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Abstract

A broad range of parameter estimation problems involve the collection of an excessively
large number of observations N. Typically each such observation involves excitation of the
domain through injection of energy at some pre-defined sites and recording of the response of
the domain at another set of locations. It has been observed that similar results can often be
obtained by considering a far smaller number K of multiple linear superpositions of experiments
with K << N. This allows the construction of the solution to the inverse problem in time O(K)
instead of O(N). Given these considerations it should not be necessary to perform all the NV
experiments but only a much smaller number of K experiments with simultaneous sources in
superpositions with certain weights. Devising such procedure would results in a drastic reduction
in acquisition time.

The question we attempt to rigorously investigate in this work is: what are the optimal
weights 7 We formulate the problem as an optimal experimental design problem and show
that by leveraging techniques from this field an answer is readily available. Designing optimal
experiments requires some statistical framework and therefore the statistical framework that
one chooses to work with plays a major role in the selection of the weights.

1 Introduction
We consider discrete parameter estimation problems with data vectors d; modeled as
dj = Aym+ ¢ (j:l,...,]\f)7 (1)

where Aj; is an s X n linear observation matrix that corresponds, for example, to the 4" configu-
ration of an experiment, m € IR" is the parameter vector to be recovered, and ¢; are zero-mean
independent random vectors with covariance matrix o2/. In addition, we assume that there is a
large set of observation matrices A;, which is the case of interest in many geophysical and medi-
cal applications such as seismic and electromagnetic (EM) exploration, diffraction and electrical
impedance tomography [1, 4, 6].
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The linear systems in (1) can be aggregated into a single large system by defining
A dy

: and d :
AN dN

A

(2)

In the well-posed case where AT A has a stable inverse, the least-squares (maximum likelihood
if ¢; are Gaussian) estimate m of m is

m=(ATA)TTATd. (3)
When AT A does not have a stable inverse, a penalized least-squares estimate of the form
m=(ATA4+XM)"ATd, (4)

is often used. Here M is usually a symmetric positive semi - definite matrix and X is a positive
regularization parameter. This choice will simplify analysis later on, although the proposed
approach can be generalized for use of other regularizers of other functional forms.

We are particularly interested in large-scale problems where both the number of model pa-
rameters n and the number of observations N are large. For instance, in an electromagnetic or
a seismic survey, the number of a such observations, N, can be of the order of 10* or 10°. For
such problems solution of the system (4) using direct methods is intractable computationally
and instead iterative methods (typically, CGLS or LSQR [10]) are employed. The main compu-
tational bottleneck associated with such solvers is the computation of matrix vector products:
When N is very large, the computation of A times a vector can be prohibitively intensive by
itself. We thus need to devise some data reduction methodology to make computations feasible.

For example, return to the well-posed case and assume the matrices A; come from a param-
eter estimation problem where the observed phenomena can be described by a set of differential
equations that are linear w.r.t. the source term. Such operators can be written as

Aj =SL'Qy,

where S and @Q); are sparse selection matrices related to the sensors and the sources respectively,
but L is a discretization of a partial differential equation on a mesh. Such problems arise in
seismic and electromagnetic exploration as well as in impedance and diffraction tomography
[1, 4, 6]. The least-squares estimate of the model m is

m = (ZQ]LTSTSLle>

which requires multiple applications of L™ making the procedure computationally expensive.
Alternatively a far less expensive procedure relies upon a recently developed data reduction
technique based on the idea of ‘simultaneous sources’ [2, 20, 11, 17, 19]. Here the estimate is
based on a weighted combination of the form d(w) = >  w;d;. The basic idea is to exploit the
savings achieved by simultaneously collecting the data.

For example, if each experiment corresponds to a different source in seismic or electromag-
netic exploration, it can take a rather long time to record many different experiments. If, on the
other hand, it is possible to “shoot” simultaneously with all the sources, then the recording time
can be significantly shortened as a collection of simultaneous sources enables direct measure-
ment of linear combinations of the data. That is, for a fixed w one conducts an experiment that
measures d(w) directly. This acquisition strategy is of course, far more efficient than measuring
each data vector by itself and then combining them with the weights w.

The linear system corresponding to d(w) is

d(w) = A(w)m + e(w), (6)

1
> QL "84y, (5)
J

where A(w) = > w;A; and e(w) = > wje;. We assume the individual source noise levels €; are
known. The estimates (3) and (4) corresponding to d(w) are

m(w) = (Aw)" A(w)/[[w]*) " A(w) " d(w)/|[w]|* (7)



if A(w)" A(w) has a stable inverse, and
w) = ()" A@w)/wl? + XM )" Adw) dw)/fu]? (8)

otherwise. Clearly, both solutions depend on w only through its unit-norm normalization w/||w]|.
For example, let us return to the well-posed parameter estimation example with A; =
SL™'Q;. The penalized least-squares estimate (8) is

o) ()] 5 ().

which requires much fewer applications of L™ than (5). Of course, some information may be
lost as (di,...,dn) is not, in general, a sufficient statistic for m. We return to this point in
Section 2.2 but it should be clear that some information might be sacrificed for the sake of
computational or data collection savings.

