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Abstract

The steepest descent method for large linear systems is well-known to of-
ten converge very slowly, with the number of iterations required being about
the same as that obtained by utilizing a gradient descent method with the
best constant step size and growing proportionally to the condition number.
Faster gradient descent methods must occasionally resort to significantly larger
step sizes, which in turn yields a rather non-monotone decrease pattern in the
residual vector norm.

We show that such faster gradient descent methods in fact generate chaotic
dynamical systems for the normalized residual vectors. Very little is required
to generate chaos here: simply damping steepest descent by a constant factor
close to 1 will do.

Several variants of the family of faster gradient descent methods are inves-
tigated, both experimentally and analytically. The fastest practical methods of
this family in general appear to be the known, chaotic, two-step ones. Our re-
sults also highlight the need of better theory for existing faster gradient descent
methods.

1 Faster gradient descent methods

Many efforts have been devoted in the two decades that have passed since the pioneer-
ing paper of Barzilai & Borwein [4] to the design, analysis, extension and application
of faster gradient descent methods for function minimization; see, e.g., [13, 26, 6, 12]
and references therein. These are methods that converge significantly faster than the
method of steepest descent although, unlike the conjugate gradients (CG) method,
they confine their search directions to the gradient vector at each iteration.
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To be specific, consider the classical linear algebra problem

Ax = b, (1)

where A is a given real m × m symmetric positive definite matrix, b is a given m-
vector and x is an m-vector to be found. This is of course equivalent to minimizing
the convex quadratic function

f(x) =
1

2
xTAx− bTx. (2)

We consider iterative methods and define for any vector xk the residual

rk = b− Axk. (3)

The gradient descent family of methods is defined by

xk+1 = xk + αkrk, (αk ≥ 0), k = 0, 1, . . . . (4)

The steepest descent (SD) method for determining the step size αk minimizes

ψ(α) = f(xk + αrk), (5)

which yields

αk = αSDk =
rTk rk
rTkArk

. (6a)

This is a slow method requiring O(κ) iterations to reduce the residual by a fixed
amount, where κ = κ(A) is the condition number [1]. The lagged steepest descent
(LSD) method [4] sets instead

αk = αSDk−1 =
rTk−1rk−1

rTk−1Ark−1

, (6b)

while the half lagged steepest descent (HLSD) method [26] simply updates the step
size α only every second step, reading

α2j = α2j+1 = αSD2j , j = 0, 1, 2, . . . . (6c)

To be clear, no one we know expects any gradient descent variant ever to perform
better than CG for the solution of (1), provided that matrix-vector multiplications
Av for any given vector v are carried out accurately. Moreover, preconditioning in
general applies to CG as well as to gradient descent methods, so the latter remain
relatively inferior. Nonetheless, the search for better faster gradient descent methods
has not subsided, and more method variants for the basic problem have been proposed
in [13, 8, 5], to name but a few references offering interesting possibilities.

There are several reasons for the continued interest in faster gradient descent
algorithms:
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• The linear CG algorithm does lose some of its luster when applied to more
general problems than (1) which arise in specific applications, such as in box-
constrained optimization [7, 11] and certain nonlinear problems arising in image
processing [2, 19]. If matrix-vector multiplications are performed only approx-
imately then CG can lose efficiency more rapidly than gradient descent, as
Experiment 1 below shows; see also [15, 18].

• Gradient descent methods enjoy a natural interpretation as artificial time inte-
gration methods with different step size strategies [2, 3, 19, 22]. This is partic-
ularly useful for certain inverse problems, e.g., for image deblurring.

• The state of theory for faster gradient descent methods is currently unsatisfac-
tory. There exist essential convergence theorems [13, 26, 10], but they are at
best as strong as the simple convergence theorems available for SD, and they do
not explain why the rate of convergence of these faster gradient descent methods
is more like that of CG than SD, see Table 1 in Experiment 2 below.

Experiment 1 Let us first define what we will consistently refer to below as the
model Poisson problem. The PDE

−∆u = q, 0 < x, y < 1, (7)

with q(x, y) known and subject to homogeneous Dirichlet boundary conditions, is dis-
cretized using the standard 5-point difference scheme. Utilizing a uniform mesh width
h = 1/(J+1), and denoting by b the reshaped mesh function of q(ih, jh), 1 ≤ i, j ≤ J ,
and also letting x be likewise composed of solution mesh values, we have a problem
(1) with m = J2 unknowns and a sparse, large, symmetric positive definite matrix A.
Note that the condition number κ(A) is proportional to m.

The CG method is certainly better than LSD for this problem, for any positive
integer m, never yielding a larger value of f(xn) for any number of iterations n.

