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Abstract

This article considers inverse problems of shape recovery from noisy bound-
ary data, where the forward problem involves the inversion of elliptic PDEs.
The piecewise constant solution, a scaling and translation of a characteristic
function, is described in terms of a smoother level set function. A fast and
simple dynamic regularization method has been recently proposed that has a
robust stopping criterion and typically terminates after very few iterations. Di-
rect linear algebra methods have been used for the linear systems arising in
both forward and inverse problems, which is suitable for problems of moderate
size in 2D.

For larger problems, especially in 3D, iterative methods are required. In
this article we extend our previous results to large scale problems by proposing
and investigating iterative linear system solvers in the present context. Perhaps
contrary to one’s initial intuition, the iterative methods are particularly useful
for the inverse rather than the forward linear systems. Moreover, only very few
preconditioned conjugate gradient iterations are applied towards the solution
of the linear system for the inverse problem, allowing the regularizing effects
of such iterations to take center stage. The efficacy of the obtained method is
demonstrated.
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1 Introduction

The recovery of a distributed parameter function with discontinuities from inverse
problems with elliptic forward PDEs is fraught with theoretical and practical difficul-
ties [25, 4]. And yet there are many applications that give rise to such problems, in-
cluding DC resistivity [33], linear potential problems [24, 9], magnetotelluric inversion
[30], diffraction tomography [13], electrical impedance tomography (EIT) [6, 11, 7],
and Maxwell’s equations in low frequencies [26, 27, 19, 20]. In most of these references
the parameter function to be recovered, typically related to conductivity, is assumed
smooth. This enables a reasonably stable practical reconstruction of regularized so-
lutions. But when discontinuities are allowed – indeed expected in the distributed
parameter model – the reconstruction problem, especially in the presence of noise in
data measurements, becomes very difficult [3, 4]. Fortunately, it is often reasonable
to assume further that the solution may take on at each point only one of two values,
thus yielding a shape recovery problem. Better results are then obtained in a much
more stable fashion using algorithms that take this a priori information directly into
account [1, 8, 9, 12, 10, 37, 14, 16, 17, 32].

To be more specific, consider the following data inversion problem. A number
of forward operators, Fk(m), k = 1, . . . , s, are given and a model m(x) is sought
over a discretized domain Ω in 2D or 3D, such that each Fk(m) matches given data
bk up to the noise level in the data measurements. Each forward operator Fk(m)
corresponds to a particular experimental setup, and each data vector bk represents
the measurements taken in that experiment. The forward model is further given by

Fk(m) = Qkuk, (1a)

uk = Gk(m), (1b)

where Qk is a matrix which projects the field uk to data locations (e.g. along the
boundary ∂Ω), and Gk(m) is the inverse of an elliptic PDE system discretized on a
grid at least as fine as that of the model m using a finite volume or finite element
method. For the EIT and DC resistivity problems we write this PDE discretization
as

A(m)uk = qk, (2)

where A is a large, sparse matrix, qk are given and represent the external currents
injected into the system, and Gk(m) = A(m)−1qk [18, 2, 20]. Importantly, we assume
in addition that there are two known values, mI and mII , corresponding say to a
homogeneous body and a homogeneous background, such that at each point x ∈ Ω

m(x) = mI or m(x) = mII .

A natural approach for incorporating the information that m describes a shape is
to use a differentiable level set function ψ(x) such that m = χ(ψ). The function χ is
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a grid-smoothing of the characteristic function based on the values that m may take,
and the discontinuities in m occur across the 0-level set of ψ(x) [37]. Note that the
elements of the matrix χ′ = ∂m

∂ψ
vanish away from a narrow vicinity of the interface.