Although the advantages of using simultaneous sources have been previously explored, the
question of selecting appropriate weights w has not received sufficient attention. We are aware
of two main conducts that have been utilized so far. In [7], the weights w; are independent
zero-mean random variables of variance one and are used to define the Hutchinson randomized
trace estimator [13]. More precisely, let R be the residual matrix defined as

R=(Am-—d -+ Aym—dn).
Then,
E[|[A(w)m — d(w)|> = E(w' R'Rw) = trace(R'R)
= > lAm—d;|)* = ||IR|I%,
J
where || - |» denotes the Frobenius norm. If w™,...,w® are independent random weight

vectors, then by the law of large numbers

b
> 1A@®)m —d@w™ )| = ||| F,
k=1

S| =

as b — oo. Therefore the finite sum on the left hand-side can be used to approximate ||R| r.
It is easy to see that the uniform distribution on {—1,1} minimizes the variance of the trace
estimator (see for example, [22]). Methods to select appropriate values of b are discussed in [22].

In [21] the Frobenius norm of the residual matrix is replaced by the squared 2-norm and w
is then chosen so that

| A(w)ym — d(w)|* = ||R]|3.

The paper is structured as follows. In Section 2 we derive the mathematical framework.
In Section 3 we discuss efficient numerical techniques for the solution of the weight design
problem. In Section 4 we demonstrate the effectiveness of our approach by performing numerical
experiments and finally, in Section 5 we summarize the study.

2 Optimal selection of weights

In this section we consider statistical properties of the estimate m to select optimal weights
w. We also discuss methods to compensate for the information loss and to compare the loss
achieved with different choices of weights w.

We begin our discussion with the well-posed problem and its solution (7). As can be observed,
m depends only on w/||wl||; we may therefore assume that ||w| = 1. Since M is an unbiased
estimator and Var(e(w)) = 1, it follows that its mean square error (MSE) is

MSE(m) = Ell(w) —m|? = o trace(( A(w) A(w))™").



To find an optimal w, in the sense of minimizing the MSE, we need to solve the constrained
optimization problem
min trace(( A(w) T A(w))™") (9)

w

s.t. |lw| = 1.

Before discussing properties of the solutions, we consider the ill-posed problem.

2.1 The ill-posed case

Other than recent numerous exceptions (see [8, 5, 12, 15, 9, 14] and references therein), optimal
experimental design of ill-posed problems has been somewhat an under-researched topic. In the
case of ill-posed problems, the selection of optimal weights for (8) is more difficult because this
estimate is biased and its bias depends on the unknown m: bias() = —A\*>C(w)™' Mm, where
the inverse Fisher matrix is given by

C(w) = A(w) " A(w) + N°M

(again, we may assume ||w|| = 1). The MSE of m is then
MSE(m) = E|m —ml|* = | bias() ||* + trace( Var(i))
= M|Cw) " Mm|* + o® trace( A(w)C(w) > A(w) ). (10)

As in the well-posed case, the goal would be to find weights w that minimize this MSE subject
to the constraint ||w|| = 1 but this is not possible because m is unknown. We need information
on m to control the MSE.

If m is known to be in a convex set S, then we could consider a minmax approach where
we minimize the worst MSE(m) for m € S. A less pessimistic approach is to minimize an
average MSE(m) over S. Of course, other choices are possible and may be useful as long their
interpretation can be rationalized. In this note we minimize a weighted average of the MSE. We
model m as random and since m only depends linearly on m, it is enough to use prior second
order moment conditions. For example, if E(m) = 0 and Var(m) = X,,, then the Bayes risk
Rpp(w) under squared error loss of the frequentist estimate m defined by the fixed w is

Rre(w) = E(MSE(m))
= Mtrace(C(w) 'ME, MC(w)™ ") + o trace( A(w)C(w) *A(w) "),
and we solve the optimization problem
min Rrg(w) (11)
s.t. lw] = 1.

Finally, assume the distributions are Gaussian. That is, the conditional distribution of d(w)
given m is N (A(w)m,o*I) and the prior distribution of m is N(0,72M 1), with 72 = 02 /)2,
In this case, (8) is the posterior mean (and a maximum a-posteriori or MAP estimator) and the
posterior covariance matrix is Var(m | d(w)) = o>C(w)~". For each fixed w the Bayes risk of 7
is therefore

Ri(w) = o” trace( C'(w) ).
The corresponding optimization problem is

min Rp(w) (12)
s.t. lw] = 1.