Next, we slightly perturb (7) by considering the nonlinear PDE

−∆(u+ 0.005/(1 + u2)) = q, 0 < x, y < 1,

with ‖u‖ known not to be small. We select q as specified in Experiment 2 below:
this is not central here. This PDE is discretized as above, and thus we proceed to
solve a perturbed version of the model Poisson problem in which for any given vector
v the product Av is replaced by the matrix-vector product A(v + 0.005/(1 + v2)),
where v2 denotes the component-wise square of v. Now, as can be seen in Fig. 1, the
LSD method is better, being more robust than CG against small perturbations to the
problem (1).1

1 The vector `2 norm is utilized here and elsewhere, unless otherwise specified.
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Figure 1: Relative residuals ‖rk‖/‖r0‖ for CG and LSD applied to a small perturba-
tion of the model Poisson problem, with m = 3721.

In [2] the gradient descent method was interpreted as a forward Euler discretiza-
tion of the time-dependent ODE

dx

dt
= b− Ax, (8)

integrated to steady state. The absolute stability bound

αk ≤
2

λ1

, (9)

where λ1 ≥ λ2 ≥ · · · ≥ λm > 0 are the eigenvalues of A,2 must be obeyed if a uniform
step size αk = α is to be employed. This artificial-time interpretation also suggests
that the larger the average step size the smaller the total number of gradient descent
iterations (or steps) required.

Further, it is well-known that the SD iteration is quite effective at the beginning,
so long as not too many iterations are taken [1, 23, 2, 19]. It slows down later on
because the vector of residuals tends, as the iterative algorithm proceeds, towards
staying in a two-dimensional plane spanned by the eigenvectors corresponding to the
largest and smallest eigenvalues, λ1 and λm. This in turn causes the selected step
sizes αk to oscillate inanely, resulting in a method that is not better asymptotically
than working throughout with the uniform step size

αk ≡ α =
2

λ1 + λm
, (10)

see [2]. The faster gradient descent methods must therefore occasionally strongly
violate the absolute stability bound (9). Such a large and unstable step is then
preceded or followed by small steps to keep the whole process converging.

2 Let us assume throughout for simplicity that λ1 > λ2 and λm−1 > λm.
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Thus, to better understand the behavior of faster gradient descent methods we
should study the behavior of the corresponding dynamical systems, observing the
progress of the normalized vector of squared residuals. In this paper we show, by
calculating Lyapunov exponents and by numerical experimentation, that these dy-
namical systems exhibit chaotic behavior. In particular, their produced sequences
of iterates are sensitive to the initial data, and the normalized residual vectors be-
have in a quasi-random fashion, rather than converging to a two-limit cycle as in
the SD method. The prospect that the slow SD method yields an orderly two-limit
cycle whereas the faster methods are chaotic is tantalizing in itself. Unfortunately, it
also suggests that comparing these faster methods thoroughly could turn out to be a
rather involved task, as stopping an oscillating sequence of residual norms by some
fixed tolerance is somewhat arbitrary.

In Section 2 we introduce additional faster gradient descent methods and then
investigate numerically their sensitivity to changes in the initial data. A comparison
of various gradient descent variants for different matrices A and different initial values
is given in Section 3. In Section 4 we then define the corresponding dynamical systems
and measure their Lyapunov exponents, observing chaos for the faster methods.

The simplest methods we consider are relaxed SD, where at each iteration k we
calculate αSDk by (6a) and set

αk = ωαSDk , (11)

with 0 < ω < 2 a fixed constant [25]. We refer to this as SD(ω). It turns out that
there is a range of parameter values ω contained in the interval (0, 1) which yield fast,
chaotic gradient descent methods. In Section 5 we further investigate this surprising
damped steepest descent family.

The SD method is special in that its iteration residuals tend to oscillate in a
two-dimensional plane [1], a trap which the faster, chaotic gradient descent methods
avoid. But the behavior of the latter near planar sub-cycles is important nonetheless,
and this is investigated in Sections 6 and 7. Conclusions and further discussion are
offered in Section 8.

2 Sensitivity to Initial Conditions

Let us introduce several additional faster gradient descent variants that have been
considered by others. We can denote the methods considered in [8] by HLSD(s),
where each steepest descent step size is kept fixed for s consecutive iterations. Thus,
HLSD(2) = HLSD, and more generally they are defined by

αsj = αsj+1 = . . . = αs(j+1)−1 = αSDsj , j = 0, 1, 2, . . . . (12)

The method we shall denote by LSD(s) sets

αk = αSDk−s, (13)
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so LSD(1) = LSD. A variant of this, denoted here by RLSD(s), chooses the step size
αk randomly from αSDk , αSDk−1, . . . , α

SD
k−s. See [13]. Another method mixes the step sizes

αSDk and

αOMk =
rTkArk

(Ark)TArk

either regularly alternating [9] (SDOM) or by a uniformly weighted random average
of the two [2] (RSDOM). Finally we consider a relaxation method which sets the step
size as in SD(ω) but with ω ∈ (0, 1] selected at each step as uniformly random (RSD).
This was considered in [26].

All these methods significantly improve the speed of convergence of the SD
method, for some choices of the parameters involved.