A Tikhonov-type regularization [15, 35] now reads

min
ψ

φ(β) =
1

2

s∑

k=1

‖Fk(m)− bk‖2 + βR(ψ), (3)

where R is a regularization functional and β > 0 is a parameter. In [37] we have
proposed the regularization term

R(ψ) ≡ R̂1 =
1

2

[∫

Ω

(1− |∇ψ|2)dx
]2

(4a)

(or, more precisely, a discretization of this on the grid of m) and showed that it
performs better for the 2D sample problems considered there than the more obvious
choice

R(ψ) ≡ R̂2 =
1

2

∫

Ω

|∇ψ|2dx. (4b)

Furthermore, we have introduced in [37] a dynamic regularization method that
performs significantly better than the above Tikhonov-type method. Starting from
an initial guess ψ0, for n = 0, 1, 2, . . . the iterations read

(
s∑

k=1

ĴT
k Ĵk + β0X)δψ = −

s∑

k=1

ĴT
k (Fk(m(ψn))− bk), (5a)

ψn+1 = ψn + τδψ, (5b)

where Ĵk = Jkχ
′, Jk = ∂Fk

∂m
, β0 > 0 is a small constant and 0 < τ ≤ 1 is a step

size that is determined by line search for the objective function defined by the data
fitting term φ(0) in (3). The matrices in (5a) are all evaluated at ψn. We choose
X = R′′, the Hessian of a regularization operator R(ψ). Specifically, let L be a
positive definite matrix based on the standard discrete Laplacian. Then R̂′′

2 = L and
R̂′′

1 = 2(ψT Lψ − |Ω|)L + 4(Lψ)(Lψ)T .
One practical advantage of this method is that typically φ decreases consistently

until some point where the iteration starts stalling, whereby the solution process can
be reasonably stopped. Moreover, if the method converges then typically very few
iterations are required, see [37].

In general, theory for level set methods for such inverse problems as considered
here is currently in an unsatisfactory state. The iteration (5) may therefore admit
different interpretations [5]. The one that we have found most useful, especially for
extending the method to handle very large problems, is the optimization point of view,
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where we set β = 0 in (3). The Gauss-Newton iteration for the output least squares
method then involves a singular matrix, so it is regularized Levenberg-Marquardt
fashion, but with the twist that the regularization matrix is X = R′′, not simply the
identity. This matrix can further be viewed as a preconditioner, as elaborated upon
below.

On the grids we have experimented with in [37], standard direct sparse solvers
are very fast. For the inverse problem system in 2D often this is all that is required
[7, 12]. An important advantage of direct methods is that they are relatively hassle-
free and easy to implement (especially in Matlab); for instance, the dependence of
the condition number of the matrix in (5) on β0 is less crucial than it could be if
iterative methods were utilized to solve this system accurately. However, for larger
problems, including forward problems in 3D, we cannot always expect to use direct
methods. The present paper is devoted to the development and study of iterative
methods for large size problems.

Thus, in Section 2 we develop appropriate iterative methods for the forward prob-
lem (2), with an eye towards their invocation within the inverse solution process.
This context requires the solution of many linear PDE discretizations with the same
matrix, which in turn affects the choice of numerical method.

In Section 3 we then turn to the solution of the linear systems arising in (5a). It is
important to realize that these systems arise within the context of an outer, nonlinear
iteration which incorporates regularization. The regularization properties of conju-
gate gradient (CG) and steepest descent (SD) methods have long been recognized
[21, 23]. Applying a few CG iterations to the singular system (5a) with β0 = 0 yields
the desired effect.

In Section 4 we briefly describe a simple method based on thresholding a Tikhonov-
type regularization. This is a benchmark approach: our level set methods must beat
it in order to be worthwhile.

Numerical experiments of shape recovery in 3D are reported in Section 5. Con-
clusions are offered in Section 6.

2 Iterative solvers: forward problem

Large, sparse linear systems arise both in (2) and in (5a). Forward problems may well
require finer discretization grids, but fast iterative techniques for elliptic PDEs such
as (2) are well known. The efficient iterative solution of the inverse linear system (5a)
is much more challenging, especially in the absence of χ′, and it is needed for larger
problem instances, especially in 3D (see e.g. [20, 18, 9]).

