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Abstract

We describe a methodology called computed myography to qualitatively and
quantitatively determine the activation level of individual muscles by voltage
measurements from an array of voltage sensors on the skin surface. A finite
element model for electrostatics simulation is constructed from morphometric
data. For the inverse problem, we utilize a generalized Tikhonov regularization.
This imposes smoothness on the reconstructed sources inside the muscles
and suppresses sources outside the muscles using a penalty term. Results
from experiments with simulated and human data are presented for activation
reconstructions of three muscles in the upper arm (biceps brachii, bracialis
and triceps). This approach potentially offers a new clinical tool to sensitively
assess muscle function in patients suffering from neurological disorders (e.g.,
spinal cord injury), and could more accurately guide advances in the evaluation
of specific rehabilitation training regimens.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The aim of the methods described in this paper is to provide a detailed mapping of the activity of
individual muscles by using surface electromyography (sEMG) data from multiple recording
sites. We call the resulting system computed myography (CMG).

Muscle activity monitoring can be used for the diagnosis of musculoskeletal deficits, such
as those arising from spinal cord injury or stroke, and for guiding rehabilitation. Conventional
monitoring of a patient recovery process is restricted to describing a general pattern of recovery
[3], mostly based on functional assessments. The CMG system proposed in this paper has the
potential to display detailed activity changes in individual muscles. Basic research in motor
control, for instance aimed at measuring muscle synergies [1], would also benefit from a tool
to measure individual muscle activities. See, e.g., [3, 5, 6, 10, 25] for further clinical detail.
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The novelty of the present work is in the application of inverse problem techniques.
Moreover, to produce an effective tool for medical diagnostics and to compare synthetic
experiments against those for human measured data, a detailed 3D modeling of the spatial
domain (which is that of a limb) must be performed.

The sources of electrical signals originating from muscle fibers are relatively well
understood; both simple and detailed forward models for these are available, see [27]. For
example, in [24] a multi-layer finite element method (FEM) model of an idealized cylindrical
limb was used to predict the sEMG signal detected when a single source is present.

The inverse problem is to reconstruct current sources, inside muscles of a limb, using
simultaneous spatial information from a surface-mounted grid of sEMG sensors. The
reconstructed sources are such that the measured sEMG data are subsequently explained
by the model. This inverse problem, in its general form, is well known [18] to have no unique
solution, i.e. many different sources can fit the data exactly. We must, therefore, constrain the
solution to the inverse problem appropriately.

A simple-minded approach is to select the solution with minimum norm [17]. However,
because signals from deep sources decay when propagating to the surface due to volume
conduction, they need to be stronger than superficial sources to explain the data. This method
would, therefore, place the reconstructed sources as close as possible to the sensors, and is thus
unable to detect deep sources. A more promising approach incorporates a priori information
into the regularization process by imposing some measure of solution smoothness. This
can be done by weighting the minimum least-squares norm of the solution with that of its
gradient, thus introducing the Laplacian operator under the necessary conditions [28, 29].
The physiological basis for this well-known approach is that activity in nearby regions is
correlated within muscles. Note though that this yields blurred reconstructions. The amount
of blurring decreases when the number of surface data is increased up to an upper limit, when
the maximum resolution has been obtained. In many of our applications, we are only interested
in the integrated activity over a specific muscle region, and in this case the details which are
lost due to blurring are probably not important.

1.1. Related work

The only previous work [2, 19, 23, 31] on source localization in sEMG that we are aware of
uses an overdetermined discrete source model (see below for details on this type of models).
These efforts seem to be of a preliminary nature.

Clinical applications of high density sEMG were reviewed in [9]. These applications
focus mainly on measuring detailed properties such as the pulse shape of individual motor
unit (MU) action potentials and utilizing multiple surface electrodes as an alternative to needle
EMG. They do not focus on a comprehensive mapping of the current sources within a muscle
(i.e. localization). The corresponding methods require similar measurement techniques as our
proposed method, i.e. utilizing a grid of simultaneous sensors, whereas the data analysis part
has no overlap with our method. See, for example, the HD-sEMG hardware described in [22].

Temporal information can be used to attempt to separate the mixing of signals from
multiple motor units (‘crosstalk’) in the sEMG signals. With advanced processing methods
such as ‘precision decomposition’ [4], it is possible to separate up to five MUs. In many
applications, crosstalk elimination (or reduction) is a central challenge; see, for example,
[4, 20]. While this is not our main goal and so will not be further pursued here, we note that
our approach can also achieve a level of crosstalk reduction. If we reconstruct the current
sources within the individual muscles, it is then possible to calculate what the sEMG signal
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would be if only a particular muscle of interest was active. Thus, we eliminate the signals
from the other co-activated muscles.