Experiment 2 Consider the unperturbed model Poisson problem described in Exper-
iment 1. Table 1 records iteration counts required by different methods to bring the
relative residual norm ‖rk‖/‖r0‖ below a tolerance of 10−12, for a right hand side
b = 1 of all ones.

m x0 CG SD LSD HLSD LSD(2) SD(0.8) RSD RLSD(4)
49 (a) 10 341 71 69 87 113 145 82

(b) 10 341 77 62 85 120 170 77
225 (a) 33 1414 141 179 152 279 302 127

(b) 32 1414 215 151 143 290 393 166
961 (a) 71 5721 412 279 313 585 717 311

(b) 70 5721 441 417 377 535 1049 319
3969 (a) 143 22979 797 712 732 1331 1313 692

(b) 143 22979 976 567 828 1459 1901 585

Table 1: Iteration counts for the model Poisson problem using gradient descent with
different step size choices for initial vectors (a) x0 = 0 and (b) x0 = 10−3 · 1.

We use two starting guesses as specified in the Table’s caption. They are equally
smooth and differ from each other by 10−3 in the maximum norm.

The results in Table 1 exhibit the usual traits of the faster gradient descent methods
observed, e.g., in [2]. Thus, (i) the iteration counts increase much slower than κ =
O(m), behaving more like those of CG in trend, (ii) none of these gradient descent
method variants is consistently better than the others, and (iii) the progress of the
iteration counts as a function of m is less consistent than that of CG. The latter
observation relates directly to the fact that the quantities ‖rk‖ oscillate wildly as a
function of k; see Fig. 2 of [2], where the behavior of the resulting step size sequence
is also depicted.

Furthermore, we observe here the sensitivity of the total number of iterations re-
quired to achieve a fixed accuracy to small changes in the initial vector x0. This
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is in marked contrast to the behavior of the CG iteration, or the SD iteration, and
it suggests a chaotic behavior of the iterative process for the faster gradient descent
methods.

Figure 2: Iteration counts for LSD with a perturbation in a plane of extent 10−3.
Brighter color corresponds to higher iteration number.

To further illustrate the point, Fig. 2 depicts iteration counts, applying LSD to
the model Poisson problem for m = 121, where now the initial guess is perturbed to

x0 = a1e1 + a2e2.

Here −10−3 ≤ ai ≤ 10−3, and e1 and e2 are two randomly chosen orthogonal vectors.
The iteration counts for a tolerance of 10−8 on the relative residual norm are plotted
as a function of a1 on the horizontal axis and a2 on the vertical axis. These counts
varied between 96 (black) and 127 (white). The intricate structure is characteristic
of chaotic dynamical systems.

3 Comparison of Various Methods

In this section we compare statistically the performance of the faster gradient descent
algorithms by averaging over 100 different initial vectors (or equivalently over different
right hand sides).

In order to make sure we are not seeing artifacts from the highly symmetrical
Poisson problem on a uniform mesh, we consider here also three other matrices.
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Figure 3: A generalized Poisson equation with variable conductivity σ(x) was dis-
cretized using linear finite elements, resulting in an m × m matrix with m = 5970
and κ(A) = 3800.

1. First, consider what is commonly referred to as the generalized Poisson equation

−∇(σ(x)∇u) = q, (14)

subject to homogeneous Dirichlet boundary conditions, on a 3D cone geometry
depicted in Fig. 3. The (positive) conductivity σ(x) was taken to vary linearly
in a direction orthogonal to the symmetry axis of the cone. The resulting system
was discretized using a nodal finite element method with second order elements,
resulting in a matrix A of dimension m = 5970. We refer to this below as the
FEM model.

2. Next, denoting by L the matrix corresponding to the model Poisson problem
for (7), we consider the matrix

A = L−2 + 10−3L, (15)

which is typical in systems that arise in regularized inverse problems involving
PDEs [30]. Note that to form matrix-vector products Av, an inner linear prob-
lem Ly = w must be solved twice. In our experiments this is done accurately
using a direct method.

3. Finally, we consider a diagonal matrix A with random positive eigenvalues con-
strained to have a specified condition number κ = λ1/λm.

Experiment 3 Fig. 4 shows the average number of iterations required to converge
to various tolerances for the FEM model. Results with tol=10−6 for a model Poisson
system of comparable size are also displayed for comparison. We show the average
number of iterations for 100 randomly chosen smooth initial vectors x0. The random
vectors were constructed by placing 10 Gaussian hat sources of the form e−||x−x̃||2/2

at random locations x̃ in the geometry. The interval shown on each datum represents
the 95% confidence interval.
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(a) FEM for (14), tol=10−2
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(b) FEM for (14), tol=10−6
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(c) FEM for (14), tol=10−12
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(d) model Poisson problem, tol=10−6

Figure 4: Average iteration counts and 95% confidence intervals for the finite element
discretization of (14) with m = 5970, κ(A) = 3800. Also displayed are corresponding
results for the model Poisson model problem with m = 5929, κ(A) = 3500.

Fig. 5 displays the results applied to (15) for various tolerances. For comparison
we also show results with tol=10−6 for a diagonal positive definite random matrix of
the same size and condition number.

These experiments yield the following observations:

1. The methods’ performance for the finite element discretization of the generalized
Poisson system is similar in general trend to their performance for the model
finite difference discretization of the Poisson equation on a square mesh.

