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Abstract

Inverse problems involving systems of partial differential equations (PDEs)
with many measurements or experiments can be very expensive to solve numer-
ically. In a recent paper we examined dimensionality reduction methods, both
stochastic and deterministic, to reduce this computational burden, assuming
that all experiments share the same set of receivers.

In the present article we consider the more general and practically important
case where receivers are not shared across experiments. We propose a data
completion approach to alleviate this problem. This is done by means of an
approximation using a gradient or Laplacian regularization, extending existing
data for each experiment to the union of all receiver locations. Results using
the method of simultaneous sources with the completed data are then compared
to those obtained by a more general but slower random subset method which
requires no modifications.

1 Introduction

The reconstruction of distributed parameter functions, by fitting to measured data
solution values of partial differential equation (PDE) systems in which they appear as
material properties, can be very expensive to carry out. This is so especially in cases
where there are many experiments, where just one evaluation of the forward operator
can involve hundreds and thousands of PDE solves. And yet, there are several such
problems of intense current interest where the use of many experiments is crucial for
obtaining credible reconstructions in practical situations [22, 10, 15, 12, 18, 25, 30,
29, 24, 6, 4]. Extensive theory (e.g., [23, 3, 2]) also suggests that many well-placed
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experiments are often a practical must for obtaining credible reconstructions. Thus,
methods to alleviate the resulting computational burden are highly sought after.

To be more specific, consider the problem of recovering a model m € IR'™, repre-
senting a discretization of a surface function m(x) in 2D or 3D, from measurements
d; e R, i =1,2,...,s. For each i, the data is predicted as a function of m by a
forward operator F;, and the goal is to find (or infer) m = m* such that the misfit
function

¢(m) = Z i (m) — dy* (1)

is roughly at a level commensurate with the noise.! The forward operator involves
an approximate solution of a PDE system, which we write in discretized form as

Am)w; =q;, i=1,...,s, (2a)

where u; € R™ is the ith field, q; € IR' is the ith source, and A is a square matrix
discretizing the PDE plus appropriate side conditions. Furthermore, there are given
projection matrices P; such that

F;(m) = Pu;, = PA(m) 'q; (2b)

predicts the ith data set. Thus, evaluating F; requires a PDE system solve, and
evaluating the objective function ¢(m) requires s PDE solves.

For reducing the cost of evaluating (1), stochastic approximations are natural.
Thus, introducing a random vector w = (wy, . .., w,)”, from a probability distribution
satisfying

E(ww!) =1 (3)

(with E denoting the expected value with respect to w and I the s X s identity
matrix), we can write (1) as

¢(m) = E (I!Zwi(Fi(m) —di)HQ), (4)

and approximate the expected value by a few samples w [1]. If, furthermore, the data
sets in different experiments are measured at the same locations, i.e., P, = P Vi, then

sz’Fi = sz’PiA(m)_l(lz‘ = PA(m)_l(Zwiqi)a (5)

! Throughout this article we use the £5 vector norm unless otherwise specified.



which can be computed with a single PDE solve per realization of the weight vector
w, so a very effective procedure for approximating the objective function ¢(m) is
obtained [17].

Next, in an iterative process for reducing (1) sufficiently, consider approximating
the expectation value at iteration n by random sampling from a set of s, vectors w,
with s, < s potentially satisfying s, < s; see, e.g., [27, 20, 14]. Several recent papers
have proposed methods to control the size s, [9, 13, 5, 26]. Let us now concentrate on
one such iteration n, for which a specialized Gauss-Newton (GN) or LBFGS method
may be employed. Still assuming P, = P Vi, We can write (4) using (5) and the
Frobenius norm || - ||r as

¢(m) = |[|F(m)-DIF, (6)
F=[F,Fy,....F,] e R”*, D=[dy,ds,...,d] € R”,

and its estimator in the nth iteration as

~

H(m, W) = in(F(m) ~ D)W, (7)

where W = W, = [Wl,Wg,...,Wsn] is an s x s, matrix. Different methods of
simultaneous sources are obtained by using different algorithms for this model and
data reduction process. In [26] we have discussed and compared three such methods:
(i) a Hutchinson random sampling, (ii) a Gaussian random sampling, and (iii) the
deterministic truncated singular value decomposition (TSVD). We have found that,
upon applying these methods to the famous DC-resistivity problem, their performance
was roughly comparable (although for just estimating the misfit function by (6), only
the stochastic methods work well).