However, for our purposes crosstalk is not a problem but rather part of the solution, as it
is precisely the mixing of signals from different locations in individual voltage sensors that
enables the reconstruction of spatial information of the various current sources in the muscles.

Activity source localization within the brain from surface electroencephalogram (EEG)
data has been an active area of research for decades, and it has close connections to our
proposed methodology. A recent review of the state of the art of EEG inverse modeling can be
found in [28]. The sEMG inverse problem has many similarities to the EEG inverse problem,
and we will therefore review some of this material on EEG source localization and highlight
the relations to the inverse sEMG problem. In a typical clinical practice, the number of
monopolar EEG electrodes conventionally used is about 20, but localization can be improved
by increasing this number up to 60, whereas increases in recording electrode numbers have
only a marginal effect in sensitivity or accuracy [28]. It is also important to sample the scalp
uniformly with the available electrodes. Two distinct EEG inverse modeling approaches are
used to localize sources in the brain [28]. The first goes under the name ‘overdetermined
discrete source models’. In this approach, the sources are assumed to be a small number of
current dipoles and they are placed to best fit the data, as predicted by a forward model (i.e. a
model that can predict measured surface EEG data from a model of the current sources in the
brain). The number of sources is taken such that the number of unknown parameters is less
than the number of independent measurements (i.e. data at the electrodes) so that the solution
is unique. The intrinsic problem with this method is that the number of dipole sources cannot
be determined in advance, and that only a limited number of sources can be reconstructed,
whereas cortical activity can involve a large number of sources. Therefore, models that make
no prior assumption about the number of sources have received increased attention. Since the
number of electrical sources in a normally active muscle is also large, we believe that this
method is not well suited to the reconstruction of muscle activation patterns.

The second method is referred to as ‘underdetermined distributed source models’. In this
approach, the domain is subdivided into a large number of voxels and a distinct dipole current
source value (an activation) is assigned to each voxel. The task is then to find a configuration
of values in the voxels that explain the data. Because a large number of voxels are used, this
problem is underdetermined, i.e. many patterns of activation can fit the measurements exactly
or up to the noise level. Regularization is necessary to make the solution stable and locally
unique so that small variations in the data do not cause large variations in the solution. Various
different weighting strategies that do not penalize deep sources heavily have been proposed
[11, 13, 14, 16]. However, there is no physiological basis for these weighting strategies. A
more promising method penalizes lack of solution smoothness, as explained earlier [28, 29].
The physiological basis for this approach is that neural activity in nearby regions is correlated.
Since the same is true in muscles, we believe that this approach, appropriately modified for
sEMG, is the most promising one for our purpose.

In section 2, we proceed to develop our method, discussing both modeling and
computational issues. In section 3, we then put the method to the test and report on results
from four experiments involving synthetic as well as human data. Conclusions are offered in
section 4.

2. Forward and inverse modeling

We wish to reconstruct muscle activations through sEMG, that is, from measurements of the
electric potential on the surface (skin). The sources of the potential field are polarization
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(a) Systems diagram (b) 3D geometry

Figure 1. (a) Diagram of the CMG system. The thick arrows indicate sequential processing steps,
the thin arrows indicate data produced or used, rectangles represent processes and the slanted
rectangles represent data. The preprocessing is done once for a patient and remains valid as long
as no significant change in morphology takes place. (b) A 3D domain � (consisting of muscle, fat
and bone) with the physical boundary ∂�1 (gray) and the cut boundary (textured) ∂�2.

waves called ‘intracellular action potentials’ (IAP) which travel outward over the individual
muscle fibers starting at the axon connection, roughly in the middle of the muscle fiber. Each
MU is a collection of muscle fibers which is excited more or less synchronously. Typically,
there are 100–1000 MUs per muscle which may or may not be temporally dependent. The
speed of the action potential traveling over the fiber (about 3–5 m s−1) is called the conduction
velocity. It is proportional to the radius of the fiber. The ‘motor unit action potential’ (MUAP)
is the resultant depolarization wave of all the fibers in a particular MU. The wave shape of the
IAP is known, and standard models exist to describe it. The length of the pulse is typically
2–40 mm. The most primitive model is a tripole traveling outward in pairs; more sophisticated
models use parameterized functions. The speed of the action potentials is sufficiently slow so
that electrical potential propagation can be considered instantaneous. Usually, sEMG data in
the frequency domain are considered up to 500 Hz (2000 Hz for needle EMG).