2. The methods’ performance for the inverse problem matrix (15) is similar in
trend to that for a diagonal positive definite random matrix having the same
condition number. Together with the previous observation, it appears that we can
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(d) Random, tol=10−6

Figure 5: Average iteration counts and 95% confidence intervals for the inverse prob-
lem equations (15) with m = 961, κ(A) = 400. Results for a diagonal positive definite
random matrix of the same size and condition number are also displayed.

analyze these fast gradient descent methods with synthetic (and not so realistic)
matrices.

3. For a very coarse tolerance of 10−2, the variants LSD, HLSD, SDOM, and
RLSD(1) (which use information from at most one previous step) are clearly
superior to the others. The methods with higher lag tend to oscillate in a wilder
fashion and with longer periods.

4. RSD considered in [26] performs much worse than SD(ω) with a constant under-
relaxation parameter ω = 0.9.

5. At tighter tolerances than 10−2, the one-step methods (R)SDOM, RSD, and
SD(ω) are inferior to other faster gradient descent variants.
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6. In the families of LSD, HLSD, and RLSD, a longer lag offers at most an im-
practically small advantage at tighter tolerances.

Digesting these observations we conclude that LSD, HLSD, and RLSD(1) are
experimentally indistinguishable, and are the methods that perform best under a
wide variety of circumstances.

Next we turn to examine the behavior of the residual vector for some of the faster
methods on one example.

Experiment 4 Consider the FEM model and apply LSD, LSD(2), and HLSD. In
Fig. 6(a) we plot the relative residual norm over a small window. For each of the
methods we also display the behavior of ||rk||/||rk−1|| in the frequency domain, using
the Morlet wavelet transform [17]. The following observations are in order:

1. LSD seems quasi-periodic, as does LSD(2); HLSD is less so.

2. The period of LSD is shorter and the amplitude of oscillation much smaller than
for LSD(2).

3. The dominant frequencies of LSD and LSD(2), about 0.16 and 0.1 (correspond-
ing to periods of about 6 and 10 iterations, respectively), appear to be universal
for the methods; we have observed the same values for a variety of matrices and
right hand sides.

4. A large amount of pseudo-randomness can be observed.

The numerical experiments above clearly suggest chaotic behavior in the faster
gradient descent methods.

4 Chaos

The gradient descent family of methods (4) is completely characterized by the residual
evolution, written as

rk+1 = (1− αkA)rk, k = 0, 1, . . . . (16)

Furthermore, if we write A = UΛUT with U orthogonal and Λ the diagonal matrix
of eigenvalues of A, and let r̂ = UT r, then (16) becomes

r̂k+1 = (1− αkΛ)r̂k, (17)

with ||r̂k|| = ||rk||. Thus, (17) has precisely the same convergence behavior as (16),
and hence we may consider without loss of generality a diagonal A for analysis pur-
poses. Note that now, if αk = λ−1

i for some i, 1 ≤ i ≤ m, then the ith component
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Figure 6: Performance of LSD, LSD(2), and HLSD: (a) residual versus iteration num-
ber on a limited interval of iterations; (b-d) individual frequency domain representa-
tions (i.e., magnitudes of the Morlet wavelet transform coefficients) of ||rk||/||rk−1||
over the entire iteration range. Results are for the FEM model with m = 5970.

of the next residual vanishes: r
(k+1)
i = 0. If m is large, though, then even if we knew

the eigenvalues we would not want to use them in this way in practice.
Below we will often omit the iteration index k where no confusion can possibly

arise. An alternative notation to (16), for instance, is

r← (1− αA)r. (18)

To study the behavior of these residual vectors, we associate with r the Akaike proba-
bility p, see [1], which is the component-wise square of the normalized residual, given
by

pi = (ri)
2/||r||2, i = 1, . . . ,m. (19)
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Note that p is formally a probability distribution as its values are non-negative and
they sum to 1, but it is not really the probability of anything of specific interest as
such.

Under the gradient descent family, the Akaike probability evolves according to

pi ← (λi − γ)2pi/M, (20)

where λ is the vector of the eigenvalues of A, γ = 1/α is the inverse step size, and M
is a generic normalizing factor.

Below we use the notation

〈v〉p ≡
m∑
i=1

vipi (21)

for the mean value of v under the probability distribution p. We will further omit
the subscript p in (21) if no ambiguity can arise. With this notation we have

M = 〈(λ− γ)2〉p,

and the relative reduction in residual norm

ζk = ||rk+1||2/||rk||2

can be written (using (18) and (19)) as

ζ = 〈(λ− γ)2〉/γ2. (22)

For the steepest descent method we have γSD = 〈λ〉 =
∑m

i=1 λipi and

ζSD = 〈(λ− 〈λ〉)2〉/〈λ〉2, (23)

which is the relative variance of λ. So if we could get the variance to be small, we
would get a large reduction in residual norm.