A fourth method considered in [26] (following [9]) was called “Random Subset”,
where a random subset of the original experiments is selected at each iteration n. This
method does not require that the receivers be shared among different experiments.
However, its performance was found to be generally worse than the methods of simul-
taneous sources, roughly by a factor between 1 and 4, and on average about 2.2 This
brings us to the quest of the present article, namely, to seek methods for the general
case where P; does depend on i, which are as efficient as the simultaneous sources
methods. The tool employed for this is to “fill in missing data”, thus replacing P;,
for each 7, by a projection matrix to the union of all receiver locations, i = 1,...,s.

The prospect of such data completion, like that of casting a set of false teeth
based on a few genuine ones, is not necessarily appealing, but is often necessary for
reasons of computational efficiency. Moreover, applied mathematicians do a virtual
data completion automatically when considering a Dirichlet-to-Neumann map, for

2 The relative efficiency factor further increases if a less conservative criterion is used for algorithm
termination.



instance, because such maps assume knowledge of the field u (see, e.g., (8) below) or
its normal derivative on the entire spatial domain boundary, or at least on a partial
but continuous segment of it. Such knowledge of noiseless data at uncountably many
locations is never the case in practice, where receivers are discretely located and some
noise, including data measurement noise, is unavoidable. On the other hand, it can
be argued that any practical data completion must inherently destroy some of the
“integrity” of the statistical modeling underlying, for instance, the choice of iteration
stopping criterion, because the resulting “generated noise” at the false points is not
statistically independent of the genuine ones where data was collected.

If the forward problem is very diffusive and has a strong smoothing effect, as
is the case for the DC-resistivity and EIT problems, then data completion can be
attempted using a (hopefully) good guess of the sought model m by solving the
forward problem and evaluating the solution wherever necessary [16]. The rationale
here is that even relatively large changes in m(x) produce only small changes in the
fields u;(x). However, such a prior might prove dominant, hence risky, and the data
produced in this way, unlike the original data, no longer have natural high frequency
noise components. Indeed, a potential advantage of this approach is in using the
difference between the original measured data and the calculated prior field at the
same locations for estimating the noise level ¢ for a subsequent application of the
Morozov discrepancy principle [31, 11].

Our approach is to approximate or interpolate the given data directly while taking
advantage of prior knowledge as to how the fields u; must behave. For this, we use
a Tikhonov-type regularization in our approximation, penalizing the discretized Lo
integral norm of the gradient or Laplacian of the fields. We believe that this approach
applies to a more general class of PDE-based inverse problems. Our approach is
further described and theoretically justified in Section 3.

We emphasize that the full justification of data completion by any method or
approach must ultimately involve comparisons to existing alternative methods. In
Section 4 we therefore apply one of the algorithms in [26] to test problems that
are similar to those considered in [26] (although with different receiver locations of
course). The purpose is to investigate whether the simultaneous source algorithm
based on completed data achieves results of similar quality at a cheaper price, as
compared to the random subset method of [9]. Overall, encouraging results are ob-
tained provided that the original data set is not too sparse, and we quantify this for
the problem described in Section 2. Conclusions are offered in Section 5.