2.1. Methodology

Our source localization methodology consists of the following steps, illustrated in figure 1.

(i) Acquire a three-dimensional geometry model by the segmentation of MRI data.
(ii) Build a forward model for 3D volume conduction which can predict surface voltages (i.e.

it can predict the data) from given current sources in the muscles.
The electrostatic potential u(x) satisfies the generalized Poisson partial differential

equation (PDE) on the domain �
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−∇(σ∇)u = I (x) in �, (1a)

∇nu = 0 on ∂�1, (1b)

∇nu = −�u on ∂�2. (1c)

Here, n is the outward normal at the boundary and σ(x) is the conductivity tensor
(note that it is not isotropic in the muscles). The source I (x) is the transmembrane current
density, which we assume is proportional to the second spatial derivative along the muscle
fiber direction of the muscle fiber intracellular action potential V (x, t). We distinguish
two types of boundaries: the physical boundary ∂�1, representing skin on which data
can be measured, and the cut boundary ∂�2, which represents the artificial boundary
of our model (i.e. a cut through the arm; see figure 1(b)). The � term is an effective
resistance modeling the flow of currents in and out of our modeling domain at its artificial
boundaries.

(iii) Solve the inverse problem by computing the most likely current sources that can explain
measured data.

Such an inversion problem is typically ill-posed, which means that the solution is
not unique and/or the solution does not continuously depend on the data. Regularization
utilizing a priori information is then employed to incorporate our prior knowledge of the
electrical activities in the muscles. This knowledge includes properties such as smoothness
and the regions of possible activation. We then reconstruct the current sources m(x) in
the muscle fibers by minimizing the least-squares data fitting error plus a generalized
Tikhonov regularization penalty function that incorporates our a priori information.

2.2. Inverse problem formulation

Denote our measured data, which are (linear combinations of) voltages at specific points
on the skin ∂�1, by the vector b with components bk, k = 1, . . . , K . Define the linear
operator Q which produces a vector of corresponding measurements from a potential field
u(x). The measurements can be monopolar, differential or any other linear form. Note that
Q also carries information about the reference electrode, when used. For example, consider
K differential electrodes which measure voltage differences between locations pk and qk . We
have bk = u(pk) − u(qk), and the operator Q can be written as

Q(k,x) = δ3(pk − x) − δ3(qk − x),

with δ3 being the three-dimensional Dirac function. The transpose operator QT has
components QT (x, k) = Q(k,x). It produces a field u(x) which takes values (in a distribution
sense) bk at pk and −bk at qk . For another example, consider monopolar electrodes. Because
voltage is only defined up to an additive constant, we need to define a reference voltage. A
good choice is the average voltage over all electrodes pk , leading to

Q(k, x) = δ3(pk − x) − 1

K

K∑
l=1

δ3(pl − x).

The inverse problem is to find a current density source I that produces a potential field
u(x) satisfying (1) such that Qu(x) ≈ b. Let us write I (x) = Dm(x), where m is the
source function to be reconstructed. The operator D can be taken to be the identity, in which
case m is just the current density I, or (without loss of generality) we can choose (assuming
that the muscle fibers are aligned in the z-direction) D = d2/dz2, in which case m is the
transmembrane potential V . More complicated operators D based on known properties of the
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IAP are possible too. Which choice of D will produce the best reconstructions is unclear in
general, and we determine the best choice experimentally in the following.

We subdivide the domain � explicitly into various regions of interest (ROI) �r such as
muscle, fat, bone and skin, each with distinct conductivity properties. The regularized inverse
problem is then formulated as the following constrained optimization problem:

minm,uφ ≡ 1

2
‖Qu − b‖2 +

β

2

∑
r

∫
�r

(∇m · W r∇m + μrm
2) dx, (2)

subject to

−∇(σr∇)u = Dm in �r,

∇nu = 0 on ∂�1,

∇nu = −�u on ∂�2,

with constant matrices W r and scalars β and μr . We distinguish ROI where we have possible
nonzero sources m and other regions such as fat, bone and muscle which we know a priori to
be inactive. In the ROI, we normalize the matrix W r to satisfy trace(W r ) = 3. It determines
the anisotropy of the smoothing operator which we allow to have different values in the fiber
direction and in the orthogonal directions. It is a constant diagonal matrix if the muscle fibers
are aligned with one of the coordinate axes. Outside the ROI, we set W = 0. The damping
factors μr are taken to be small or zero in the ROI and are set to a large value (O(1/β)) outside
the ROI to suppress reconstruction of sources there. The value of the regularization parameter
β balances the relative weights given to the least-squares difference between predicted and
measured data versus the a priori properties imposed on the solution. Extensive literature
(see, for example, [32] for a review) exists on how to determine this parameter.