In [1] it was shown that the iteration (20), viewed as a non-linear dynamical
system, has a two-cycle attractor. In a nutshell, this paper showed by explicit com-
putation that the variance of λ under p in (20) is non-decreasing, from which it
follows that it must tend to a constant. From this it follows that in the limit p must
have only two nonzero values, and it oscillates between them under (20). A stability
argument then shows that these are the components associated with the largest and
smallest eigenvalues of A. In particular, this means that ζSD will never become small,
unless the oscillatory values are close to 0 and 1.

The proof in [1] does not apply for any of the other members of the gradient
descent family considered here. To analyze these other, faster methods and estab-
lish their chaotic behavior we compute the Lyapunov spectrum [21] associated with
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the dynamical system (20) numerically. If the maximum eigenvalue µ, called the
Lyapunov exponent, is positive, the dynamical system is chaotic.

We first write (20) in first order form. For the LSD(s) family the inverse step size
is given by

γ = a0〈λ〉p +
s∑
j=1

aj〈λ〉p−j
,

with p−j = pk−j where p = pk. Various choices of the coefficients aj result in different
such methods, including the one-step SD(ω) if we set a0 = 1/ω. The iteration (20)
can now be written as

pi ←

(
λi − a0〈λ〉p −

s∑
j=1

ajzj

)2

pi/M (24)

z1 ← 〈λ〉p
z2 ← z1

. . .

zs ← zs−1.

For the HLSD(s) family we can collect the s iterations with the same step size
into a single step, and the corresponding dynamical system reads

pi ← (λi − 〈λ〉p)2s pi/M. (25)

Each step of (25) corresponds to s steps of gradient descent (or an s-stage, 1st order
accurate Runge-Kutta method for (8)).

0.2

0.4

0.6

HLSD

LSD

SD(0.9)

SD

−0.002

0

0.002

Figure 7: Lyapunov spectra for various methods applied to the model Poisson prob-
lem with m = 49, for K = 10000 iterations. The small positive µ for the SD method
tends to 0 for K →∞.

The analytic formulas of the Jacobians Jk of the maps (24) and (25) can be easily
computed. We then perform a large number K of iterations and compute the product
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of all the iteration Jacobians

J(K) = JK−1 · · · J1J0.

Finally, we compute the spectral radius of J(K), denoted νK , and then estimate the
Lyapunov exponent by

µ ≈ µK =
1

K
log νK .

To prevent overflow and misalignment of the directions of maximal expansion we
perform a QR decomposition of J(K) every 10 iterations, rescale R to have maximum
matrix element 1, and keep track of the logarithm of the (rapidly growing) scale factor.

For a stable system, νK ≈ eµK for some negative µ, whereas for a chaotic system,
µ > 0 and nearby orbits separate exponentially, cf. [27, 28].

Experiment 5 Fig. 7 shows the Lyapunov spectrum for various methods applied to
the model Poisson problem with m = 49. For all the fast methods we have µ > 0,
whereas SD is marginally stable: further experiments with larger K suggest that µ→ 0
for K →∞.

The over-relaxed SD(ω) variant with ω = 1.1 (not shown) has µ < −.2 < 0 and is
stable. Thus, the over-relaxed SD(ω) joins the list of slow methods. See Experiment 6
for further experimentation and discussion of this case.

5 Relaxed steepest descent

The under-relaxed steepest descent method SD(ω) is not quite as fast as LSD, HLSD
or RLSD. But it is close, as Figs. 4 and 5 show, and this in itself may be considered
surprising. Note that here is a “clean”, memoryless one-step method. Furthermore,
there are no random parameters and no switches in the step size selection strategy
(such artifacts could be considered as external to a dynamical system).

Moreover, since ψ(α) = ψ(ωαSDk ) defined in (5) is a quadratic function that obtains
its minimum at ω = 1, and ψ(2) = ψ(0), we have ψ(α) < ψ(0) for 0 < ω < 2 (unless
we already are at the solution x). Standard arguments (e.g., [26, 24]) then imply that
the method yields monotonic decrease in f(x) of (2) and converges Q-linearly.

Finally, although this method with ω < 1 takes at each iteration a fraction of the
SD step size, its average step size is much larger than that of SD! Here then is one
of the simplest and cleanest instances of both a chaotic system and the peril of greed
(in numerical algorithms at least).

Experiment 6 Fig. 8 displays average iteration counts as a function of the relaxation
parameter ω for the model Poisson problem with m = 225, and a small version of the
FEM model with m = 224. A tolerance of 10−10 was employed.

Fig. 9(a) further shows for the model Poisson problem with m = 225 and various
values of ω the progress of the relative residual as a function of iteration.
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Figure 8: Under-relaxed (or damped) steepest descent iteration counts satisfying a
tolerance of 10−10 for the model Poisson problem and for the FEM model.

In Fig. 9(b) the Lyapunov exponent is displayed where it is positive. Apart from
the absolute number of iterations, the results for the model Poisson problem are almost
independent of m. In particular, we found the Lyapunov exponent to vary less than
1% between m = 49 and m = 961.