2 The inverse problem
For the forward problem we consider, following [26, 9, 17|, a linear PDE of the form

V- (c(x)Vu) = q(x), x €, (8a)



where o is a given conductivity function which may be rough (e.g., discontinuous)
but is bounded away from 0: there is a constant oy > 0 such that o(x) > 0y, Vx € Q.
This elliptic PDE is subject to the homogeneous Neumann boundary conditions

ou
— =0, x€N. 8b
o (8b)
In our numerical examples we take Q C IR? to be the unit square or unit cube,
and the sources q to be the differences of d-functions. The PDE (8) is discretized on
a staggered grid as described in [26]3.
For the inverse problem we introduce additional a priori information, when such

is available, via a parameterization of o(x) in terms of m(x). Defining the transfer
function

. ) . T o + Qg
V(r) = w(mhian,0) = atanh () + T2 9)
o — (V1
oO = —,

2
consider one of two scenarios:
1. In practice, often there are reasonably tight bounds available, say o, and oyax,

such that oy, < 0(X) < Opax. Such information may be enforced using (9) by
defining

o(x) = (m(x)), with (r) = (751, Omin; Omax)- (10)

2. Occasionally it is reasonable to assume that the sought conductivity function
o(x) takes only one of two values, o; or o7, at each x. As in [7, 8, 9, 26] we use
an approximate level set function representation, writing o(x) = limy,_,0 o(x; h),
where

o(x;h) = Y(m(x); h,or,007). (11)

The function ¢(7; h) depends on the resolution, or grid width h. As h — 0 the
sought function m(x) satisfying

V- (@(mx)Vu,) = ¢, t=1,...,s, (12)
aui
a_n‘ag = 0,

has bounded first derivatives, whereas o(x) is generally discontinuous.

Next, we use a modified GN method precisely as described in [26]. We omit
repeating that description here.

3We are citing descriptions in our previous work to avoid repetition. A verbose version of this
reference can be found at http://www.cs.ubc.ca/~ascher/papers/rodoas.pdf



3 Data completion

Let I'; denote an open subset of the boundary, I'; C 02, where the receivers for the
it" experiments are placed. Our goal here is to extend the data for each experiment
to the union I' = [JTI'; C 012, the common measurement domain. In practice, the
conductivity o(x) in (8a) is often piecewise smooth with finite jump discontinuities.
As such one is faced with two scenarios: (a) the discontinuities are some distance away
from I'; and (b) the discontinuities extend all the way to I". These cases result in a
different a priori smoothness of the field u on I". Hence, in this section we treat these
cases separately and propose an appropriate data completion algorithm for each.

Consider the problem (8). In what follows we assume that 2 is a bounded open
domain and 02 is Lipschitz. Furthermore, we assume that there is a finite number
of disjoint subdomains, ; C €, such that Ujvzl ﬁj = Q and o N Q € C%* for
some 0 < a < 1. The conductivity is also assumed to be distributed such that
o€ C%(Qy), j=1,...,N. Moreover, assume that ¢ € L.,(2) and ¢ € Lip(€; N Q),
i.e., it is Lipschitz continuous in each subdomain; this assumption will be slightly
weakened in Subsection 3.3.

Under these assumptions and for the Dirichlet problem with a C?(9)) boundary
condition, there is a constant 7, 0 < v < 1, such that u € C?7(€;) [19, Theorem
4.1]. In [21, Corollary 7.3|, it is also shown that the solution on the entire domain is
Holder continuous, i.e., u € C#(Q) for some 3, 0 < 3 < 1. Note that the mentioned
theorems are stated for the Dirichlet problem, and in the present article we assume
a homogeneous Neumann boundary condition. However, in this case we have infinite
smoothness in the normal direction at the boundary, i.e., C"° Neumann condition,
and no additional complications arise; see for example [28]. So the results stated
above would still hold for (8).

3.1 Discontinuities in conductivity are away from common
measurement domain

Next, let I' C (092; N 0Q) for some j. Then we can expect a rather smooth field
at T'; precisely, u € C*7(T'). Thus, u belongs to the Sobolev space H%(T'), and we
can impose this knowledge in our continuous completion formulation. For the 7
experiment, we define our data completion function v; € H?(T') as the solution of a
discretized version of the optimization problem

1 2 2
mvln§||v—ui||L2(Fi)+)\||AU||L2(r)a (13)

where A\ is the regularization parameter: it can depend on the amount of noise in
our data and on how much smoothness we would like to impose on the approximated
forward problem solution. The discretization of the first term in (13) involves a
restriction which selects those given data points that fall inside I';, whereas that of the
regularization functional involves a standard uniform mesh as specified in Section 4.