To write (2) in the Lagrangian form, we introduce the forward operator A corresponding
to the forward equations (1) (including boundary conditions), and similarly define the
regularization operator Z through

β
∑

r

∫
�r

(∇m · W r∇m + μrm
2) dx =

∫
�

mZm dx.

Introducing Lagrange multipliers λ(x), we obtain the Lagrangian

L(u,m, λ) = 1

2
‖Qu − b‖2 +

1

2

∫
�

mZm dx +
∫

�

λ(Au − Dm) dx, (3)

and the resulting system of PDEs forming the necessary conditions for a minimum is

Au − Dm = 0, (4a)

Aλ + QT Qu = QT b, (4b)

Zm − Dλ = 0. (4c)

Equations (4) must further be discretized in order to enable an effective numerical
simulation. Moreover, an arm cross-section does not have a simple rectangular or spherical
geometry, so a finite element method employing a nontrivial mesh must be used. We discretize
(4) using the COMSOL Multiphysics Finite Element Modeling software using tetrahedral
meshes with second-order isoparametric elements (called ‘Lagrange elements’ in COMSOL).
The resulting sparse indefinite linear system cannot be solved by any of the built-in iterative
solvers of COMSOL, but we can extract the coefficients of the linear system and export these
to MATLAB. The resulting indefinite system of equations can be reduced in a standard way to

6



Inverse Problems 24 (2008) 065010 K van den Doel et al

(a) Anatomical image (b) 3D geometry constructed (c) Mesh and 12 sensors

Figure 2. (a) Cross-section of a generic upper arm. The image was segmented into different
anatomical regions: brachialis, biceps, triceps, fat and skin, and bone. The resulting 2D regions
were then extruded in the vertical direction to create a 3D geometry (b) and imported into the
finite element software COMSOL. The 3D geometry was then meshed with tetrahedral elements,
and the differential equations were discretized in COMSOL and exported to MATLAB. For the
inverse problem so constructed we could then use measured data, or else generate synthetic data,
for example at the locations shown in the cross-sectional view of the mesh (c), placing known
current sources in the muscles.

a smaller but less sparse positive definite system by eliminating the variables corresponding
to u and λ. This leads to

(DA−1QT QA−1D + Z)m = DA−1QT b, (5)

where m is a vector of the N degrees of freedom resulting from the discretization
of the continuous field m(x). Similarly, the other variables (D,A,Q,Z, b) are the
matrix representations of the linear operators introduced previously. We solve this linear
system of equations numerically using a preconditioned conjugate gradient (PCG) method
with the preconditioner Z−1. For each PCG iteration we need to compute a product
DA−1QT QA−1Dv (for some vector v), which requires the solution of two forward problems.
The latter is accomplished by an inner PCG iteration with an ILU preconditioner. This solution
method is similar to that used in [7, 8]. The outer PCG iteration was terminated when the
relative residual is less than 10−4.

3. Reconstruction results

3.1. Experimental setup

We have created a 3D geometry of a section of the upper arm, based on the image displayed
in figure 2(a), taken from [15]. The image was manually segmented into subcutaneous fat and
skin, bone, brachialis, biceps and triceps. We use a lumped model for subcutaneous fat and
skin, but intend to extend the model with a boundary layer of skin. The segmented geometry
was then imported into COMSOL and we extruded the slice by 20 cm in the vertical direction
to create a 3D geometry. Conductivities were assigned to the different regions using the values
reported in [24]. The geometry was meshed with tetrahedral elements. A coarse mesh of
32 607 elements was used for the data inversion, whereas a finer mesh of 61 452 elements
was used to generate synthetic measurement data, so as to avoid so-called ‘inverse crimes’.
The system of equations (4) was entered in COMSOL and discretized with an FEM method
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using second-order Lagrange elements. The resulting system of discretized partial differential
equations was solved outside COMSOL as described above following (5).

The top and bottom of our arm model are modeled as an effective resistance, with the
resistance calculated from a 10 cm uniform section of the appropriate material (fat, muscle or
bone). For the model to be valid, the artificial boundaries have to be sufficiently distant from
the sources so that they have a negligible influence. We have verified explicitly that none of
our results depend on the precise value of this effective resistance parameter.

