
���������	��

��������������������

���	����� �	!	���#"��$�%

&	��'(��'*)+'(���	,#�.-+��
/�0���
1$�2��� 3 ��"%465746�$

�98��
�����

Richard D. Corbett, Kees van den Doel, and Dinesh K. Pai

Department of Computer Science, University of British Columbia
email: { rcorbett, kvdoel, pai}@cs.ubc.ca

Abstract
A real time user interface for sound synthesis should
have the smallest latency achievable. With recent
advances in technology the possible latencies are
becoming impressive for even the standard desktop
computer. This paper discusses a method of low
latency sound synthesis using Java with a native
interface to the audio hardware. We describe the
implementation and report the results achieved for a
test application with mouse interaction.

1 Introduction
With the recent increase in computing power it

has become possible to accurately model sounds of
the real world in virtual environments, and synthesize
them in real time on desktop computers (Gaver 1993,
Hahn et al 1995, Doel, Kry, and Pai 2001). It is also
becoming increasingly possible to create responsive
user interfaces with auditory feedback that respond
with minimal delay. Computations can be performed
fast enough to simulate real world sound events using
any one of many representative models. One limiting
factor, which governs the degree to which a
synthesized sound can be perceived as natural, is its
latency. Even the most accurate synthetic sounds are
not realistic i f they don’ t occur at the precise moment
that they are needed. A good user interface should
take the input from the user and as quickly as
possible synthesize and output the desired sound.

Latency is often measured as the delay in sound
throughput (MacMil lan, Droettboom, and Fujinaga
2001). In the case of sound synthesis, where sound
input is not required, only the output latency is of
interest. In this paper the use of the word ‘ latency’
refers to the interval of time required, once user input
is received, before the desired signal is emitted from
the sound card. For instance, in the case where the
user clicks a button on a windows application, the
latency is defined as the interval in time that passes
between the mouse click and the emergence of the
beep at the speakers of the PC.

As need is recognized for lower latency sound
synthesis, more strategies are developed to help get
the synthesized sounds out through the sound card as
fast as possible. In recognition of the need for lower
latency Microsoft developed the DirectX drivers for

sound cards. More recently, recognizing the need for
even lower latency, Steinberg Media Technologies
AG created ASIO (Audio Streaming Input Output)
(Steinberg 1999).

This paper wil l discuss an implementation that
uses ASIO in an effort to minimize the latency of the
Java Audio Synthesis System (JASS) (Doel and Pai,
2001), a previously developed cross-platform sound
synthesis package written in pure Java. An
application written in pure Java can run on many
operating systems and is also easily deployed on the
web. The downside is that current Java
implementations are slower than C language
programs for certain tasks such as array access. We
have found that Java audio synthesis applications run
1.5 to 2 times slower than similar C coded
applications. Another disadvantage of using pure Java
for audio synthesis is the high latency. Java provides
a means to output synthesized sound to the audio
hardware through the JavaSound API, which
unfortunately has very high latency of the order of
200ms (at least on the Windows platform). Therefore,
using only pure Java latency is too high for a usable
real time user interface for sound synthesis, even for
prototyping.

Since we desired lower latency an implementation
using JNI (Java Native Interface) to access the audio
hardware more directly through ASIO was
undertaken. JNI is an interface that gives Java the
abil i ty to use native methods (usually written in C)
that lie in libraries outside the scope of the Java
programming language. Native methods are used also
in the Java audio synthesis toolkit Jsyn (Burk 1998)
not just for the final rendering of the audio but also
for computation within the unit generators for
eff iciency.

The development done for the purposes of this
paper was completed in part to determine if JNI is
fast enough, and provides enough functionality, to
work with ASIO on desktop machines. The study was
conducted with the interest of quantifying
performance on standard desktop machines,
therefore, real-time operating systems were not
evaluated. In our tests the operating system specific
ASIO interface is restricted to a single Java class,
minimizing the impact on portabili ty. The
implementation with ful l source code wil l be made

available on the web for non-commercial use at
www.cs.ubc.ca/~kvdoel/jass.