Remark: So far we have only considered linear/affine reconstructions of the model, which
of course do not include many recovering techniques based, for example, on total variation or
sparsity control. However, if the reason for choosing one of these nonlinear procedures is the
belief that its optimal Bayes risk is smaller than that of the linear reconstruction, then the
optimal Bayes risk of the latter provides an upper bound for the optimal Bayes risk of the
nonlinear procedure. Furthermore, if the upper bound is not too conservative then minimizing
the Bayesian risk for an affine estimator can be a useful guide for other reconstruction techniques.



2.2 Compensating for the information loss

As we have explained, some information may be lost with the reduction to d(w). If the loss is
unacceptable, we may compensate by using more than a single reduction as follows. Let k be
the number of independent data reductions and w® = (wy), R w%))T. Define

d =Am+ e (j=1,... N, £=1,... k),

where the sequence {ega }j.¢ is assumed to be i.i.d. N'(0,0?). The " data reduction is d(w(a) =

> wj(-z)dy). We solve for m using the vector of k reductions d(W}) and matrix A(W},) defined

as
d(w<1>) A(w(l))

d(Wk) = and A(Wk) = :
d(w™®) A(w®)

The associated Bayes risk is R (W) = o2 trace(C (W) ™!) with C(Wy) = A(Wi) T A(Wy) +
A?M. The optimization problem is

min Re(Wy) (13)
Wi
s.t. lwP ) =1,..., 0™ =1.

There are some particular cases that may make this optimization easier and provide upper
bounds for the optimal solution of (13). These bounds can be useful when we study the loss as
a function of k. One particular case consists of using prior information about the experiments to
classify the matrices A; into k groups whose members are similar on a realistic set of models m.
For example d(w<1)) may include only A; and Az while d(w(2>) uses only As, A4 and As, etc. A
second simplification consists of assuming w" = ... = w® so that there is only one constraint
but k independent experiments. The final and simplest approach is to find the optimal w* in
(12) and then repeat the experiment k times. This leads to the risk

Rp(w*, k) = o” trace[ (kA(w™) " A(w*) + A>M )" ]. (14)

2.3 Quantifying the information loss

Although in general the optimization problem does not have a unique minimum, a local minimum
may still provide a sufficient reduction of the risk achieved with the reduced data d(w). This
does not mean, however, that the data reduction is useful for much information may be lost. It
is therefore important to assess whether the computational savings obtained through the data
reduction justifies the information loss.

To assess the information loss of the data reduction, we compare its associated risk to that
of the complete data. The Bayes risk of the complete (i.e. exhaustive acquisition) problem is

Ry = trace ((ATA + )\QM)_l) ,
while the risk associated with the reduced data d(w) is
Rp(w) = trace ((A(w)TA(w) + /\2M)’1) . (15)

We quantify the information loss using the risk ratio

RB(’LU)
Ry

This loss indicates the degradation of the average recovery when using the reduction d(w) instead
of the full data. If the loss is much greater than 1 then using a single set of weights may lead to
significant deterioration in the recovery. In this case one may want to use a number of weights
as explained in Section 2.2. The loss is then

Loss(w) = (16)

Loss(Wi) = %.
0
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Figure 1: The loss as a function of the number of vectors

To determine an appropriate value of k, we may plot the loss as a function of k. The idea
is to balance the trade-off between the cost of the experiment and the information loss. The
following example illustrates this point.

Example 1 We generate N = 50 random matrices A; of sizes 100 x 200 and use k random
unit vectors (not optimal) w™V, ... w™ . Figure 1 shows a plot of Re(Wk) as a function of k.
The curve has a classical L-shape and provides an upper bound for the optimal risks Rg(Wy).
The figure shows that using less than 10 experiments will result in significant loss of information
but using more than 30 may be a waste of resources. Thus, the loss curve is tmportant if we
would like to design an effective and yet efficient experiment.

2.4 Numerical properties of the design function

We now study properties of the weights selected in the fully Bayesian framework; that is,

solutions of (12). First, note that neither the constraint ||w|| = 1 nor the objective functions
Rp(w) and Rp(Wy) are convex and consequently there is no guarantee of a unique solution.
In fact, if w, is a solution of (12), then so is W« = —w.. And any permutation of an optimal
sequence w yee ,w£k> is a solution of (13).