We potentially have three levels of iteration. The outer iteration of the dynamic
regularization method is described by (5). The linear system (5a) which has to be
solved at every outer iteration may itself be solved by an iterative method. We
call this the inner iteration. The preconditioned CG method (PCG) we advocate in
Section 3 is such a scheme. Finally, at each PCG iteration we have to solve (2) and
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a preconditioner. If this is done iteratively we shall refer to it as the inner-inner
iteration.

An obvious modification of the all-direct methods used in [37] would be to solve
(2) iteratively, using a PCG, while applying a direct method for (5a) which, at least
in 2D, is not a prohibitively large system; see Section 4.1 of [37]. However, the
problem with such an approach is that when forming the matrix Ĵk, several forward
problems (2) and their adjoints for different right hand sides must be solved, making
the formation of the matrices in system (5a) rather expensive.

Specifically, writing Ĵk = −QkA
−1Bkχ

′, where Bk = ∂A(m)uk

∂m
(cf. [18]), we can

form Ĵk either column-wise or row-wise through ĴT
k . The number of non-zero columns

in Ĵk is proportional to the number of grid points p1 “near” the interface boundary,
where nearness is defined by appropriately truncating χ′, which in turn is a grid
smoothing of a Dirac delta function. On the other hand, using the adjoint approach
there are inversions of A for each column of QT

k . Let p2 be the number of rows in Qk

and p = min(p1, p2). It then follows that, including the adjoints, a total of at least
2sp forward problems must be solved at each outer iteration of (5a).

Because all these forward problems only differ in their right hand sides, this can
be done effectively using a standard direct method that decomposes A only once,
followed by a forward-backward substitution for each right hand side. In contrast,
using iterative solution methods for the forward problems (the inner-inner iteration)
in a way that shares information among the 2sp solves is difficult if not impossible
here.

On the other hand, there are advantages to solving (5a) by an iterative method,
rather than a direct method. At the nth outer iteration in (5a), for each inner
iteration of an iterative solver we only need to compute the products of Ĵk and ĴT

k

with a vector once, which involves solving (2) and its adjoint once for a total of 2s
forward solves. In practice, to be discussed more fully below, the number of outer
iterations r required to solve (5a) is quite small, so the number of forward solves
required now is only 2sr, which is much less than when solving (5a) directly. Note
further that, in many practical applications, the number of experiments s is still large
(40 or more is not uncommon). A direct method for the forward problem (2) that
decomposes A only once per outer iteration of (5a) will outperform any (inner-inner)
iterative solution method for (2) in the large s limit, provided there is enough fast
access computer memory available.

For sufficiently large problems that easily occur in 3D, an iterative solution for
the forward problem (2) becomes necessary because of memory considerations. For
the EIT / DC resistivity problem in 3D with which we experiment here, we use
BICGSTAB 1 combined with an incomplete LU preconditioner with a drop tolerance

1In our implementation, we use a version of the code of [31] which employs a formulation where the
forward problem matrix A is not symmetric on a non-uniform grid. It is not difficult to symmetrize
A, which would in turn inspire a switch from BICGSTAB to CG; however, such a modification is
not within our present focus of attention.
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δ. The ILU preconditioner can be shared over the 2sr solutions with different right
hand sides. In light of the above discussion, the drop tolerance δ should be chosen
to be as small as available computer memory allows, at least for applications with a
large number s of data sets.

3 Iterative solvers: inverse problem

The linear system (5a) describes a stabilized nonlinear Gauss-Newton iteration. If
it is solved by an iterative method then an inner iteration is defined. An obvious
question is then, how accurate does this inner iteration process need to be?

In the current context, in particular, the linear system (5a) contains the regu-
larization term β0X. But it is well known that applying only a few preconditioned
conjugate gradient (PCG) inner iterations towards the solution of the linear system
(5a) has a regularizing effect [23, 21, 15, 22]. We therefore set β0 = 0 and apply PCG
inner iterations directly to the singular system.

