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Abstract.

Many recent algorithmic approaches involve the construction of a differential equation model for com-
putational purposes, typically by introducing an artificial time variable. The actual computational model
involves a discretization of the now time-dependent differential system, usually employing forward Euler.
The resulting dynamics of such an algorithm is then a discrete dynamics, and it is expected to be “close
enough” to the dynamics of the continuous system (which is typically easier to analyze) provided that small
– hence many – time steps, or iterations, are taken. Indeed, recent papers in inverse problems and image
processing routinely report results requiring thousands of iterations to converge. This makes one wonder if
and how the computational modeling process can be improved to better reflect the actual properties sought.

In this article we elaborate on several problem instances that illustrate the above observations. Algorithms

may often lend themselves to a dual interpretation, in terms of a simply discretized differential equation

with artificial time and in terms of a simple optimization algorithm; such a dual interpretation can be

advantageous. We show how a broader computational modeling approach may possibly lead to algorithms

with improved efficiency.

1 Introduction

The idea of adding an artificial time variable to a differential problem in order to obtain a solution
for the latter upon discretizing the former is probably as old as modern computing itself. Indeed,
steady state solutions are often the objective when simulating time-dependent PDE systems. A
steady state solution, however, obeys a reduced system without a time variable, hence typical time-
following algorithms for such problems involve an “unnecessary”, or even “artificial”, time variable.
In fact, integration to steady state is a particular continuation method, as further elaborated in
Section 2.2.

Sincovec & Madsen [70] described as early as 1975 a general-purpose package for solving PDEs,
where the solution of a nonlinear elliptic PDE system is obtained by embedding it in a time-
dependent one in an obvious fashion, followed by approximately solving the latter. However, doubts
regarding the suitability (mainly for reasons of efficiency) of such a general recipe also arose dur-
ing that era: it is not difficult to construct examples where this embedding inspires a very long,
expensive time integration to achieve a decent approximation for the steady state solution.

In the early 1980’s, Achi Brandt unsettled many a numerical analyst by insisting that “numerical
algorithms must not stall”: if there is no slow mechanism in the physical problem being approximated
then there should not be one in the numerical algorithm either. One instance on his list of algorithmic
approaches that may be unnecessarily slow has been the time embedding for steady state problems,1

although most attention was focussed on algorithms competing more directly with multigrid methods
∗Department of Computer Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.

(ascher@cs.ubc.ca). This research was supported in part under NSERC Discovery Grant 84306.
†Institute of Applied Mathematics, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada

(hhzhiyan@math.ubc.ca).
‡Department of Computer Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.

(kvdoel@cs.ubc.ca).
1Private communication.



2

[15]. If this is taken too simplistically then one may wonder if the “ban on stalling” is always
essential, because it does not take into account human development time, especially for complex
algorithms such as those in [77]. However, we prefer to understand such statements in a broader
context, namely, that by insisting on an efficient algorithm one also learns more about the problem
being solved, including aspects that the source of “numerical stalling” helps in hiding. Indeed, such
an example occurred in our own work, when we came across an iterative method used in practice
for Maxwell’s equations in low frequency [58] which we managed to speed up by several orders of
magnitude upon taking into account the existence of a casimir (null-space) in the leading term of
the differential operator [42].

Many successful approaches that involve artificial time embedding have been reported in recent
years, including some of the most innovative methods for scientific computation involving level
sets (see Sethian [69], Osher & Fedkiw [62] and Burger & Osher [17]), PDEs in image preocessing
and scale spaces (see, e.g., Weickert [81] and Scherzer [68]). Often an artificial physical process
is invented in such context as part of the mathematical modeling effort. However, several of the
resulting algorithms, although certainly not all, also tend to be unreasonably slow, as noted e.g. in
Vogel [79] and elsewhere.

Therefore, we embark upon a more careful examination of the issues at hand. Since any method
invoking an artificial time-dependent differential system invariably involves a time discretization,
our purpose is to ask whether the continuous computational model that has been so discretized is
practically useful, with Brandt’s admonition in mind.

The paper is organized as follows. In Section 2 we briefly consider various situations where
artificial time, and more generally continuation embeddings, have been proposed and discussed in
the literature. The very purpose of such embeddings, however, calls for coarse discretization in the
artificial time or continuation parameter, and this may in turn necessitate a discrete rather than
continuous dynamics analysis.

Sections 3 and 4 both consider inverse problems involving recovering a distributed parameter
function in several space dimensions. In Section 3 we consider time embedding as a regularization
method and compare it to the Tikhonov regularization approach. The regularization effect is ob-
tained by integrating only up to a finite time, a welcome relief on practical grounds as well. Both
continuous and discrete variants are obtained for a simple case, the discrete version corresponding
also to a steepest descent regularization. In Section 4 we see similar issues arising in the context of
level set regularization for shape optimization.