Figure 1 shows an example of such data completion. The true field and the
measured data correspond to an experiment described in Example 3 of Section 4.
We only plot the profile of the field along the top boundary of the 2D domain. As
can be observed, the approximation process imposes smoothness which results in an
excellent completion of the missing data. Note that the extrapolated points at the
bottom left corner of the graph are also recovered to a pleasing accuracy.

True noiseless
* Measured noisy data
———Completed data

Figure 1: Completion using the regularization (13). This plot corresponds to an
experiment taken from Example 3 where 50% of the data requires completion and 5%
noise has been added.

3.2 Discontinuities in conductivity extend all the way to
common measurement domain

This situation corresponds to the case in which I' intersects more than just one of the
(02N 0Q;)’s. More precisely, assume that there is an index set J C {1,2,--- N} with
|J| = K > 2 such that {I'N (02N 09Q;)° , j e J} forms a set of disjoint subsets of
[ such that T' = |J;., (92 N 9;)°, where X° denotes the interior of the set X, and
that the interior is with respect to the subspace topology on 0€). In such a case, u is
no longer necessarily in H?(T'). Hence, the smoothing term in (13) is no longer valid,
as [|Aul[, ) might be undefined or infinite. However, as described above, we know

that the solution is piecewise smooth and overall continuous, i.e., u € C?*? (ﬁj) and



u € C?(Q). Proposition 1 below shows that the smoothness on T is not completely
gone: we may lose one degree of regularity at worst.

Proposition 1 Let U and {U;| j = 1,2,--- K} be open and bounded sets such that
K. U;. Further, let u € C(U) N HY(U;) V5.

the U; are pairwise disjoint and U = U]

Then v € HY(U).

Proof It is easily seen that since u € C(U) and U is bounded then u € Ly(U). Now,

let ¢ € C5°(U) be a test function and denote 0; = a_ Using the assumptions that

the U;’s form a partition of U, u is continuous in U, ¢ is compactly supported inside
U, and the fact that OU;’s have measure zero, we obtain

[ N
:/UK 0 = Z/uaqs Z/ u¢u— /aw

where v/ is the i component of the outward unit surface normal to dU;. Since
u € HY(U,;) Vj, the second part of the rightmost expression makes sense. Now, for
two surfaces dU,, and dU,, such that dU,, N oU,, # 0, we have v/"(x) = —v]'(x) Vx €
oU,, N dU,,. This fact, and noting in addition that ¢ is compactly supported inside
U, makes the first term in the right hand side vanish. We can now define the weak
derivative of u with respect to x; to be

K
= OuXy,, (14)
j=1

where Xy, denotes the characteristic function of the set U;. So we get

/Uuﬁi(b: —/Uvgé. (15)

K
||U||L2(U) S Z ||aiu||L2(Uj) < 09, (16)
j=1

We also have

and thus we conclude that v € H'(U). &

Returning to the problem on hand, we can see that if the assumptions stated at
the beginning of this section hold, we can expect a field u € H'(T'). This is obtained
by invoking Proposition 1 with U =T" and U; =T N (02N 0Q,)° for all j € J.



Now we can formulate the data completion method as that of finding v = v; which
solves the discretized version of the optimization problem

. 1 2 2
Invln 2 Il = uiHLz(Fi) A HVUHL2(F) ’ (17)

where A is as in Section 3.1.

Figure 2 shows an example of such data completion using the formulation (17).
The true solution and the measured data correspond to an experiment using the model
in Example 4 of Section 4. We only plot the profile of v; on the top boundary. Since
the discontinuities in the conductivity o extend to the measurement domain, we can
see that the field is now only piecewise smooth yet continuous. The approximation
process imposes less smoothness along the boundary as compared to (13), and this
results in an excellent completion of the missing data. Note that the extrapolated
points at the bottom left corner of the graph are also recovered to a pleasing accuracy.