The inversion method was first tested with synthetic simulated data from a single tripole
source, then with 5000 randomly placed sources in a single muscle or in a combination of
muscles and several configurations of simulated sensors, and finally with data from a human
subject. For the tripole model we use the simplest triangular model, with a pulse length of
1cm. No difference in results was observed when the slightly more detailed Rosenfalck model
[30] was employed instead. If so desired more realistic models for the IAP (for example,
[26, 27]) could be used, but since we use our sources only to test the inversion method there
is no need for higher model accuracy here.

3.2. Experiment 1: discriminating brachialis and biceps

The first experiment investigates the ability to discriminate between activations of the biceps
and the brachialis. The biceps muscle lies between large portions of the brachialis and the
electrode array, and we can therefore expect the brachialis to be less ‘visible’ to the sensors. In
this experiment, the reconstructed sources were constrained to the biceps and brachialis with a
large penalty term μr in the triceps. We placed 5000 sources in the biceps, in the brachialis or
in both. The sources were restricted to the middle 10 cm of the slice in the vertical direction,
in order to be sufficiently far from the artificial boundaries. The forward solution Qu was then
computed at 215 points on the surface grid, and a 5% random Gaussian noise was added to it.
This is referred to below as ‘surface data’. The surface data were then restricted to a set of
56 points in a ring around the center (‘ring data’).

The reconstructions were evaluated with the 3D visualization tools provided by COMSOL
as well as by calculating the current source power density in individual muscles, defined as the
average of m2 over a muscle. This is an objective measure of activation of the whole muscle.
For the reconstructions, we then measure the ratio of biceps and brachialis activations.

Experimentally, we found that the best reconstructions were obtained using D = 1, μr =
0 in the ROI, β = 10−11 and W = 1. The source m was constrained to attain very small
values outside the muscle regions using a penalty method with μr = 1000/β outside the ROI.
The value of the regularization parameter β was tuned to result in a data discrepancy of about
1.5 times the value derived from the noise level. The results are depicted in figures 3–5. The
configuration with surface data gives good reconstructions as judged by visualization or by
using the power density metric displayed under the figures. Significantly reduced accuracy
is observed with the ring data when only the brachialis is active as the biceps also appears
co-activated, though only with half the power density of the brachialis.

3.2.1. Sensitivity analysis. Assessing the sensitivity of the reconstruction to uncertainties in
the conductivity parameters (which appear in the forward model (1)) is important, as these
are not known very accurately [24]. To determine the effect of these, we have repeated the
experiment with sources in the biceps only, as in figure 4, for several modifications of the
conductivity parameters. The artificial data are calculated with the same conductivity values
as before. But then, the conductivity parameter values are modified in the forward model
that is used during the inverse problem reconstruction. Table 1 displays the results. The
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(a) Synthetic source model (b) Reconstructed model with
surface data (215 points)

(c) Reconstructed model with
ring data (56 points)

Figure 3. Experiment 1: (a) 5000 synthetic current tripole sources placed at random locations
in the biceps and brachialis. The region of activation is visualized by displaying a surface that
encloses 80% of the current sources as measured by the integrated current power. The current
sources are then displayed as reconstructed from the surface data (b) and from the more restricted,
ring data (c). For the ratio (theoretically = 1) of biceps and brachialis activations, we obtain ratio =
0.953 using the surface grid of 215 data and ratio = 0.91 using the 56 points on a ring.

(a) Synthetic source model (b) Reconstructed model with
surface data (215 points)

(c) Reconstructed model with
ring data (56 points)

Figure 4. Results as in figure 3 with artificial sources placed in the biceps only. The reconstructions
give for the ratio (theoretically = 0) of brachialis and biceps activations: ratio = 0.03 using the
surface grid of 215 data and ratio = 0.05 using the 56 points on a ring.

parameters are multiplied by the values indicated in the table, and the ratio of brachialis and
biceps activation is shown for various configurations. The results are rather insensitive to the
bone and fat conductivities, whereas the sensitivity to the muscle conductivities is higher. If
the transversal or longitudinal conductivity is off by a factor of 2, the error (which is 3% with
the correct conductivity values) can become as high as 18%. If the anisotropy ratio is held
fixed, i.e. longitudinal and transversal muscle conductivities are both off by the same factor
of 2, then the effect is much smaller, leading only to a doubling of the error. We conclude
that the anisotropy is the most sensitive parameter in the reconstruction. If this parameter is
not known accurately enough, it may be necessary to tune it experimentally by performing the
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(a) Synthetic source model (b) Reconstructed model with
surface data (215 points)