In Section 5 we consider the problem of denoising, mainly of surface meshes in 3D. Anisotropic
diffusion methods have provided high quality reconstructions for these problems, but they are not
mandatory, nor are they always the fastest or best methods. We demonstrate this and urge keeping
an open mind. A short conclusions section seals the paper.

2 From discrete to continuous dynamics

2.1 Iterative methods and forward Euler

Nonlinear algebraic systems, as well as many large linear ones, are typically solved by iterative
methods. A memory-less iterative method can be written as

mn+1 = mn + τng(mn), n = 0, 1, 2, . . . ,(2.1)

where mn is the solution at the nth iteration, m0 a starting point, and τn is the step size. This can
be viewed as the forward Euler discretization of the initial value problem

dm

dt
= g(m), m(0) = m0,(2.2)
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and thus a new initial value differential problem has been born. See [39, 1, 12, 71, 47, 37, 55], as
well as the review paper [25] and the feedback control interpretation in [10, 11].

An example is the dynamics of Newton’s method. Starting from a given system of nonlinear
equations

f(m) = 0,(2.3)

with the Jacobian matrix J = ∂f
∂m , the damped Newton method reads like (2.1) with

g(m) = −J(m)−1f(m),(2.4)

0 < τ ≤ 1. The corresponding differential system (2.2) and its dynamics have been studied by
several of the above references, but we are not aware of any practically useful result pertaining to
Newton’s method or its many variants that has resulted from this approach. Indeed, the step size
τ = 1 has a special meaning in the discrete dynamical system (2.1), (2.4), producing a quadratic
rate of convergence, hence this is the step size to take under some general conditions that amount
to being close enough to steady state under certain regularity assumptions. Of course, given a time
step for a forward Euler discretization of (2.2) one can easily re-scale the ODE to make τ = 1,
but the significance of this value for the rapid convergence to steady state is not depicted by the
continuous dynamical system intent on sending τ to 0.

2.2 Continuation methods

A general approach, of which artificial time is a special case, is that of continuation. Here a given
system (2.3) that is difficult to solve is embedded in a family of problems depending on a parameter
s

φ(m; s) = 0,(2.5)

where solving (2.5) for s = 0 has the same effect as solving the given (2.3), whereas solving (2.5)
for s = 1, say, is easy and may be considered done. The solution of (2.5), m(s), forms a homotopy
path for 0 ≤ s ≤ 1. One then solves a sequence of problems for values of s decreasing from 1 to
0, where for each such problem a good initial guess from previous steps is at hand. This idea, like
all others reviewed in this section, has been around for a while: see Watson et al [80] for a general
package, Nocedal & Wright [59] for a discussion in the context of optimization, and Ascher, Mattheij
& Russell [5] for boundary value ODEs.

Differentiation with respect to s yields the Davidenko ODE system ([5], §8.3.2),

∂φ

∂s
+
∂φ

∂m

dm

ds
= 0.(2.6)

Discretizing this then yields a way to advance forward in s. The ODE (2.2) can be obtained from
(2.6), (2.5), as a special case. An instance of this is given in Section 4. As mentioned earlier, the
embedding of an elliptic PDE as the steady state of a parabolic one has long been recognized to
be a continuation method, too. Generally, some improved continuation processes in certain cases
are possible using (2.6), yet overall no dramatic improvements appear to have been reported in the
literature on continuation methods.

Here, as before, there is the ensuing discretization of the continuation variable s, and the relentless
question also follows, namely, whether the continuous system (2.6) yields useful practical and/or
intuition-enhancing results for an efficient discrete process. It is important to note in this context
that we are not interested in the reconstruction of the homotopy path, only in reaching its end. This
therefore may require a discrete rather than continuous analytical approach.
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2.3 Interior point methods for linear programming

An instance highlighting the need for discrete analysis is provided by interior point methods for
the famous linear programming (LP) problem; see e.g. [59]. We consider

min
x

cTx(2.7)

s.t. Ax = b,

x ≥ 0,

where x is the unknown vector of length l; A, c and b are given; and A is a k × l matrix of rank
k < l. An equivalent primal-dual formulation is given by

Ax = b,

ATy + s = c,

x ≥ 0, s ≥ 0,

xT s = 0.(2.8)

Many efforts following the ground breaking work of Karmarkar [50] have yielded the conclusion
that the most efficient of interior point methods for LP are infeasible primal-dual methods. These
can be viewed as attempting to stay not too far from the center path, x(s),y(s), s(s), defined as the
solution of the one-parameter family obtained from (2.8) by replacing the nonlinear complementarity
condition with

xT s = s,

for s ≥ 0. Thus, one could think of the process as a continuation method along the center path
towards s = 0.