True noiseless
* Measured noisy data
———Completed data

Figure 2: Completion using the regularization (17). This plot corresponds to an
experiment taken from Example 4 where 50% of the data requires completion and 5%
noise has been added. Discontinuities in the conductivity extend to the measurement
domain and their effect on the profile of the field along the boundary can be clearly
observed.

After solving the discretized (13) or (17) we have the complete discretized data,
v;, on the entire measurement domain for all the experiments ¢ = 1,...,s. So, we
can subsequently assume having P = P; Vi.
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Regarding the cost of carrying out our data completion strategy, we note that
strictly speaking there are s fo-optimization problems to be solved in (13) or (17). For-
tunately, these problems can be easily and efficiently solved once discretized. More-
over, this is a preprocessing stage which is completed before the algorithm for solving
the nonlinear inverse problem commences, so it is carried out once and for all, not
anew at each GN iteration. As the data completion for each experiment can be
carried out independently of others, the preprocessing stage can be done in parallel
if needed. Furthermore, the length of the vector of unknowns v; is relatively small
compared to those of u; because only the boundary grid points are involved. All in
all the amount of work involved in the data completion step is dramatically less than
one full evaluation of the misfit function (1).

Now we can use one of the algorithms proposed in [26] in order to perform the
inversion using the simultaneous sources. However, there is one difficulty which arises
as a by-product of the data completion step: since the noise is also interpolated, the
initial noise statistics is lost and there is no clear way to determine the noise tolerance
which may be used to stop the iterative algorithm. One easy way around this is to
evaluate the misfit for the stopping criterion on the initial, given data with the original
noise level.

3.3 Point sources and boundaries with corners

In the numerical examples of Section 4, as in [9, 26|, we use delta function combina-
tions as the sources ¢;(x), and these are clearly not honest L, functions. Moreover,
our domains €2 are a square or a cube and as such they have corners.

However, the theory developed above, and the data completion methods that
it generates, can be extended to our experimental setting because we have control
over the experimental setup. The desired effect is obtained by simply separating
the location of each source from any of the receivers, and avoiding domain corners
altogether.

Thus, consider in (8a) a source function of the form

q(x) = ¢(x) +0(x —x7) = d(x —x™),

where ¢ satisfies the assumptions previously made on ¢. Then we select x* and
x** such that there are two open balls B(x*,r) and B(x™,r) of radius r > 0 each
and centered at x* and x*™, respectively, where (i) no domain corner belongs to
B(x*,r)U B(x**,r), and (ii) (B(x*,7) U B(x**,r)) NI is empty. Now, in our elliptic
PDE problem the lower smoothness effect of either a domain corner or a delta function
is local! In particular, the contribution of the point source to the flux oVu is the
integral of 0(x — x*) — J(x — x™), and this is smooth outside the union of the two

balls.
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4 Numerical experiments

The general setup of our numerical experiments is the same as that in [26]: we consider
a unit square or unit cube for the domain €2, and for each experiment 7 there is a
positive unit point source at x| and a negative sink at x5, where x} and x} are two
locations on the boundary 0f2. Hence in (8a) we must consider sources of the form
¢;(x) = 0(x — x}) — §(x — x3), i.e., a difference of two §-functions.

For our experiments in 2D, when we place a source on the left boundary, we
place the corresponding sink on the right boundary in every possible combination.
Hence, having p locations on the left boundary for the source would result in s = p?
experiments. The receivers are located at the top and bottom boundaries. No source
or receiver is placed at the corners.

In 3D we use an arrangement whereby four boreholes are located at the four
edges of the cube, and source and sink pairs are put at opposing boreholes in every
combination, except that there are no sources on the point of intersection of boreholes
and the surface, i.e., at the top four corners, since these four nodes are part of the
surface where data values are gathered.