The approach is reminiscent of Steihaug’s trust region method [28, 34]. Note,
however, that in the context of a singular system a textbook trust region approach
does not apply. Moreover, experiments indicate that we must precondition this CG
iteration to obtain a fast procedure.

An effective preconditioner is the discrete Laplacian, X = L. This is directly
related to the Hessians of both R̂1 and R̂2, so the difference between the regularization
functionals of (4), so pronounced when the system (5a) is solved accurately [37], is
now diminished.

Note that L−1 is a smoother. Starting the PCG iteration for δψ from a zero guess,
the quantity ‖L1/2δψ‖ increases monotonically [28]. However, attempting to use this
fact to control the iteration has not proved very effective in the current context of
an inner iteration within an outer, nonlinear procedure. Indeed, our experiments
consistently suggest that applying three PCG iterations for each n in (5a) is a happy
compromise. In Section 5, Experiment 2, we demonstrate that many more inner
iterations may require reinstating β0X, while fewer inner iterations than 3 result in
the necessity for more outer iterations.

To compute the effect of the preconditioner (i.e., solve Lv = q for any given vector
q), we follow [31] and use a CG method with an SSOR preconditioner, which is an
inner-inner iteration. This can be improved, especially if there is enough memory,
noting that L is a constant matrix independent of the outer as well as the inner
iterations. However, the calculation of the preconditioner takes less than 1% of the
computation time for the problems we have considered here, which is why we have
not pursued this any further.
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4 Thresholding Tikhonov

If we are not allowed to make the shape reconstruction assumption that at each point
x the model m may only take on one of two values, then level set methods do not
apply. More conventional direct reconstructions of m(x) may then be obtained using
a Tikhonov regularization of the form

min
m

φ(β) =
1

2

s∑

k=1

‖Fk(m)− bk‖2 + βR(m), (6a)

with a regularization term

R(m) =
1

2

∫

Ω

|∇m|2dx. (6b)

Next, if we reinstate the additional a priori information leading to shape recon-
struction then the solution of (6) may be used for two purposes. The first is to provide
a simple alternative method to our level set procedure. Specifically, we estimate the
shape boundary by thresholding the continuous function m(x), using the harmonic
average of the maximum and minimum values of m(x) in order to assign either mI or
mII at each point x. In practice, we have found the harmonic average to give much
better results than an arithmetic average. Below we refer to this procedure as the
L2-method.

The second purpose is to use the L2-method in order to provide an initial guess
for the level set method.

5 Numerical experiments

In two dimensions, although all-direct methods can be applied, we can speed up the
iteration (5) somewhat for larger grids. For the EIT problem considered in [37],
solving only (5a) iteratively while solving the forward problems with a direct method
is about twice faster than a direct solve on a 1282 grid; on a 642 grid the direct and
iterative methods are about equally fast.2

To experiment with larger 3D problems, we have implemented a level set “plug-in”
to RESINVM3D [31], a Matlab package for inverting DC resistivity and electrical
resistivity tomography data in 3D. Our level set function implementation is as de-
scribed in [37], except that we allow for non-uniform grids. At a grid cell we take the
sharpening function χ to be

χ(ξ) =
mI −mII

2
tanh(ξ/hav) +

mI + mII

2
, (7)

2Note that this is not an entirely fair comparison, as we use the highly optimized Matlab
backslash function for the direct solve. However, the point is that in this range of problem sizes, a
direct method is entirely satisfactory and automatic, and this allows us to swiftly move on to other
challenges.
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where hav = dV
1
3 with dV the cell volume and ξ a dummy variable.

For our numerical experiments we have constructed artificial models and data.
Gaussian noise was added to each individual artificial datum b according to

b → b(1 + η ∗ ε),

where ε is a standard normal random variable and η is the noise level. As it is not
desirable to reconstruct beyond the accuracy of the data noise it is useful to define a
misfit for a given reconstruction ψ as

misfit =

√∑s
k=1 ‖Fk(m(ψ))− bk‖2

∑s
k=1 ‖Fk(m(ψ))‖2

.