However, a continuous analysis of the resulting continuation process does not automatically lead
to theoretical results about the discrete algorithm, and the definitive book of Wright [82] takes a
discrete approach instead to obtain realistic convergence bounds. Neither is it obvious how to get
ahead in a practical sense with a time-embedding interpretation for, say, the Mehrotra predictor-
corrector continuation method along the center path [56], a method that has become ubiquitous in
practice (although the theory in [82] does not quite cover it either).

2.4 Geometric integration

Most advances in the area of numerical integration of ODEs over the past 20 years have been
made in the context of geometric integration; see e.g. Hairer, Lubich & Wanner [44] or Leimkuhler
& Reich [51]. Here it is recognized that the flow of a given time-dependent differential system
may have important global properties, such as invariants, and that often the preservation of such
properties under numerical discretization is more important than the point-wise recovery of the flow
for a particular initial condition. In particular, if the exact solution of the ODE system satisfies
such an invariant, how important is it to preserve this property exactly, or approximate it very well,
while the numerical solution resulting from our discretization is far less accurate point-wise? In
some instances, but not all, this is very important [6, 2]. For the ODE (2.6) an invariant is defined
by the nonlinear equations (2.5) which is obviously of more importance, once approximations are
introduced, than the ODE itself.

Another example is provided by isospectral flow [21]. The matrix ODE

dL

dt
= AL− LA,(2.9)

L(0) = L0,

where A(L) is skew-symmetric yields a solution with the property that the eigenvalues of L(t) are
independent of t. Given a set of real numbers λ1, . . . , λk and the task of constructing a symmetric
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k × k matrix L̂ with some particular properties (e.g. a Toplitz matrix) that has these numbers
as eigenvalues, one can try to find a k × k skew-symmetric A and an initial L0 which has these
eigenvalues such that L̂ is the fixed point of (2.9).2 The ensuing numerical discretization of (2.9)
must then be such that the isospectral property is preserved, which occurs if quadratic algebraic
invariants are reproduced at the discrete level. This happens, in turn, if collocation at Gaussian
points is utilized (see e.g. Chapter 4 of [6]), regardless of the step size. Solving the ODE accurately
is of less importance.

The above comments illustrate the point that, simply constructing a dynamical system as part
of the computational modeling process and relying on a straightforward discretization to be “close
enough” so that one need not bother about the actual algorithm any more, could be short-sighted.

3 Distributed parameter estimation and the exponential filter function

Let us recall the inverse problem of recovering a distributed parameter model. In general, the data
are viewed as a nonlinear function of the model,

b = F (m) + ε,

where F is the forward modeling operator, m is the model to be recovered, b is the data, and ε is
measurement noise. The data is assumed given in some spatial domain Ω. Classical theory yields
that if the problem is ill-posed or the data are noisy then we must add a priori information and isolate
noise effects. In a Tikhonov-type approach this regularization leads to the optimization problem

min
m

1
2
‖F (m)− b‖2 + βR(m),(3.1)

where R(m) is a regularization operator, to be discussed later, and β ≥ 0 is a famous parameter.
See e.g. Engl et al [35] or the historical Tikhonov & Arsenin [75]. Throughout this paper we use
the least squares norm, unless otherwise specified.

The necessary conditions are

JT (F (m)− b) + βR′(m) = 0,(3.2)

where R′ is the gradient of R with respect to m and

J(m) =
∂F

∂m

is the sensitivity matrix.
As in Section 2.1 we can view (3.2) as the steady-state equations of a time-dependent differential

equation [4, 78],

M(m)
∂m

∂t
= −[JT (F (m)− b) + βR′(m)],(3.3)

m(0) = m0,

where t ≥ 0 is the artificial time variable and the preconditioner M = M(m(t)) is symmetric positive
definite. Below we consider the special case of (3.3) whereM = I and F (m) = Jm, with J a constant
matrix.

2A. Iserles, private communication.
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The continuous time system

The wrinkle here, as compared to Sections 1 and 2, is that typically one no longer intends to carry
out the integration to steady state, not even in principle. (An interesting exception is [54, 62].)
Indeed, there are really two regularization processes here, one caused by the Tikhonov term βR(m),
the other caused by integrating the ODE (3.3) to a finite time.

To see the latter, note that the solution of (3.3) with m(0) = 0 and β = 0 is

m(t) = (I − exp(−tJTJ))J†b.(3.4)

For notational simplicity assume further that J is nonsingular and consider its SVD,

J = U(diag{si})V T .(3.5)

(See e.g. the introductory chapter in [79].) The exact solution without noise is

m = J−1b = V diag{s−1
i }U

T b.

The effect of regularization is to modify s−1
i for those singular values which are very small, replacing

s−1
i by

ω(s2i )s
−1
i .