(c) Reconstructed model with
ring data (56 points)

Figure 5. Results as in figures 3 and 4 with artificial sources placed in the brachialis only. The
reconstructions give for the ratio (theoretically = 0) of biceps and brachialis activations: ratio =
0.11 using the surface grid of 215 data and ratio = 0.54 using the 56 points on a ring. In the ring
configuration, 35% of the activity is erroneously attributed to the biceps instead of the brachialis,
which indicate that this sensor configuration is not adequate. As the brachialis is mostly covered
by other muscles, it is the hardest to identify.

Table 1. The conductivities of fat, bone and muscle used for the inverse model in transversal (T)
and longitudinal (L) directions are multiplied by the tabulated factors. The ratio of brachialis and
biceps activations is used as error measure for the reconstruction.

Fat Bone Muscle (T) Muscle (L) Error (%)

1 1 1 1 3.0
4 1 1 1 4.0
0.25 1 1 1 3.7
1 4 1 1 2.9
1 0.25 1 1 3.1
1 1 1.5 1 9.0
1 1 0.75 1 3.2
1 1 2 1 15
1 1 0.5 1 14
1 1 1 1.5 7.5
1 1 1 0.75 8.7
1 1 1 2 14
1 1 1 0.5 18
1 1 2 2 6.1
1 1 0.5 0.5 4.2

reconstruction under controlled circumstances (where we know what the result should be) for
several values.

In the subsequent experiments, we considered potential sources in all three muscles.

3.3. Experiment 2: single source localization

The ability to localize a single artificial source is sometimes used as a performance measure for
source imaging in EEG. In particular, the LORETA [28, 29] method features zero localization
error. While we believe that this feature is probably not very relevant for our situation where
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(a) D = 1 (b) D = d2/dz2 (c) D = 1 (d) D = d2/dz2

(e) D = 1 (f) D = d2/dz2 (g) D = 1 (h) D = d2/dz 2

Figure 6. Reconstructions of the location on a single tripole source. The true position is indicated
by a lighter square and the reconstructed position is indicated by the black shape. In (g) m(x) had
multiple local maxima and we indicate the region obtained by thresholding m to show the three
maxima.

many thousands of sources are active, we have tested our method by placing a single tripole
source at various locations in the three muscles and collecting data on the full surface grid. For
D = 1 we use the same parameters as before, whereas for D = d2/dz2 we use β = 10−6. The
values of β were chosen to result in a data discrepancy of 1.5 times the value predicted from
the known noise level which was again 5%. The reconstructed source locations were then
identified with the maximum of m(x). The results are depicted in figure 6. A noticeable
localization error occurs in (e) and (f), presumably due to the deep location of the source
near the bone. The reconstruction failed in (g) for the deepest source in the brachialis, where
three local maxima were found using D = 1. However, in this case, the reconstruction with
D = d2/dz2 was quite accurate.

3.4. Experiment 3: discriminating brachialis, biceps and triceps

In this experiment, we placed artificial sources in all three muscles in five combinations:
sources in a single muscle, equal amount in the brachialis and biceps, and equal amount in
all three. Reconstructions were then made, and the source power per muscle (the average
value of m2 on a muscle) was calculated for analysis. We tried both D = 1 and D = d2/z2,
and full surface data and ring data (as in experiment 1). While the results of the two choices
for D made little difference using full surface data, with D = 1 being somewhat better, the
reconstruction with data on the ring failed completely for D = d2/dz2 for all values of the
parameters we tried. The number of PCG iterations required was 20–50 for D = 1 and
500–1000 for D = d2/dz2. In figure 7, we show the resulting reconstructed power densities.
The reconstructions are quite accurate using surface data but using ring data we again observe
spurious co-activation between brachialis and biceps.

11



Inverse Problems 24 (2008) 065010 K van den Doel et al

(a) Surface data, D = 1 (b) Surface data, D = d2/dz2 (c) Ring data, D = 1

Figure 7. Reconstructions of the power (total power normalized to 100) in biceps, brachialis
and triceps. Artificial sources (with equal densities) were placed in the indicated muscles and
reconstructions are shown for full data on the boundary and for data on the central ring. For the
latter, no reasonable reconstruction using D = d2/dz2 could be obtained.