Any reconstruction with a misfit smaller than η will model noise rather than data.
We have performed five different experiments to test the methods described

above. The first three experiments are based on realistic geophysical surveys, adapted
from [31]. The data was computed on a finer grid (643 or 1283) than the grid used
for the reconstruction, in order to avoid so-called “inverse crimes”.

The forward problem (2) for all our experiments is defined through

∇ · (em∇uk) = qk, k = 1, . . . , s, (8)

∂uk

∂ν
|∂Ω = 0,

which is discretized on a staggered grid as described in [2], with the constant null-
space removed in a standard way. The model m = m(x) is related to the resistivity
ρ (in Ω ·m) through ρ = e−m.

5.1 Experiment 1

This experiment employs surface electrodes to image the injection of a saline tracer
into the subsurface. Injection of tracers is often performed by hydrologists in an effort
to obtain information about subsurface hydrologic properties. In this experiment, we
simulate the tracer-saturated soil as a 10 Ω ·m material and the soil as a 200 Ω ·m
material. This corresponds to mI = −2.30 and mII = −5.30. On the surface we
deploy 96 electrodes; 38 of these electrodes function as potential electrodes only,
while the remaining 58 serve as both potential and current electrodes. The experiment
involves s = 41 independent current pairs. For each of these pairs, data are recorded
at the remaining 94 electrodes. Data are recorded using dipoles, so for each current
pair we record 93 independent data. This results in a total of 3813 data for the entire
survey. Artificial data is computed on a 643 grid, polluted with 3% noise, and the
reconstructions are done on a 163 grid. The rectangular tracer region is depicted in
Figure 1.
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In Figure 2 we show reconstructions using the default L2-method of RESINVM3D,
with β = 10−3. The misfit of .04 is close to the ideal value of .03.

In Figure 3 we show reconstruction using the level set method, with 3 PCG iter-
ations per inner iteration. The initial guess was obtained by visual matching of the
solution obtained with the conventional method. If a different, more remote, con-
figuration is chosen as the initial guess then more outer iterations are required, as
expected. Observe that considerable detail has been added in the reconstruction.

(a) Artificial model, view 1. (b) Artificial model, view 2.

(c) Artificial model, view 3. (d) Artificial model, view 4.

Figure 1: The artificial model for Experiment 1.

5.2 Experiment 2

In this experiment the setup of our current sources and data electrodes is the same
as in Experiment 1, but the synthetic data now consists of two disjoint shapes.

For this data the L2-method described in Section 4 is not able to resolve the
distinct shapes, but the level set based method succeeds. In Figures 4 and 5 we show
the synthetic model as well as reconstructions on 163 and 323 grids.
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(a) Reconstructed model, view 1. (b) Reconstructed model, view 2.

(c) Artificial model, surface reconstruction
with harmonic averages.

(d) Misfits at each outer iteration.

Figure 2: Results with the L2-method for Experiment 1, reconstructed on a 163 grid
using β = 10−3.

In Figures 6 we show the level set reconstructions on a 323 grid at various iterations
using 3 PCG iterations, and in Figures 7 we see the result of using 10 PCG iterations.
The reconstruction is clearly much better with 3 PCG iterations, indicating that there
is not enough regularization with 10 PCG iterations. In Figure 8 we re-introduce a
non-zero β0 = 0.01. This provides the additional regularization needed and the result
is good again. But of course the reconstruction is more than three times slower than
with 3 PCG iterations per outer iteration. The results from an experiment with just
1 PCG iteration, equivalent to preconditioned steepest descent with line search, are
shown in Figure 9. About three times as many outer iterations are required compared
with using 3 PCG iterations. However, since the computational cost of the solution
of (5a) is now reduced by about a factor of three, the total computational cost is
roughly the same.
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5.3 Experiment 3