In (3.4) we get
m(t) = V diag{(1− e−ts

2
i )s−1

i }U
T b,

hence

ω(s) = 1− e−ts.(3.6)

Thus, the effect of small singular values gets dampened while large ones remain almost intact for an
appropriate finite value of t.

For the more general case where β ≥ 0, assume further that R(m) = 1
2‖m‖

2. Then (3.3) reads

∂m

∂t
= −[JTJ + βI]m+ JT b.(3.7)

It is easy to see that

ω(s) =
1− e−t(s+β)

s+ β
s.(3.8)

For the special case t→∞ we have the Tikhonov filter

ω(s) =
s

s+ β
,(3.9)

whereas β = 0 yields the exponential filter (3.6).
We have compared the two filter functions appearing in (3.6) and (3.9), see also [20]. Of course

they both tend to 0 as s → 0 and to 1 as s → ∞. But even for mid-range values of s there is a
similarity in the general shape. It appears that the choice t ≈ 1

2β makes these filters particularly
close under certain conditions, and that the exponential filter switches from 0 to 1 more sharply; see
Fig. 3.1.

Calvetti & Reichel [19] give further reasons for preferring (3.6) in the linear case. They approximate
the exponential of a matrix in (3.4) by a Lanczos process, see also [18]. In fact, they never refer to
an ODE giving rise to this filter function.
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Figure 3.1: Exponential filter (3.6), ODE forward Euler discretization (3.13), and Tikhonov filter (3.9) for
tβ = 1/2, with τ = .1, β = .01.

The discrete time system

Next, consider the usual discretization of the ODE (3.7). Applying forward Euler with a time step
τ we have at the nth time step

mn+1 = mn − τ [JTJ + β]mn + τJT b(3.10)
= Gmn + τJT b, G = I − τ(JTJ + βI).

Note that ODE stability holds if

0 < τ ≤ 1/‖JTJ + βI‖2.(3.11)

Moreover, the step size τ need not be constant. Further below in this section we discuss its choice.
Due to the simplicity of F and R we can unravel the recursion in (3.10) in the usual manner.

Moreover, the SVD of G is inherited from that of J . Assuming m0 ≡ 0 we obtain

mn+1 =
n∑
j=0

GjτJT b

= τV

diag{ n∑
j=0

(1− τ(s2i + β))jsi}

UT b.
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Since
n∑
j=0

(1− τ(s2 + β))j =
1− (1− τ(s2 + β))n

τ(s2 + β)
,

we have

ω(s) =
1− (1− τ(s+ β))n

s+ β
s.(3.12)

Setting β = 0 in (3.12) yields the Landweber iteration [35]. For a finite time there is a regularization
effect since

ω(s) = 1− (1− τs)n,(3.13)

see Fig. 3.1 again. As n → ∞ we get ω → 1, so there is no regularization. For n = 1 we get heavy
regularization (damping) with ω(s) = τs. The smaller s is, the stronger the damping, which is good.
The question becomes that of choosing n for the right amount of regularization. The usual method
is to stop the integration when the iteration starts to diverge. See [35] and many other references
for this.

Letting t = nτ be fixed as τ decreases and n increases in (3.12) we obtain the continuous system
formulae discussed earlier in this section. However, we obviously do not wish to take τ very small
in practice. So, even though the limit process yields a viable regularization through (3.6) or (3.8),
and the discrete process yields a viable regularization through (3.13) or (3.12), respectively, it is
not clear a priori that the latter should be best considered a discretization of the former! Typically,
the continuous model is easier to analyze, and such an analysis can be used to motivate a coarse
discretization. Such a motivation is gratified in case that the actual method turns out to work well
in practice, as in Fig. 3.1. However, the continuous analysis is neither strictly necessary for practice
nor sufficient for a complete theory.

Steepest descent regularization

The above considerations highlight not only the potential advantage in using artificial time-
stepping but also the limitations inherent in taking this too inflexibly. On the other hand, if we
consider (3.10) as a steepest descent step for minimizing the relevant special case of (3.1) [60, 37, 10]
then, because the objective function is quadratic and convex, the step size τ = τn can be determined
precisely based on an exact line search. This exact line search aims at finding mn+1 of (3.10) which
is closest to the steady state of (3.7):

τ =
[JT (Jm− b) + βm]T [JT (Jm− b) + βm]

[JT (Jm− b) + βm]T (JTJ + βI)[JT (Jm− b) + βm]
.(3.14)

This formula and its extensions for the genreal case are used routinely by clever practitioners
utilizing the Landweber method 3. They set β = 0 and stop the iteration when it no longer improves
much.

Recall that in the present context, for the case β = 0 the problem (3.1) is singular or at best
highly ill-conditioned. A corollary of the above analysis is therefore that applying a finite number of
steepest descent iterations has a regularization effect! See also [57] for more evidence on the steepest
descent revival.