3.5. Experiment 4: bipolar human data

In this set of experiments we investigated the effect of using bipolar (differential) electrodes
for sEMG measurement, with both human and synthetic data. The human sEMG data were
obtained from a healthy human subject during isometric flexion and extension using a ring
of 12 sensors around the upper arm. We used Delsys Bagnoli Desktop EMG Systems for
the measurements. Differential sensors were employed since they are more widely used in
sEMG than monopolar sensors, so it is important to determine if they can be used effectively
with this method. However, theoretical arguments suggest that for our purposes monopolar
sensors are much better suited. Differential sensors are popular as they reduce crosstalk from
distant sources. The reason is that the spatial derivative of the EMG signal decays faster in
the volume conductor than the monopolar signal [27]. However, this is the opposite of what
we want for our application, as the information present in the crosstalk is used by our method
to reconstruct the spatial information.

The sensors were placed approximately in the middle of the upper arm, aligned with the
muscle fibers, in the configuration depicted in figure 2. The subject’s elbow was placed at
a flexion angle of about 90◦, with the wrist supinated. In exercise I, the subject applied an
isometric force by flexing the elbow. This is expected to activate the biceps and brachialis but
not the triceps. Data were taken at 1000Hz for 15 s. In exercise II, the subject performed
an isometric extension and data were taken in the same fashion. This is expected to mainly
activate the triceps but possibly also the other two muscles which provide stabilization.

As we currently have no MRI data of our subject, we used the generic arm muscle model
from [15], scaled to match the measured circumference (30cm) of the subject’s arm at the
location of the electrodes. For this sensor configuration, i.e. bipolar sensors in a ring, we found
using tests with synthetic data that D = d2/dz2 (i.e. reconstructing V rather than I directly)
performed significantly better than D = 1. The number of PCG iterations required was also
much smaller than with the monopolar array, about 20–50.

Best results were obtained, upon a rough parameter trial and error, upon using
μr = β in the ROI, β = 0.1, and a properly normalized anisotropic smoothing matrix
W = diag(1, 1, 10−3). A random sample of the middle 1 s of the data was chosen for the
reconstruction. No significant difference was observed by the choice of sample. Besides the
human data, we also generated corresponding synthetic data with 5000 sources distributed
over biceps and brachialis for the first exercise and with 5000 sources in the triceps only for
the second exercise. The reconstruction results are depicted in figures 8 and 9, respectively.
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Figure 8. Relative current source power densities in three muscles, total power normalized to
100. Reconstructions were performed using human sEMG data during flexion (a) and extension
(b). A generic morphometric model of the arm was used, scaled to match the circumference of the
subjects arm. The results (a) look plausible as the main activity is in the biceps and brachialis. The
result (b) from isometric extension of the triceps suggests a significant amount of co-activation of
the biceps and brachialis, which is also plausible, as it is difficult not to activate these muscles
for stabilization during the exercise. To check for consistency, we generated synthetic data and
corresponding reconstructions by placing 5000 simulated tripole sources in biceps and brachialis
(a-s) and then just in the triceps (b-s). The synthetic result (a-s) is very close to the real result
(a), but the synthetic results (b-s) which should only show activity in the triceps show a significant
amount of spurious co-activation in the brachialis, though not as much as in the real result (b).
This is an indicator that the sensor configuration is inadequate to distinguish individual muscles
accurately. To verify this hypothesis, we computed synthetic data for a ring of 56 monopolar
(b-m1) and for a surface grid of 215 monopolar sensors (b-m2): it can be seen that the erroneous
co-activation of the brachialis is no longer present.

The results were again visualized using COMSOL tools, and we depict illustrative isosurfaces
chosen such that the two most active muscles are shown.

Note that the data are matched very well with the reconstructed sources. To quantify
relative activation of muscles, we again display the relative power density. The results of the
human data and synthetic data reconstructions are very similar for exercise I and are consistent
with what one would expect. For exercise II, we observe in the human data reconstruction
activity not just in the triceps but also in the other two muscles. It is quite plausible that biceps
and brachialis are also activated for stabilization; however, this conclusion cannot be drawn
from our results, for the reconstruction with synthetic sources only in the triceps also indicates
spurious activation of the brachialis, though less so for the biceps. This clearly indicates the
inadequacy of bipolar sensors (at least in this configuration); indeed if we reconstruct the
same source model (5000 sources in the triceps only) using simulated monopolar data, then
the desirable reconstruction is obtained, namely activity in the triceps only.