In the sequel we generate data d; by using a chosen true model (or ground truth)
and a source-receiver configuration as described above. Since the field u from (8) is
only determined up to a constant, only voltage differences are meaningful. Hence we
subtract for each ¢ the average of the boundary potential values from all field values
at the locations where data is measured. As a result each row of the projection matrix
P; has zero sum. This is followed by peppering these values with additive Gaussian
noise to create the data d; used in our experiments.

In the following numerical examples, we compare the performance of Algorithm 2
in [26] using the completed data against the same algorithm using the Random Subset
method defined there. As advocated in [26], we use Gaussian distribution for the
mixing weights. In both cases, we use Random Subset in the uncertainty check step,
and the stopping criterion is verified using the original uncompleted data.

For all of our numerical experiments, the “true field” is calculated on a grid that
is twice as fine as the one used to reconstruct the model. For the 2D examples, the
reconstruction is done on a uniform grid of size 642 with s = 961 experiments in the
setup described above. For our 3D examples, the reconstruction is done on a uniform
grid of size 173.

Numerical examples are presented for both cases described in Sections 3.1 and 3.2.
For all of our numerical examples except the last one, we use the transfer function (10)
with opax = 1.2maxo(x), and oy, = 1—12 mino(x). In the ensuing calculations we
then “forget” what the exact o(x) is. Further, we set the PCG iteration limit to
r = 20, and the PCG tolerance to 1073. The initial guess is mg = 0. Our last
example is done using the level set method (11). Here we can set r = 5, significantly
lower than above. The initial guess for the level set example is also as in [26].

In addition to displaying the log conductivities (i.e., log(c)) for each reconstruc-
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tion, we also show the log-log plot of misfit on the entire data (i.e., ||F'(m) — D|/r)
vs. PDE count, and the relative ¢, error (i.e., H‘ﬂ;ﬂ’”) vs. PDE count. A table of
total PDE counts (not including what extra is required for the plots) for each method
is displayed. In order to simulate the situation where sources do not share the same
receivers, we first generate the data fully on the entire domain of measurement and
then knock out at random some percentage of the generated data. In each of the nu-
merical examples corresponding to the scenarios explained in Sections 3.1 and 3.2, by
“Completed Data” we mean using Algorithm 2 in [26] with completed data employing
regularizations (13) and (17), respectively.

Example 1 In this example, we place two target objects of conductivity oy = 0.1
in a background of conductivity orr = 1, and 3% noise is added to the data. Also,
20% of the data requires completion. The discontinuities in the conductivity are some

distance away from the common measurement domain so we can use (13) to complete
the data.

0

-0.2

-0.4 |
-0.6 '
-0.8
1 :

(a) True model (b) Random Subset (¢) Completed Data

Figure 3: Example 1 — reconstructed log conductivity with 20% data missing and
3% mnoise: (a) true solution, (b) Random Subset, (c) Data Completion. Regulariza-
tion (13) has been used to complete the data.

Method | Random Subset Data Completion
Work 3,367 1,597

Table 1: Work in terms of number of PDE solves for Example 1.

Figures 3 and 4, as well as Table 1, reflect superiority of the simultaneous source
method combined with data completion over the Random Subset method.

Example 2 This is the same as Fxample 1, except that the discontinuities in the
conductivity are touching the measurement domain. Therefore, we use the regulariza-
tion (17) to complete the data.
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6 -
10" ——Random Subset
—+— Completed Data

10° 10' 10° 10° 10* 10° 10' 10° 10° 10°

(a) Data misfit (b) Relative ¢5 error

Figure 4: Data misfit and relative ¢y error vs. PDE count for Example 1.

0
-0.2
-0.4
-0.6
-0.8
1

(a) True model (b) Random Subset (¢) Completed Data

Figure 5: Example 2 — reconstructed log conductivity with 20% data missing and
3% mnoise: (a) true solution, (b) Random Subset, (c) Data Completion. Regulariza-
tion (17) has been used to complete the data.

Method | Random Subset Data Completion
Work 6,302 2,769

Table 2: Work in terms of number of PDE solves for Example 2.