3H. Engl, private communication.



9

Backward Euler

Let us return to the more general differential system (3.3). Many algorithms in recent literature
can be viewed as a forward Euler discretization of this equation with appropriate choices of M
and R. A few researchers, however, have preferred to consider a backward Euler discretization for
M = I. This can lead to much fewer iterations for achieving a satisfactory solution in case that (3.3)
is very stiff, which in turn may result if (3.2) involves a highly nonuniform spatial discretization (e.g.
[30, 52]).

Of course a very large backward Euler step for (3.3) amounts essentially to solving the steady
state, Tikhonov-type equations (3.2).

Assume further that

R′(m) = R̂ ·m,

where R̂(m) is a nonsingular matrix, and let m0 = 0. Then (3.2) can be written as one backward
Euler step,

m−m0

τ
= −λR̂−1JT (F (m)− b),

for τ = 1, λ = β−1. This can be replaced by N backward Euler steps of size τ = 1/N each,

mn −mn−1 = − λ
N
R̂−1JT (F (mn)− b), n = 1, . . . , N.

The effect is that of replacing (3.2) by the iteration

JT (mn)[F (mn)− b] + [βN ]R̂(mn)[mn −mn−1] = 0, n = 1, . . . , N.(3.15)

The effective size of the regularization parameter is thus increased by a factor of N , which may make
solving the system for each n easier, but at a price.4 The precise total cost depends on what further
Krylov-space approximations are utilized for the solution of these systems.

Some such ideas are interesting and encouraging, although the gains seem modest. In any case
the obtained discrete dynamics is clearly different from the continuous dynamics of (3.3). It can
be argued that a similar situation holds whenever one approximates a stiff ODE system: only
the obtained solution is close to the exact one, while stiff modes are not well-approximated. The
difference, however, is that in a typical stiff ODE case the continuous system is given, whereas here
it is our own invention. If we are not intent on following the dynamics of the continuous system
(3.3) then what is it there for in the first place?

4 Level sets for shape optimization

Let us continue with inverse problems involving the recovery of a 2D or 3D distributed parameter
function. We use the notation in (3.3), (3.1) and (3.2) introduced in the previous section. The
forward modeling operator F (m) now involves the inversion of an elliptic PDE system with the
resulting field sampled e.g. at the domain’s boundary to match the given data. This makes the
inverse problem highly ill-posed. Applications include linear potential problems [45], DC resistivity
[72], magnetotelluric inversion [63], diffraction tomography [31], oil reservoir simulation [34], aquifer
calibration [40], electrical impedance tomography (EIT) [13, 24, 14] and low frequency electromag-
netic data inversion [43].

In addition to the forward operator it is assumed that the solution m(x) can take only one of two
values at each x. This then becomes a problem of shape optimization. For such problems, when
m(x) is known to contain discontinuities it is generally impossible to obtain good, reliable recovery
results without explicitly imposing the piecewise constant property of the solution (cf. [3, 4]). An
approach considered by many for this purpose is to use level sets, and we proceed to investigate this
further in the present context, following [78].

4E. Haber, private communication.
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A level set approach

Thus, in place of (3.3) we consider

M(ψ)
∂ψ

∂t
= −[χ′JT (F (m(ψ))− b) + βR′(ψ)],(4.1)

ψ(0) = ψ0.

The function ψ(x; t) is a level set function, and it is spatially smoother than m. The two are related
by

m = χ(ψ),(4.2a)

where the function χ is a grid-smoothing of the characteristic function based on the values that m
may take. We choose e.g.

χ(s) =
m1 −m2

2
tanh(s/h) +

m1 +m2

2
,(4.2b)

where h is a given grid spacing. (Strictly speaking, ψ is one derivative smoother than m in the limit
h→ 0.) Note that

lim
h→0

tanh(s/h) =

{
−1 s < 0
1 s > 0

.

Thus, for each t sharpening happens across the 0- level set of ψ(x; t); see Fig. 4.1.
Variants of this have been considered in [33, 38, 23, 26] and elsewhere. We caution, however, that

in several such papers many iterations, or time steps, are required before convergence is deemed to
have been achieved, often by unclear criteria.

Instead of discretizing (3.3) we may consider the corresponding generalization of (3.1), (3.2),
namely

min
ψ

1
2
‖F (m(ψ))− b‖2 + βR(ψ),(4.3a)

χ′JT (F (m(ψ))− b) + βR′(ψ) = 0,(4.3b)

where m is the characteristic function of ψ as before. In short, we are headed directly towards the
steady state of (4.1), although we may stop well short of getting there. This approach was initiated
by Santosa [66] and subsequently refined and used e.g. by Haber [41] and Leitao & Scherzer [53].
Applying damped Gauss-Newton it is often possible to obtain in two dozen iterations results of
comparable quality to those obtained using orders of magnitude more work to follow the dynamical
system (4.1) to its steady state.