In summary we see that in this configuration, while the activities of individual muscles can
still be discriminated to some extent, significant ‘bleeding’ of reconstructed activity into nearby
inactive muscles results in a low quality of the reconstruction. Experiments with synthetic
data indicate that monopolar sensors will greatly improve the quality of the reconstruction,
which is also to be expected on theoretical grounds.

Another important observation is that the results from synthetic and human data are
consistent, so we are confident that conclusions drawn from experiments with synthetic data
are reliable and carry over to human data.

Although the 3D arm model used for the analysis of human data was just a generic model
based on an anatomy book [15], the inversion has produced reasonably good results. To more
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(a) Real data: isometric
exion

(b) Real data: isometric ex-
tension

(c) x = data, o = recon-
struction

(d)

(e) Synthetic data: biceps
and brachialis active

(f) Synthetic data: triceps
only

Figure 9. Activity reconstructions using human data (a), (b) and synthetic data (e), (f). Illustrative
isosurfaces of the reconstructed source fields and the match between input data and reconstructed
data are depicted (c), (d), (g), (h). The bars labeled a, b, a-s, b-s in figure 8 correspond to (a), (b),
(e), (f) in the current figure, respectively.
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(g) (h)

Figure 9. (Continued.)

properly evaluate the effect of the anatomy on the reconstruction, we plan to acquire MRI data
in the future.

Regarding the performance of our PCG solver, for D = 1 the number of iterations is
typically an agreeable 20–50. But for D = d2/dz2, convergence can be very slow. We found
that in experiment 4 the number of iterations was again 20–50, but up to 1000 iterations were
required in experiments 2 and 3. A more sophisticated preconditioner is then required to speed
up the computation, especially if computational efficiency is of prime importance. However,
there is no practical need for this in the experimental setups we have considered as the only
case where D = d2/dz2 clearly outperforms D = 1 is experiment 4, and for that particular
configuration of sensors the PCG solver again converges quite fast.

We have also verified, by solving (5) directly2, that the poor reconstructions in those cases
where convergence is slow are not an artifact of the iterative solver.

4. Conclusions

We have described a new CMG technique that utilizes an underdetermined distributed source
model to solve an important problem in muscle function monitoring. Results from simulated
experiments with synthetic data indicate that a surface grid of monopolar sEMG sensors,
similar to configurations used in EEG, is to be preferred over the more commonly used bi-
or tripolar voltage sensors. The results obtained with human data using bipolar sensors are
consistent with the results obtained from simulated data, even though the 3D arm model
used for the analysis of human data was just a generic model. This suggests that simulated
experiments are reliable indicators for the performance of the CMG system.

With our method, there is a choice between reconstructing the transmembrane current
density (D = 1) and the intracellular action potential (D = d2/dz2). It was found that for
monopolar surface data, D = 1 gives slightly better reconstructions than D = d2/dz2; the
corresponding computation is also faster by at least an order of magnitude. For single source
localization, D = d2/dz2 was able to correctly localize a deep source where D = 1 failed.
For other source locations, there was no difference. In the experiment with monopolar ring
data D = d2/dz2 failed to give good results, whereas in the experiment with bipolar ring data
the situation was reversed. We currently have no theoretical explanation for this behavior.

All reconstructions were performed on a desktop computer with a dual core 3 GHz
processor and 4 GB of RAM. Processing of sEMG data to produce the source estimations
typically lasted 15 min, except for the case D = d2/dz2 with monopolar data where the

2 This direct computation required about 24 h of computation time and 60 GB of RAM.
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employed preconditioner for the PCG solver performed poorly requiring several processing
hours. Fortunately, this does not pose a practical problem as the formulation with D = 1
produced superior reconstructions.

In the immediate future, we plan to test the CMG system with human data from monopolar
sensors. We will also acquire a more complete and patient-specific 3D upper arm model from
a set of cross-sectional MR images at different elevations. (To recall, the model used for
our present results is based on an image of a single slice and is symmetric in the vertical
axis.) Other issues include the experimental determination of the number of sEMG sensors
required for good practical reconstructions and the sensitivity to location errors in the electrode
placement. EMG systems with 64 or more channels are readily available, but it is not clear
how many sensors can be fitted on the upper arm while still making good contact with the
skin.

To validate the results obtained from human data, an independent measure of muscle
activations is necessary to compare with the CMG predictions. Since we need the activations
in the bulk of the muscles, verification with multiple single unit needle EMG recordings would
be highly intrusive. Instead, we plan to use MRI to monitor exercise-induced signal changes
which are primarily due to an increase or decrease in the transverse relaxation time of tissue
water [12, 21].
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