From Tables 1 and 2, we see that the reconstruction with completed data and the
simultaneous sources method can be done more efficiently (by a factor of more than
two), compared to using the Random Subset method. The quality of reconstruction
is also very good. Note that the graph of the misfit for Data Completion lies entirely
under that of the Random Subset method. This means that, given a fixed number of
PDE solves, we obtain a lower (thus better) misfit for Data Completion as opposed
to Random Subset.

Example 3 For this example, we merely swap the conductivities of Example 1, and
increase the added noise to 5%. The proportion of the data that requires completion
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——Random Subset
—+—Completed Data
----'Desired Misfit

——Random Subset
—+— Completed Data
10° 10' 10° 10° 10* 10° 10' 10° 10° 10°

(a) Data misfit (b) Relative ¢5 error

Figure 6: Data misfit and relative ¢y error vs. PDE count for Example 2.

is increased to 50%. We again use the reqularization (13) to complete the data. The
results are gathered in Table 3 and Figures 7 and 8.

0
0.2
0.4
0.6
0.8
1

(a) True model (b) Random Subset (¢) Completed Data

I {05

Figure 7: Example 3 — reconstructed log conductivity with 50% data missing and 5%
noise: (a) true solution, (b) Random Subset, (c) Data Completion. Formulation (13)
has been used to complete the data.

Method | Random Subset Data Completion
Work 5,139 2,320

Table 3: Work in terms of number of PDE solves for Example 3.

Similar observations to those for the previous examples hold here, too.

Example 4 For this example, we use the same setup as the previous example, but
with the discontinuities of the conductivity now touching the common measurement
domain. We use (17) to complete the data. The results are gathered in Table 4 and
Figures 9 and 10.
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——Random Subset
—+—Completed Data
----'Desired Misfit

—— Random Subset
1 —+— Completed Data
. . .

10° 10' 10° 10° 10* 10° 10' 10° 10° 10°
(a) Data misfit (b) Relative ¢5 error

Figure 8: Data misfit and relative ¢y error vs. PDE count for Example 3.

0
-0.2
0.4
0.6
-0.8

(a) True model (b) Random Subset (¢) Completed Data

Figure 9: Example 4 — reconstructed log conductivity with 50% data missing and 5%
noise: (a) true solution, (b) Random Subset, (¢) Data Completion. Formulation (17)
has been used to complete the data.

Method | Random Subset Data Completion
Work 5,025 1,818

Table 4: Work in terms of number of PDE solves for Example 4.

Based on Tables 3 and 4, we can make the same observations as in Examples 1
and 2 in terms of total work required: a similar speedup factor of more than 2 in the
number of PDE solves is observed. The quality of reconstruction is again very good
even in the case where half of the measurement domain needs to be completed.

Example 5 In this 3D example, we place a target object of conductivity oy =1 in a
background with conductivity orr = 0.1, see Figure 11, and 2% noise is added to the
“exact” data. Then we knock out 50% of the data and use (13) to complete the data.

Results are gathered in Figures 12 and 13 as well as Table 5. The data completion
plus simultaneous sources algorithm again does well, with an efficiency factor ~ 2.75.
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——Random Subset
—+— Completed Data 10"
----'Desired Misfit

——Random Subset
1 —+— Completed Data
. . . —

‘ ‘
10° 10' 10° 10° 10* 10° 10' 10° 10° 10°

(a) Data misfit (b) Relative ¢5 error

Figure 10: Data misfit and relative {5 error vs. PDE count for Example 4.
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Figure 11: True Model for Example 5.

Method | Random Subset Data Completion
Work 11,620 4,243

Table 5: Work in terms of number of PDE solves for Example 5.

Example 6 Here the discontinuities in the conductivity extend all the way to the
common measurement domain, see Figure 14, and we need to use (17) to complete the
data. The target object has the conductivity o; = 1 in a background with conductivity
orr = 0.1. We add 2% noise and knock out 30% of the data.

Method | Random Subset Data Completion
Work 9,093 1,268

Table 6: Work in terms of number of PDE solves for Example 6.