A dynamic regularization method has proved to work particularly well in practice. Starting from
an initial guess ψ0, the iterations read

(χ′JTJχ′ + β0X)δψ = −χ′JT (F (m(ψn))− b),(4.4a)
ψn+1 = ψn + τδψ,(4.4b)

for n = 0, 1, 2, . . ., where β0 > 0 is a small constant and 0 < τ ≤ 1 is a step size. The matrices in
(4.4a) are all evaluated at ψn. We choose X = R′′, the Hessian of a regularization operator R(ψ).
For the latter, the choice

R(ψ) =
1
2

[∫
Ω

(1− |∇ψ|2)dx
]2

(4.5a)
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Figure 4.1: Level set function.

(or, more precisely, a discretization of this on the grid of m) leads to

X = 2(ψTLψ − |Ω|) L+ 4(Lψ)(Lψ)T ,(4.5b)

i.e. X is a rank-1 modification of a solution-dependent multiple of L, which in turn is a positive
definite matrix based on the standard 5-point discrete Laplacian. The simpler choice

R(ψ) =
1
2

∫
Ω

|∇ψ|2dx,(4.6)

which leads to X = L, occasionally performs worse in practice.
The matrix χ′JTJχ′ can be further thresholded, reflecting the fact that it “lives” essentially only

on and near the interface, and this leads to fast algorithms for carrying out the iteration. We refer
to [78] for this and other implementation considerations, as well as numerical experiments that
demonstrate that this method works very well, often delivering good reconstructions in less than 10
iterations. Here we concentrate just on deriving the method (4.4) from different points of view.

1. The dynamic regularization iteration can be viewed as a forward Euler discretization of (4.1)
with β = 0 and

M = χ′JTJχ′ + β0X.(4.7)

Thus, the regularization chore has shifted from R to M in (4.1), see also [38]. Although
the choice of time step τ is not obvious here, and the choice of M is not intuitive, this is
an important interpretation, as some significant differences observed in [78] between dynamic
regularization and the Tikhonov approach no longer seem major in the present setting.
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2. Taking the optimization point of view, we set β = 0 in (4.3). The Gauss-Newton method
then involves a singular matrix, so it is regularized Levenberg-Marquardt fashion, but with
the twist that the regularization matrix is X = R′′, not simply the identity.

The step size τ is determined by a weak line search. However, the choice X = R′′ is far from
obvious in this interpretation. Burger [16] chose a different X. Interestingly, he evolved the
level set geometrically, using integration of the Hamilton-Jacobi equations, but we and others
have not found this practically necessary. This once again highlights the difference between
simulating a given mathematical model, as distinct from using or constructing a mathematical
model for the purpose of carrying out a given simulation task.

3. The above two interpretations reveal yet again that it may be easier to interpret a given al-
gorithm as an instance of an artificial time or an optimization method than to use such an
interpretation as an insight to derive the best variant of the algorithm. Here is a third inter-
pretation, more specifically connecting dynamic regularization to the Tikhonov regularization
(4.3b). We have seen an inverse relationship between β and the artificial time t already in Sec-
tion 3. Let us therefore set t = 1/β and differentiate (4.3b) with respect to t. After rearranging
terms this gives

(χ′JTJχ′ + βR′′)
dψ

dt
= −βχ′(F (m(ψ))− b).(4.8)

Setting β = β0 and applying forward Euler with time step τ/β yields the dynamic regulariza-
tion iteration (4.4).

The choice X = R′′ is now more natural. Moreover, the two often conflicting roles of β in the
Tikhonov setting, namely, ensuring a sufficiently nonsingular iteration matrix and balancing
terms in (4.3a) depending on the noise level, are seen separated here! The step τ is still best
determined by the weak line search described before, though.

In summary, different interpretations are each seen to shed some light on the same iteration process.
They are all partially useful, yet none renders the others unnecessary.

5 Smoothing surface meshes in 3D

In the previous section we show for a highly ill-posed inverse problem that some advantage can be
gained by considering the discrete dynamics that an optimization method yields. Next we consider
the use of anisotropic diffusion and its alternatives in denoising algorithms.

