
Graphics (ACM SGGRAPH 01 Conference
Proceedings).