Experiment 3 is adapted from the second example in [31] and employs subsurface
electrodes. The acquisition technique involves first placing a small number of perma-
nent current electrodes, then using an electrode mounted on a cone penetrometer to
make potential measurements at various locations in the subsurface. In this synthetic
example, a factory is suspected of leaking contaminants into the ground beneath its
footprint. The presence of the factory makes it impossible to perform a surface-based
geophysical survey over the region of interest. As we wish to image the volume be-
neath the factory, we need to surround the volume with electrodes. For this example
we have eight source electrodes and 168 potential electrodes.

The conductivity model used for this experiment has a homogeneous 100 Ω · m
background resistivity, corresponding to a fresh water sandy aquifer. The contami-
nated soil is modeled as a 5 Ω·m material, the shape of which is depicted in Figure 10.
This corresponds to mI = −1.61 and mII = −4.61. The reconstruction was done on a
243 grid and the synthetic data was computed on a 483 grid. The 8 source electrodes
yield 28 independent current pairs, and there are 168 potential electrode positions.
With this acquisition technique we have a potential electrode located at infinity, thus
we acquire pole-dipole data. The entire experiment yields 4704 synthetic data points.
As with the previous experiments, the data were corrupted with 3% Gaussian noise.

The results recorded in Figure 10 show that our level set method performs very
well. Some details of the true model are recovered, and the algorithm stalls smoothly
at the right place. The reconstruction by the L2-method is clearly inferior, although
this does not show in the misfit level.

5.4 Experiment 4

In this experiment we employ electrodes and receivers inside the medium. We scale
our domain to [0 1]3. A positive electrode and a negative electrode are placed at
opposing corners of the cube, giving 4 different source configurations. Data is taken
inside a cube of sides 0.4 in the center on a uniform 73 grid of electrodes. Artificial
data polluted with 1% noise is computed on a 1283 grid and reconstructions are done
on coarser grids.

In Figure 11 we show reconstructions. Not much seems to be gained from using
the finer, 643 grid.

5.5 Experiment 5

In this experiment the source and receiver configuration is as in Experiment 4, but
we use a different synthetic model resembling a buried alien artifact, depicted in
Figure 12. We have computed data on a 643 grid, polluted it with 1% Gaussian noise,
and performed reconstructions on 323 and 163 grids.



12

The level set reconstructions are again better than using just Tikhonov. The finer
grid distinctly allows more articulation of the model.

6 Conclusions and further thoughts

Shape optimization of the type considered in this article, where the forward operator
involves the inversion of an elliptic PDE, is notoriously difficult. These problems are
highly ill-posed, and limitations of any relevant numerical method in certain situations
are well documented. Moreover, often methods proposed in the literature for the same
task appear rather different from one another, leaving much room for interpretation.
In this article, abandoning the comfort of direct linear algebra methods in order to
solve larger problems iteratively, we have found ourselves connecting between different
approaches and making several fundamental adjustments.

The forward problem is solved many times in order to construct one sensitivity
matrix. This suggests that an iterative solver for the linear system arising in the
dynamic regularization iteration (5) is important, whereas for the forward a direct
method would be particularly advantageous if we only have the memory for it. This,
even though fast iterative methods such as multigrid for (2) are well developed [36].
For the forward problem an incomplete LU decomposition proves useful because it
can be shared for many right hand sides.

Furthermore, the inverse linear system is no longer solved accurately, and this
significantly alters the method itself, not just the means for solving its linear systems.
Specifically, a few PCG iterations take over the regularizing task and efficiently yield
a descent direction for the output least squares objective function. The Hessian of
the regularization operators (4) now appears only in the preconditioning, and there
is no effective difference between them, in contrast to [37]. The present method can
also be derived from a Tikhonov-type formulation of a level set method as in [37],
letting β → 0 there.