Use of PDEs for the computational modeling of image processing tasks has become ubiquitous in
recent years; see Sapiro [67] as well as [79, 68, 81, 22]. Particular attention has been devoted to the
simplest problem in its class, that of image denoising [64, 65, 9, 81, 73, 61]. Here numerical analysis
is easier: in the notation of Section 3 we have F (m) = m, J = I, so the necessary conditions for a
Tikhonov-type regularization, (3.2), become

λ(m− b) +R′(m) = 0,(5.1)

where λ = 1/β ≥ 0. The limit problem of β → 0 is thus well-conditioned, the Jacobian matrix is
sparse if R′′ is, and its eigenvalues are those of R′′ translated by λ. As before, a gradient descent
method for (3.1) followed by sending the step size τ to 0 yields the artificial time-dependent PDE

∂m

∂t
= R′(m) + λ(m− b),(5.2)

and we may next let λ = 0 as well.
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(a) (b)

Figure 5.1: Fast denoising without losing significant features: (a) scanned Lady face model (41K Vertices)
contains unknown noise; (b) smoothed model by (5.3)-(5.6) (3 iterations, 3.0 secs). All runs reported in this
section were carried out on a laptop with a 2.0 GHz Pentium M CPU.

Consider further a typical regularization operator R(m) which is a spatial discretization of

R(m) =
∫

Ω

ρ(|∇m|).

Setting ρ(s) = 1
2s

2 yields (ignoring spatial discretization for a moment) R′(m) = −∇ · ∇m, so
(5.2) is a diffusion equation, well-known to produce a smoothing effect in physical (and multigrid)
applications. This, however, also smears intensity height discontinuities, or sharp features. Hence
one selects an edge-stopping function ρ, obtaining an anisotropic diffusion process where diffusion,
or smoothing, is applied only in directions that do not cross edges [64]. The total variation (TV)
choice in (5.1), ρ(s) = s, yields R′(m) = −∇ ·

(
1

|∇m|∇m
)

[65, 62]. It is well known, though, that
this choice must be modified when |∇m| → 0 [4]. The TV choice is especially attractive for analysis
because R is convex, however other alternatives also perform well in practice [67, 9]. More complex
processes involving tensor anisotropic diffusion have been proposed and demonstrated as well [81].

Applications of such anisotropic diffusion operators in image processing are not limited to just
simple denoising. Here, then, is a class of important problems that can be solved well by methods
of the type under consideration in the present article. Remember, however, that the discussion in
Section 3 about efficient discretization and simulation of (5.2) still applies. Here, in addition, a mildly
stiff problem has been created, hence small time steps are required due to stability restrictions if an
explicit discretization is applied in time. In practical situations there often exist cheaper alternatives
to anisotropic diffusion for image processing tasks.

To highlight these points in a hopefully more interesting setting let us concentrate further on the
related problem of denoising triangle meshes describing surface manifolds in 3D [29, 27, 7, 74, 8,
46, 28, 48]. Such meshes, consisting of vertices xi and edges ei,k in 3D, are ubiquitous in computer
graphics and geometric design. Scanning and acquisition technology used for obtaining them often
yields high frequency noise in the position of the vertices, so a mesh smoothing algorithm is required
to rapidly remove noise while preserving real artifacts in the acquired data, see Fig. 5.1.

The problem is different from, and more complicated than, the image denoising problem described
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(a) (b) (c)

Figure 5.2: Rapidly remove heavy Gaussian noise from a corrupted model: (a) original Max Planck model
(50K vertices); (b) model is corrupted by 20% Gaussian noise in normal direction; (c) smoothed by AL (4
iterations, 5.1 secs).

earlier. The noise is not only in intensity heights at given pixel locations: distinguishing at a given
vertex xi the normal direction ni and the tangent plane to the manifold at that point, there is noise
in both normal height and location. Moreover, nonuniform spatial meshes are common and there is
a volume associated with the body described by the mesh that a careless denoising application may
shrink. Nonetheless, typical algorithms often “lift up” techniques from image processing, albeit in
a nontrivial way. Anisotropic diffusion has taken center stage here, too [29, 27, 28, 46]. The more
recent references describe rather complex diffusion processes that yield impressive reconstructions,
especially in the presence of sharp corners and absence of high scale texture. However, employing
forward Euler yields unwanted stability restrictions here, too, and implicit schemes require the
solution of large, nontrivial systems of equations at each time step, for which some Krylov-space
method is employed [46, 28]. With meshes occasionally containing as many as 100,000 vertices and
200,000 faces, these methods can therefore become expensive. Are there cheaper alternatives?

The method of bilateral filtering [76, 36, 49] offers such a cheap alternative for some models. But
in fact, even a simpler method will do, and we now specify one such, following [48]. First some
notation is required. A manifold M is discretized by a triangular surface mesh S with its set of
vertices V (S) = {xi, i = 1, . . . , N} and set of directed edges E(S). If two distinct vertices xi and
xk are linked by an edge ei,k = xk − xi then we denote k ∈ N (i). The given, noisy data is denoted
M0 =M(v1, . . . ,vN ).