2 ASIO Interface with Java
JASS was used to create the sounds to be output

through the ASIO system. Much care had to be taken
to make sure that the Java classes could interface
through the JNI to have a working connection with
the ASIO system. We have added a class to JASS that
takes care of the output of the sound buffers, which
are computed in pure Java, using JNI to interface to
ASIO.

An investigation was done into the PortAudio API
because it is designed to create a portable audio API
for most platforms. (Burk and Bencina 2001) and
supports ASIO. In the end PortAudio could not be
used because of difficulties in getting it to work
through JNI. As will be described, great care must be
taken with the treatment of threads when making
function calls through JNI, and the PortAudio API,
due to its user-friendly interface designed for C, is
too demanding on JNI.

Figure 1: Overview of interaction between JASS and
ASIO

 Figure 1 gives a brief description of how JASS was
interfaced with ASIO. ASIO is designed to have the
driver call back to its host application (in our case,
JASS) when it needs more data. There is a double
buffer in the driver, and as buffer 1 is being output,
buffer 2 must be filled with the next set of output
data. Once Buffer 1 has been fully output, the
callback is called again and this time the new data in
buffer 2 is output while the host application is busy
filling buffer 1 with the new data. So, in order to get
the cycle running, an initialization call is sent to
ASIO through JNI and then ASIO needs some way to
call back into JASS and ask for the data to fill the
buffers, as they are required.
 Since this system is based on a pull mechanism,
i.e., the ASIO driver pulls the data out of the host
application as it needs it, JNI had to be used in a way
that would allow calls to the Java Virtual Machine
(JVM) from ASIO asynchronously.

2.1 Using JNI With ASIO
Timing is an important factor to be considered when
interfacing ASIO with JASS. ASIO can put high

demands on the computing of buffers in the host
application. For instance, running at 48000hz and
using an ASIO buffer size of 48 samples (the
minimum buffer size on a SoundBlaster Audigy)
JASS can expect a request for data once every
millisecond. So, to get this interface to work for all
possible buffer sizes, JNI must be able to handle calls
back to JASS from ASIO at a minimum of 1000Hz. It
is very important when putting high demands on JNI
to consider the use of threads. Since the control of
the timing is passed over to ASIO once it is
initialized, JASS must fill the requests for buffers as
fast as possible.

In order to pass control to ASIO, allowing it to
call the host Java functions, the Java Virtual Machine
must remain accessible to the ASIO callback
function. Therefore, once the initialization call is
received from JASS, a reference to the JVM should
be retained. The JVM is used to allow native code to
create its own threads and then use these threads for
asynchronous calls through JNI at the demand of
ASIO. If a request for data from ASIO is not
returned before another call must be made to keep the
ASIO buffer cycle running, unexpected race
conditions may arise, as the callback will attach yet
another thread to the JVM, with unpredictable
behavior.

2.2 Full System Description

��� ��� � � �
	���

��� ��� ��� �

 ��� � � 	�

�

�����
	�� �
� ��� � ���
��������

� � ���
��!�" � � " !
 ���
��$ $ ��� �

� � � %

& '

�(��
()(��$ $ ���

*(� ��	 ! � � � � ���,+

%���
 	
� -

Figure 2: Block diagram of the full system

The full sound synthesis system starts from user
input at the mouse and finishes with the desired
sound arriving on the speakers. Figure 2 provides a
visual representation starting with the user input.
Once the user input has been received when the
mouse is clicked on the button (from the Java.awt
library) a mouse interrupt is created in the operating
system. Once this mouse interrupt is interpreted a
message is dispatched to the GUI. The GUI

.�/1020

.4365 /10�5�7

8 9;: <

8 9;: <

=?> < @(A;B B > C

=?> < @(A;B B > C

@DA4B B > C EGF

@DA4B B > C EGF

interprets the message and tel ls JASS to prepare to
create the buffers for the sound.