It can clearly be seen from the results of Examples 5 and 6 that Algorithm 2
of [26] does a great job recovering the model using the completed data plus the
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Figure 12: Example 5 — reconstructed log conductivity for the 3D model with (a,b)
Random Subset, (¢,d) Data Completion for the case of 2% noise and 50% data missing.
Regularization (13) has been used to complete the data.
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Figure 13: Data misfit and relative ¢y error vs. PDE count for Example 5.

simultaneous sources method as compared to Random Subset with uncompleted data.
This is so both in terms of total work and the quality of the recovered model. One
possible explanation for this is that after completing the data using the appropriate
formulation, we inject some added information into the whole data set. If this extra
information is valid then we are in fact heading for a better reconstruction.

Example 7 This is the same as Example 6 except that we use the level set transfer
function (11) to reconstruct the model. The results are recorded in Figures 17 and 18
as well as Table 7.

Method | Random Subset Data Completion
Work 3,671 935

Table 7: Work in terms of number of PDE solves for Example 7.

It is evident from Figure 17 that employing the level set formulation allows a
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Figure 15: Example 6 — reconstructed log conductivity for the 3D model with (a,b)
Random Subset, (c,d) Data Completion for the case of 2% noise and 30% of data
missing. Regularization (17) has been used to complete the data.
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Figure 16: Data misfit and relative {5 error vs. PDE count for Example 6.

significantly better quality reconstruction than in Example 6. This is expected, as
much stronger assumptions on the true model are employed. The algorithm proposed
here produces a better reconstruction than the Random Subset one on the uncompleted
data. The relative efficiency observation can be made from Table 7, where a factor of
roughly 4 is obtained. It was shown in [7] and [26] that using level set functions can
greatly reduce the total amount of work, and this is observed here as well.



19

(b) 3D view

(d) 3D view
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Figure 17: Example 7 — reconstructed log conductivity for the 3D model using the
level set transfer function (11) with (a,b) Random Subset, (c,d) Data Completion for
the case of 2% noise and 30% of data missing. Regularization (17) has been used to
complete the data.
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Figure 18: Data misfit and relative ¢5 error vs. PDE count for Example 7.

5 Conclusions and future work

This paper is a sequel to [26] in which we studied the case where sources share the
same receivers. Here we have focused on the very practical case where sources do not
share the same receivers and have proposed a new approach based on appropriately
regularized data completion. Our data completion methods are motivated by theory
in Sobolev spaces regarding the properties of weak solutions on the domain boundary.
The resulting completed data allows an efficient use of the methods in [26]. Our
approach shows great success in cases of mild to moderate data completion, say up
to 50%. In such cases, we have demonstrated that, utilizing Algorithm 2 of [26], an
execution speedup factor of 2 and possibly much more can be achieved while obtaining
excellent reconstructions.

Let us caution that for severe cases of missing data, say 70% or more, we do not
recommend data completion in the present context as a safe approach. With so much
completion the bias in the completed field could overwhelm the given observed data,
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and the recovered model may not be correct. In such cases, one can simply use the
Random Subset approach as described in [9]: although this method is slower, the
reconstructed model can be more reliable.

We have tested several other regularized approximations on the set of examples of
Section 4, including data interpolation using piecewise linear functions, and several
DCT, wavelet and curvelet approximations. The first of these has the advantage of
being very simple, while for the others we had hoped to leverage the recent advances in
compressive sensing and sparse £; methods. However, of all these, the methods using
the formulations (13) and (17) were found to perform best in the context described
in Sections 3 and 4.

The specific data completion techniques proposed in this paper were justified and
used in our model DC resistivity (or EIT) problem. However, the overall idea can be
extended to other PDE based inverse problems as well by studying the properties of
the solution of the forward problem. One first needs to see what the PDE solutions
are expected to behave like on the measurement domain, for example on a portion of
the boundary, and then imposing this prior knowledge in the form of an appropriate
regularizer in the data completion formulation. Following that, the rest can be similar
to our approach here. Study of such extensions to other PDE models could be also
another subject for future studies.
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