For each vertex xi of the given data mesh we estimate the corresponding normal ni as the mean
of the adjacent face normals

ni = normalize

 ∑
k∈N (i)

ei,k × ei,k+1

|ei,k × ei,k+1|

 .(5.3)

In case that there is a lot of noise we use an additional mollification procedure [48]. These normals
are then considered part of the input.
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(a) (b) (c) (d)

Figure 5.3: Smoothing a dragon while retaining its scales: (a) original Dragon model (50K vertices); (b)
corrupted model by about 10% Gaussian noise in both tangential and normal directions; (c) smoothed model
by our AL variant with λ = 0 (3 iterations, 3.8 secs); (d) smoothed model by MSAL (3 iterations, K = 1/5,
3.8 secs).

Next, define the local height intensity hi,k = eTi,kni, the projection of ei,k on the normal ni at the
vertex. A corresponding discrete anisotropic Laplacian (AL) operator is then given by

∆xi =
1
Ci

 ∑
k∈N (i)

g(hi,k)hi,k

ni,(5.4)

where Ci =
∑
k∈N (i) g(hi,k).

Further, we employ a Gaussian filter in this context, which is more robust than TV and clearly
reduces the influence of neighbors that contain large discontinuities in normal space:

g(hi,k) = exp(−
h2
i,k

2σ2
i

),(5.5a)

σi = 2 mean(|hi − mean(hi)|),(5.5b)

where hi = {hi,k}k∈N (i). Thus, the robust scale σi is automatically estimated by the mean absolute
deviation scaling.

The iteration reads

xi ← xi + ∆xi + λi(vi − xi), i = 1, . . . , N,(5.6)

using (5.4), (5.5). Three iterations (5.6), starting with xi = vi and maintaining λi ≡ 0 throughout,
are sufficient to produce the result displayed in Fig. 5.1. Another experiment, requiring four simple
iterations, is depicted in Fig. 5.2.

The iteration (5.6) can be viewed as a forward Euler discretization with step size τ = 1 of a PDE
such as (5.2) on a manifold (see [32] for PDEs on manifolds). However, this view does not explain,
or even provide intuition for, the fact that 3 or 4 such explicit “time steps” are sufficient!

Bilateral filtering, as well as our AL, are also known to deliver less than stellar reconstructions
for models containing significant high scale features (see e.g. the first figure in [49]). We refer to
this as intrinsic texture. Note, though, that the quality of AL can be improved without significantly
modifying its price, as we show in [48]. This is done by using different data fidelity weights λ in
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a multiscale fashion (MSAL). The basic multiscale idea vaguely follows [73], but everything else is
different here. Since the surface scale is local and the mesh is generally nonuniform, we choose λi
at each such iteration depending on the spatial location i. We use (5.5b) divided by maxσi so that
λi ≤ 1,∀i. The importance of the entire function λ(x) obtained this way is magnified in the next
iteration step by damping out the anisotropic diffusion operator AL of (5.4), to recapture a higher
frequency band. Thus, in the jth iteration we calculate λ and set

xi ← xi +Kj∆xi + λi(vi − xi), i = 1, . . . , N,(5.7)

where 0 < K < 1 is an input parameter. See Fig. 5.3 for the resulting effect and [48] for details.
The MSAL iteration (5.7) can be viewed, like other algorithms throughout this article, as a forward

Euler discretization with unit time step of the ODE system

dx
dt

= Kt∆x + λ(v − x), t ≥ 0.(5.8)

From this ODE it is immediate that as t → ∞ the original, noisy data is recovered. Our taking
only 3 or 4 steps corresponds again, as in Section 3, to the smoothing effect of integrating to a finite
time. However, again it is also clear that the slick continuous view does not really account for all of
the essential behavior of this algorithm.

6 Conclusions

Artificial time embedding for inverse problems and for image processing problems has been found
useful and beneficial by many researchers. Good intuition leading to theory as well as to practical
algorithms has been gained, as noted in the introductory Section 1. Artificial time embedding
has also proved a tool of convenience over several decades, allowing the extension of algorithms
and software for solving a larger class of problems, albeit occasionally at the expense of reduced
efficiency. Indeed, more general continuation methods have often provided the only ready made tool
for solving tough nonlinear problems in a variety of applications. We have highlighted the positive
features of this approach for several general problem instances.

However, it is also important to realize that the life of an apparatus depends on its utility. Inventing
computational models that are then used primarily for analysis rather than for computation may
prove to be an impediment for the goal of constructing useful, efficient computational algorithms
for the actual given problem to be solved.

The discretization of a continuous artificial time system, which is what gets implemented, is
the actual computational model. The dynamics of the discrete process is therefore crucial. If the
dynamics of the continuous computational model is significantly different from that of an efficient
discrete system, or if a close discretization of the continuous model leads to many costly iterations,
then the continuous model may not be the right one to look at in the first place. A case in point is
provided in Section 5.
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