We make the following observations:

1. Almost any .5 < ω < 1 improves SD dramatically.

2. There is no chaos for ω ≥ 1, and using ω > 1 is worse than SD (which uses
ω = 1).

3. The transition to chaos at ω = 1 is quite sudden, reflected in a very sharp
increase of µ.

4. Depending on the problem (1), there is a minimum ωc below which there is again
no chaos. For the model Poisson problem we estimate ωc ≈ 0.2 whereas for the
finite element matrix ωc ≈ 0.03.

5. In all cases we tried (including many that are not shown here) a value of ω ≈ 0.9
performs very well.

6. In the examples shown in Figs. 8 and 9 the value ω = 0.99 also performs well,
but as we see from the residual plot of Fig. 9(a) it takes about 200 iterations
before chaos kicks in, a reflection of the small Lyapunov exponent. As a result
this choice of ω yields a very non-monotone behavior.

Let us consider SD(ω) near the critical value ω = 1. As can be seen in Fig. 9(a)
the effect of ω is very slow to show up and in the beginning the behavior is like SD.
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Figure 9: Residual decrease and Lyapunov exponent (where positive), Experiment 6.

Recall that for SD the Akaike probabilities p tend to having just p1 and pm nonzero,
with all the other components decaying to zero. If p2, . . . , pm−1 are negligibly small
then (20) reduces to a one-dimensional dynamical system, since we have pm = 1− p1.
For ω = 1 we obtain

p1 ← 1− p1

which yields a two-cycle with p1 and pm exchanging values. These values themselves
are indeterminate, which is reflected in the single zero eigenvalue in the Lyapunov
spectrum of SD (see Fig. 7). Let us now examine in detail the dynamics in this case,
which corresponds to the behavior for the planar case m = 2.

For generic ω, still assuming only p1 and pm nonzero, we parameterize p1 = c/(1+
c) and pm = 1/(1+c) with c ≥ 0. Substitution in (20) yields after some manipulations

c← F (c) =

(
1 + κη(1 + c)

(1− η)c− η

)2

c, (26)

where η = (ω − 1)/(κ− 1), with the condition number κ = λ1/λm.
The dynamical system (26) depends non-trivially on both κ and ω, as depicted in

Fig. 10. It can be seen from the figure that the system is chaotic for most parameters
ω < 1, but not everywhere.

The one-cycles of (26) can be found by solving F (c) = c for c ≥ 0, and they will
be stable if and only if |F ′(c)| < 0 at the solution. There is a fixed point at c = 0
with F ′(0) = (κω − 1)2/(ω − 1)2, which is stable only for 0 < ω ≤ 2/(1 + κ), i.e., for
very small ω. The second fixed point is at

c∗ = −1 + κη

κη
=

ω(κ+ 1)− 2

2κ− (κ+ 1)ω
,
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Figure 10: Lyapunov exponent where positive for relaxed steepest descent as a
function of ω and κ for the two-dimensional case.

and exists for
2/(1 + κ) ≤ ω ≤ 2κ/(1 + κ),

i.e., almost everywhere for large κ. Calculation of |F ′(c)| reveals that the fixed point
is unstable for ω < 2/(1 +κ) or ω > 2κ/(1 +κ), which are close to 0 and 2 and, more
interestingly, for 4κ/(1+κ)2 < ω < 1. The latter covers most of the region of interest
for reasonably large values of κ.

For ω a bit greater than 1, i.e., slightly over-relaxed, we have a stable cycle near
c = 1, corresponding to p1 = pm = 1/2 and a uniform step size. This is the neutrally
stable SD two-cycle, which has now become a one-cycle with specific values of p1, pm.

Fig. 10 suggests that the unstable fixed point does not settle into a stable higher
order cycle, but decays into chaos, except for some sparse special combinations of
ω and κ. While not being able to perform a complete analysis we can demonstrate
chaos for any specific numerical values of ω and κ by showing that there exists a
three-cycle, i.e., a non-negative solution of

F (F (F (c))) = c. (27)

In that case Sharkovsky’s Theorem applies, since F (c) is continuous for 0 < ω < 1,
and there must be (unstable) cycles of any period as well as chaotic cycles [20]. For
example, with κ = 10, ω = 0.5, the only (real) solutions of (27) are 0 and 7/29 which
are however also one-cycles. But for κ = 10, ω = 0.9, we find 4 nontrivial three-
cycles, by numerically solving (27). Fig. 11 depicts the behavior of p1 for ω = 0.9 and
ω = 1.1, for a diagonal matrix A with κ = 100. Note that for the unstable one the
oscillations in p1 grow wider and wider until they are thrown back to approximately
the middle, and another cycle starts. This is significant since (23), approximately
valid for ω ≈ 1, indicates that the residual norm reduction is large for p1 near 0 or 1,
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Figure 11: Evolution of p1 under (26) for ω = 0.9 and ω = 1.1. The condition
number was κ = 100, and p1 was initialized to 0.5.

as this minimizes the variance. Specifically, (23) becomes

ζ = p1(1− p1)/(p1 + λm/(λ1 − λm))2. (28)