Once ASIO has begun running, it will ask for
buffers, as they are needed. At this point ASIO
queries JASS for a buffer, while outputting the other
internal buffer. In the diagram the solid lines
connected to the ASIO buffers represent what the
buffers are doing during cycle 1. Once this cycle is
complete, cycle 2 (dotted l ines) wil l occur and this
pattern wil l continue until the application is
terminated.

3 Latency Measurements
In the context of this paper latency is, as stated

before, the delay between the user request for sound
and the detection of the requested sound at the output.
Since ASIO uses a streaming double-buffered
architecture the theoretical latency can be calculated
(assuming no GUI or input latency) as the time it
takes one partition of the double buffer to be played.
For instance, if the sample rate is set to 48000hz, and
each half of the double buffer holds 48 samples, then
the latency could be expected to be 1ms. In fact, this
is the case, once the output has begun. However, this
value cannot be used in our definition of latency
because it overlooks the latency due to user input,
which as wil l be shown is quite substantial.
 The latencies were measured with a simple GUI ,
which takes user input through a mouse cl ick on a
button. A microphone was set up next to the mouse,
and the speakers are placed close to the microphone.
In this way, any recording software can record the
sound of the mouse click and a small period of time
later the synthesized sound wil l appear on the output
of the speakers. The latency can be found as the time
interval from the mouse click to the emergence of the
sound at the speakers. In Figure 3 we show a typical
recording.

������� �	��
 � �
 ������� ����� � ���������������

Figure 3: Sample data set

3.1 Test Results
When investigating the latency two variables were

manipulated: the ASIO buffer size and the system
load. Five buffer sizes were investigated at two
different CPU loads. In all tests the SoundBlaster
Audigy soundcard was used because it is the cheapest
sound card on the market that comes with ASIO
drivers. These tests were designed with the intention
of providing information about standard affordable
desktop performance.

The JASS system was used to synthesize a bell
sound using a modal model, which models the bell as
a bank of reson fi lters with well defined frequencies,
dampings and gains, which is excited by an impulse.
Choosing the number of active modes can vary the
sound quali ty, and the computational expense. This is
how the CPU load was varied.

If the buffer size is too small for a certain load the
sound will break up. The correct sound is stil l
audible, but there are very short gaps in between the
correct sounds that make it sound crackly. By
increasing the buffer size, the latency is increased,
but the quality of sound is more dependable. A
famil iar example of this is the ‘shock-proofing’ of
portable CD players. They use large buffers so that if
an interruption in sound occurs (the CD skips) the
user will not hear the break up in sound because there
is enough data stored in the buffer to continue sound
output and allow the hardware to catch up. Latency is
not a large concern in CD players because they output
continuous sound, and as long as the output stream is
unbroken, the customer is satisfied.

3.2 Minimum buffer Sizes
 We have measured the minimum buffer size such
that sound does not break up under various loads
obtained by varying the number of modes that were
synthesized. The results are depicted in Figure 4.

modes % cpu
load(Sys 2)

System 1 System 2

1 3 96 (2) 800 (16.7)
10 5 96 (2) 800(16.7)
100 17 96 (2) 800(16.7)
200 30 150 (3.13) 800(16.7)
300 43 200 (4.17) 1200(25)
400 57 800 (16.7) 1800(37.5)
500 70 1500 (31.3) 2200(45.8)
600 83 -- 4800(100)

Figure 4: Minimum ASIO buffer sizes for different
system loads as determined by synthesizing a given
number of modes. In parenthesis are the calculated
latencies for the given buffer sizes in milli seconds.