In usual Tikhonov-type regularizations one incorporates a priori information into
the process through the regularization operator. This potentially includes not only
information about the expected smoothness but also a prior, or a reference function
mref(x). In contrast, here the smoothness is explicitly expressed through the level
set function, and (barring statistical considerations) a prior may only be used as an
initial guess for the nonlinear iteration.

Let us stress again that our usage of level set functions is strictly and directly
related to iterating with a smoother function: whereas our unknown model m is only
in W0(Ω) = L2(Ω), the function ψ used to describe it is in W1(Ω), i.e. both it and
its gradient are in L2(Ω). We do not evolve the level set in a way that involves the
Hamilton-Jacobi equations [29, 9].

We have not included specific run times because they are significantly affected by
memory availability and because we have made heavy use of a particular version of
someone else’s code [31]. In general, however, a complete run on a 163 grid requires
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a few minutes on a laptop, a 323 grid requires a few hours and a 643 grid requires
about 24 hours. We have indicated in several places how these times can be improved.
The resolution is often insufficient on a 163 grid. Non-uniform grids therefore suggest
themselves, and this is a subject for our future investigation.
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(a) Initial guess. (b) Result after 10 iterations.

(c) Misfit at each iteration.

Figure 3: Experiment 1: Reconstructions on a 163 grid using the level set method.
Depicted are the initial state, the result after 10 iterations, and the individual itera-
tions.
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(a) Synthetic model. (b) L2-method, 163 grid.

(c) X-view. (d) Y-view.

Figure 4: Results for Experiment 2. The misfit is .04 after 10 iterations. For the
L2-method reconstructions, β = 10−3.
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(a) Synthetic model. (b) L2-method, 323 grid.

(c) Level set, 163 grid. (d) Level set, 323 grid.

Figure 5: Results for Experiment 2. The misfit is .04 after 10 iterations. For the L2-
method reconstructions, β = 10−3. Contrast the lack of separation for the L2-method
with the relative success of the level set approach.

Figure 6: Experiment 2: Reconstructions using 3 PCG iterations per outer iteration.
Shown are the initial guess and 9 successive iterations.
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Figure 7: Experiment 2: Reconstructions using 10 PCG iterations per outer iteration.
Shown are the initial guess and 9 successive iterations.

Figure 8: Experiment 2: Reconstructions using 10 PCG iterations with a non-zero
β0 = 10−2. Shown are the initial guess and 9 successive iterations.

Figure 9: Experiment 2: Reconstructions using 1 PCG iteration. Shown are the
initial guess and iterations 3, 6, . . . , 24, 27.
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(a) Synthetic model. (b) Initial guess.

(c) Level set reconstruction after 19 it-
erations.

(d) Level set misfit.

(e) L2-method reconstruction after 19 it-
erations.

(f) L2-method misfit

(g) L2 reconstruction, X-view. (h) L2 reconstruction, Y-view.

Figure 10: Experiment 3: The calculated misfit for all reconstructions was .03, which
is ideal. For the L2-method reconstructions, β = 10−3.
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(a) True model. (b) L2 reconstruction, β = 10−9,
misfit = 10−2 (ideal), 34 iterations on
643 grid.

(c) L2 reconstruction, β = 10−7,
misfit = .02, 34 iterations on 643 grid.

(d) Initial guess for level set method.

(e) Level set, misfit = .01, 33 iterations
on 643 grid.

(f) Level set, misfit = .018, 20 iterations
on 323 grid.

(g) Level set, misfit = .02, 33 iterations
on 163 grid.

Figure 11: Experiment 4: Cube reconstructions on 643 and 323 grids.
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(a) True model. (b) L2 reconstruction, β = 10−9, misfit = .01
(ideal), 40 iterations on 323 grid.

(c) L2 reconstruction, Y-view. (d) Initial guess for level set method.

(e) Level set, misfit = .01, 40 iterations on 323

grid.
(f) Level set, misfit = .02, 40 iterations on 163

grid.

Figure 12: Experiment 5: Reconstructions on 323 and 163 grids.