6 LSD and HLSD in the planar case

The analysis for just p1 and pm nonzero is easier for LSD and HLSD. Thus we set
m = 2 in this short section, preparing for the next one. For LSD we obtain

p
(k+1)
1 =

p
(k)
1

(
p

(k−1)
m

)2
p

(k)
1

(
p

(k−1)
m

)2
+ p

(k)
m

(
p

(k−1)
1

)2 , (29)

and similarly for p
(k+1)
m . Parameterizing as before by p1 = c/(1+c) and pm = 1/(1+c)

we obtain

ck+1 = ck/(ck−1)
2. (30)

The system (30) has an unstable fixed point at c = 1 (i.e., p1 = pm = 1/2) and rapidly
diverges. Fig. 12 displays loglog(c) = sign(c) log10(| log10(c)|) starting at c0 = 3/2 and
c1 = 2/3. The values alternate between very large (already 10107

after 50 iterations)
and very small ones. The large and small values come in groups of two or three with
no discernible pattern. In this case (22) becomes

ζk+1 = 〈(λ− 〈λ〉pk−1
)2〉pk

/〈λ〉2pk−1
,

and if both pk and pk−1 are close to (1, 0)T or (0, 1)T , which does happen as we can
see in Fig. 12, then this becomes very small in magnitude, resulting in a very fast



20

0 10 20 30 40 50
−8

−6

−4

−2

0

2

4

6

8

iteration
lo

gl
og

(c
)

Figure 12: Evolution of c under (29) on a doubly logarithmic scale for a problem
with m = 2, κ = 100.

reduction of the residual norm: significantly faster not only than SD but also than
SD(0.9) for κ� m = 2.

For HLSD the analogue of (29) reads

p
(k+1)
1 =

(
p

(k)
m

)4
p

(k)
1

(
p

(k)
m

)4
+ p

(k)
m

(
p

(k)
1

)4 , (31)

which becomes in terms of c

ck+1 = 1/(ck)
3. (32)

This recursion has the explicit solution

ck = c
(−3)k

0 ,

which is again doubly exponentially divergent and approaches an alternation between
pk = (1, 0)T and pk = (0, 1)T . Since in (22) γ = γk is held fixed over two consecutive
iterations, we again get a doubly exponential reduction of the residual norm. The
corresponding iteration count for a given tolerance is thus comparable to LSD and
significantly better than SD(ω) for any ω.

7 The role of planar sub-cycles in general

The analysis provided in Section 5 is relevant also for the general case of m > 2.
In this case none of the faster methods ever settle into a sustained pattern where
p2, . . . , pm−1 are negligibly small, but numerical evidence presented in this section
shows they do so briefly. The mechanisms from Sections 5 and 6 then cause a fast
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reduction of the residual norm until λ1p1 no longer dominates λipi, i > 1, and a
more complicated dynamics involving more than just p1 and pm sets in. In effect the
chaos acts as a pump that occasionally moves the significant residual components into
just the first and last components. Then the planar fast error reduction mechanism
discussed above kicks in and the residual is again spread over all its components.
In the remainder of this section we present numerical evidence that this pattern is
actually happening.

Under-relaxed steepest descent

Let us now consider p2, . . . , pm−1 very small but positive. For SD this is a stable
situation, and p2, . . . , pm−1 get smaller and smaller [1]. Let us write (20) as

pi ← ξipi,

with ξi the growth (or reduction) factor. Neglecting p2, . . . , pm−1 and writing
(p1, pm) = (1− p, p) we have for i = 2, . . . ,m− 1

ξi =
p

1− p
(1− θi/p)2, with θi = (λ1 − λi)/(λ1 − λm),

so 0 < θi < 1. Now, if each iteration interchanges p1 and pm as in SD, the product of
the growth factors after two iterations is

ξ
(k)
i ξ

(k+1)
i = [(1− θi/p)(1− θi/(1− p))]2 =

(
1 +

θi(θi − 1)

p(1− p)

)2

< 1, (33)

hence stability follows. (This is reflected in the negative Lyapunov eigenvalues de-
picted in Fig. 7.) If the two-cycle is not stable, however, as is the case in damped
steepest descent, then this stability no longer holds and the probabilities p2, . . . , pm−1

can grow.

Experiment 7 Fig. 13 shows part of the iterations applying SD(0.99) to the model
Poisson problem for m = 961. We have diagonalized A, and plot the probability
component pm, the error

√
rTA−1r (which is monotonically decreasing and therefore

somewhat clearer than the `2 residual norm), and

prest =
m−1∑
i=2

pi,

which measures how much action is going on outside the extremal planar subspace.
The following observations are in order:

1. prest remains fairly small.
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Figure 13: Error, pm, and prest for SD(0.99) applied to the model Poisson problem.

2. The diverging oscillation patterns observed in Fig. 11 occur here too.

3. When the oscillations in pm grow slowly, (33) is approximately valid, hence prest
gets reduced in an oscillatory manner as in SD.

4. The error reduces in jumps which occur when the pm oscillation terminates and
a new cycle starts. The reason for the sharp reduction in error is that (p1, pm)
hit their extremal values, resulting in a small ζ in (28).

5. prest usually increases sharply after each jump in the error, because (33) is no
longer approximately valid.