 These tests were performed on two different
machines to give an idea of variabili ty in
performance. System 1 had dual Pentium® III
750Mhz processors with 512Mb RAM running
Windows 2000. System 2 had a Pentium® III
950Mhz processor with 512 Mb RAM and Windows
ME. There is no CPU load data for system 1
because it has a dual processor and it was felt that the
CPU load values would give inaccurate impressions
of the actual computer load. This is because one
processor would saturate while the other was idle,
due to the fact that we restricted ASIO to using
mainly one thread. As stated before, both machines
used the SoundBlaster Audigy.
 The test with 600 modes could not be completed
on system 1. On attempt not even the maximum
buffer size could produce an unbroken sound. It

appeared that since ASIO and the Java Virtual
Machine are sharing the same thread, only one of the
two processors was used and it was saturated at this
load.

3.3 Latency Measurements

Figure 5: Latencies at low load

In Figure 5 we plot the measured latency at low
CPU load as a function of ASIO buffer size. Because
of the unpredictabilit y of the CPU load in
multi tasking environments five separate
measurements were taken. It can be seen that the
latency increased linearly with buffer size as
expected. It can also be seen that if linear
extrapolation is used it appears that our GUI has an
inherent latency of roughly 30ms. Since only 10
modes were used, our smallest buffer size of 96
samples was large enough to support the synthesis. If
more computing was required, as in the next set of
data, 96 samples is not a large enough buffer and too
much demand is put on the buffer synthesis, resulting
in the breakup of the sound.

Figure 6: Latencies at high load

In Figure 6 we plot the latencies under high load.
A similar trend as with the light load measurements
can be observed, and the GUI latency derived from
this is unchanged at the high load. However, the
smaller buffer sizes (96, 150) were not big enough to
allow JASS enough time to synthesize the required
buffers. This is presumably due to process swapping

and might be improved by running the synthesis at
higher priority.

4 Conclusions
We have described an implementation of a low

latency synthesis interface to ASIO from pure Java
within the JASS synthesis system. It was found that
JNI interface is efficient enough to satisfy the strict
timing requirements for real-time audio synthesis
with low latency. We have tested the latency of the
system triggered by a Java GUI on a Windows
system and found that the minimum latency depends
strongly on the system load. By measuring the
latency at several ASIO buffer sizes we were able to
reconstruct the latency of the GUI.

The implementation is made available on the web
for anyone to use.

Acknowledgements
 ���������	��
��
�	��������������
�� ����� ������
������	 �
����!�"�$#"
���%

� �&�('*),+ -���� ��
/.0��1 132 �3��� � � �!� �4#5��
$6	��7��8�&9����;:&� �&���5���
���&�	<=:&>$?(+
@

References
Burk, Phil . 1998. “Jsyn – A Real-time Synthesis API for

Java”. Proceedings of the International Computer
Music Conference. International Computer Music
Association.

Burk, Phil and Bencina, Ross. 2001. “PortAudio - an Open
Source Cross Platform Audio API” . Proceedings of the
International Computer MusicConference. International
Computer Music Association.

Gaver, W. 1993. “Synthesizing Auditory Icons” .
Proceedings of the ACM INTERCHI.pp. 228 – 235.

Hahn, James K., J. Geigel, J. W. Lee, et al. 1995. “An
Integrated Approach to Motion and Sound” . Journal of
Visualization and Computer Animation. 28(2): 109-
123.

MacMillan, K., M. Droettboom, and I. Fujinaga. 2001.
“Audio Latency Measurements of Desktop Operating
Systems” . Proceedings of the International Computer
Music Conference. International Computer Music
Association.

Steinberg. 1999. “Steinberg Audio Streaming Input Output
Specification: Development Kit 2.0” . Steinberg Soft-
und Hardware GmbH.

van den Doel, Kees, and Pai, Dinesh K,. 2001 “ JASS: A
Java Audio Synthesis System for Programmers” .
Proceedings of the International Conference on
Auditory Displays.

van den Doel, Kees, P. G. Kry, and D. K. Pai. 2001.
“FoleyAutomatic: Physically-based Sound Effects for
Interactive Simulation and Animation” . Computer
Graphics (ACM SIGGRAPH 01 Conference
Proceedings).