LSD and HLSD

We next consider a numerical experiment using the faster methods LSD and HLSD,
which mimics the one above for damped SD, in an attempt to see what is different
for these methods.

Experiment 8 Figs. 14 and 15 show comparable plots to those in Fig. 13 for LSD
and HLSD, respectively.

The following observations are in order:

1. prest remains significantly large most of the time.

2. Each significant decrease in error is preceded by a sharp drop in prest. This
indicates that the planar subspace dynamics is responsible for the reduction in
error.

3. Each significant decrease in error is preceded by a large oscillation in pm.
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Figure 14: Error, pm, and prest for LSD applied to the model Poisson problem.
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Figure 15: Error, pm, and prest for HLSD applied to the model Poisson problem.

8 Conclusions and further discussion

It is obvious that a faster gradient descent method must occasionally employ step sizes
that are, strictly speaking, unstable [2]. We have further shown that such a method
exhibits chaotic behavior, having in particular a positive Lyapunov exponent. Our
numerical experiments clearly exhibit chaotic traits such as performance sensitivity
to initial data.

The relaxed SD(ω) method was analyzed. For the under-relaxed, or damped case,
this is a surprisingly fast, chaotic one-step method free of switches and random choices
which can significantly outperform SD.

Considered over a wide range of problems (1) and initial guesses, the LSD and
HLSD variants are as good as any other practical gradient descent method and better
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than most.
The inverse step size γk = 1/αk using any of the methods SD, LSD and HLSD

can be written as

γk =
qTkAqk
qTk qk

, (34)

for appropriate qk defined at the kth iteration in terms of the residuals rk and rk−1.
Further assuming that A is diagonal and defining for each iteration the probabilities

pi = (qi)
2/‖q‖2, i = 1, . . . ,m,

we have

γk =
m∑
i=1

λipi.

Starting the iterative process with roughly equal probabilities pi, the terms λipi cor-
responding to large eigenvalues dominate the expression for γk, and hence αk is small,
being proportional to λ−1

1 . The resulting iteration is a smoother, reducing the large-
eigenvalue residuals far more effectively than the small-eigenvalue ones [29, 2]. The
difference between SD and the faster methods is that in SD, λ1p1 remains dominant
for all iterations k, hence the method is just a smoother and its efficiency is com-
parable to one with the best uniform step size. With LSD or HLSD, on the other
hand, the large-eigenvalue probabilities reduce further so that eventually other λipi
dominate, yielding a smaller γ hence a larger step size α = αk. An iteration with
such a large step size is not a smoother in itself, but it is more effective in reducing
other, smaller-eigenvalue residuals [2]. Its instabilities increase the large-eigenvalue
probabilities which then return to domination, and so on. The analysis and exper-
imentation offered in this article further explain and expand on this broad-brush
description.

A gradient descent iteration can be written as

rk−1 = c(A− γk−1I)−1rk,

where c is an irrelevant proportionality constant. This is an inverse power iteration for
A using the shift γk−1 (e.g., [16]). Therefore, rk−1 better approximates the eigenvector
associated with the eigenvalue of A that is closest to γk−1 than rk does. Now, for LSD
qk = rk−1, hence γk is closer than γk−1 to the eigenvalue that γk−1 approximates. The
same effect occurs for HLSD every second iteration. The ensuing iteration with both
methods is particularly effective in decreasing the corresponding residual component.
This effect is strongest for the planar case m = 2, where choosing γ0 = λ1 and γ1 = λ2

would yield exact convergence in two iterations. Sections 6 and 7 further elaborate
upon, analyze and numerically demonstrate these issues, clarifying why amongst the
chaotic methods the two-step ones are faster. See also [14].
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For any fixed number of iterations n, the optimal gradient descent method in the
sense of minimizing f(xn) is CG. This is because the CG and gradient descent iterates
are in the same Krylov subspace, over which CG minimizes f . With CG, denoting
rn = pn(A)r0 for an appropriate polynomial pn of degree n satisfying p(0) = 1, we
can further write

pn(A) = (I − αCGn A) · · · (I − αCG1 A),

where αCG1 , . . . , αCGn are the (positive) roots of pn. Thus we obtain CG as a gradient
descent method using these αCGk as step sizes.

Of course, these optimal step sizes are not known without carrying out the CG
method, thus solving the problem at the preprocessing stage. Moreover, the expres-
sion for pn(A) does not imply any particular ordering of the step sizes. Hence a
method that attempts to find the step sizes αCGk approximately one at a time would
not necessarily produce a monotone step size sequence nor a monotonically decreas-
ing sequence of residual norms. It is also possible to obtain a faster gradient descent
method by restarting CG every few iterations. Such a method could be strictly inferior
to CG, though. Potentially related methods may be designed by using a look-ahead
approach, cf. [5]. We leave further thoughts on this for future work.

Finally, let us emphasize that although we have provided analytical as well as
numerical indications regarding the performance of our favorite faster gradient descent
methods, a firm hold on the rate of convergence of these methods, such as is available
for CG, remains elusive.
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