Example 2 Consider the following simple 2 X 2 well-posed case:

10 10
w=o) 2= 5)

It is easy to see that for |w| =1,

2 1

trace((A(w) "A(w))™") = T dwfu? = 2(af L3R

and the optimal solutions of (9) are w* = £(1,0). That is, the optimal solution does not use the
information provided by da. To see how much information is lost, we compare the risk of the



Figure 2: The objective function as a function of ¢ for the weight w = (cos ¢ sin ¢) for two realiza-
tions of the matrices A; and Ay from example 3. We also show the case N = 3.

full least-squares solution and the one based on d(w*). The two optimal weights lead to the same
estimate m(w*) = di with MSE(w*) = o trace(I) = 20°. For the full least-squares solution, we

have AT A = 2I and thus
e = 1 (d1,1 +d2,1)
s 2 \di2—d22)’
with MSE(wiy) = 02. Hence, in this case the information lost by the reduction to d(w*) leads to
a MSE that is twice as large as that of the full least-squares estimate. To compensate, we may
conduct do a single replication with the optimal w* to match the MSE obtained without the data
reduction.

Example 3 Next, we consider the problem (12) for a the case N = 2 and N = 3. The matrices
A; are random 7 x 10 matrices with i.i.d. N(0,1) entries, M = I and 0 = 1 = A. We
parameterize w in terms of the angle 0 < ¢ < 2w by w = (cos¢ sing) for N = 2 and by
spherical coordinates for N = 3. In Figure 2 the value of the objective function for two random
realizations of the matrices A1 and As is plotted, and one realization for N = 3. The problem
has multiple minima for the first instance, but a unique minimum for the second instance, as the
two minima are equivalent. For the case N = 3 there are many more local minima at various
places on the sphere. Local minima may not be too detrimental to our final goal. The value of
MSE is not as important as long as we achieve a reduction of the risk. For the same reason,
even if we do not have a global solution we may still find weights w that substantially decrease
the risk one would have achieved by using other more naive choices.

3 Numerical solution

3.1 Direct approach

To solve the problem (12) we enforce the constraints by parameterizing w in terms of N — 1
spherical coordinate angles ¢; on the unit N-sphere:

wy = cos(p1)
wa = sin(¢1) cos(¢2)
w3 = sin(¢p1) sin(¢p2) cos(ps)

wy—1 = sin(¢1)...sin(¢n—2) cos(¢pn—1)
wn = sin(P1) . . . sin(py_2) sin(dn—1). (17)

‘We then use the BFGS method to solve the minimization problem iteratively. This requires the
computation of the derivatives of the objective function. Rewriting the objective function as

J(w) = trace((A(w)TA(w) + M)fl) = Z ejT (A(w)TA(w) + M)fle]-



and setting
2= (Aw) T A@w) + M) ey o (Aw) T A(w) + M)z = ¢,

we have that -
VoI (w) = (Z ejTszj (w))
J

To evaluate the derivative of z; we use implicit differentiation
0 = Vu((A(w) " Aw) + M)z;) = Vu(Aw) " A(w)2™) + (A(w) " A(w) + M)Vuwz;
We further define the matrices

Gr(v) = Vu(A@w))=(A1v ... Anv)
Gr(u) = Vw(A(w)Tu):(AIu Axu)

which leads to the calculation
Gj(w) := Vu(A(w) " Aw)z;) = A(w) " Gr(z;) + Gr(A(w)z)
and finally

VT == 3G} )(Aw) T Aw) + ) e, (18)

The gradient w.r.t. the angles ¢ is then obtained by multiplication by the Jacobian of the
transformation (17). We have used the BFGS [18] method to solve each optimization problem
and we fix the termination tolerance of each problem, demanding that the norm of the gradient
is reduced to 1072 of its initial value. To address the problem of multiple minima we repeat
the optimization procedure for a number of random initial guesses for w and select the solution
with the smallest value of the objective function. The method to solve the problem (13) which
involves multiple weights is completely analogous.

The techniques introduced in the previous sections work well for small-scale problems. How-
ever for large-scale problems, when A; is large the computation of the objective function and
its derivatives can be rather expensive. Here, we can use a stochastic trace estimation [13] and
substitute the problem with

min Rrpp(w;v) = Eu[o’v (Cw) "M, MC(w) ")v
T (A@w) T Cw) 2 AGw))] (192)
s.t. lw] <1
and
min Rpp(w) = o’ Eyv’ (A(w)" A(w) + o> M)v) (19b)
s.t. lw] <1

where the expectation value over random vectors v is approximated by sampling.

3.2 Heuristic weight selection

We can interpret minimization of (15) as maximizing the operator A(w)' A(w). However in
practice it only needs to be maximized over a set of “relevant” models m. Let us now make the
bold step of maximizing over a single reference model mg , which can be for example a constant
background model or a more sophisticated prior. (Note that we can not use the data to obtain
mo as we consider experimental design here.) We now obtain

W = arg max mg A(W) " A(W)mo.
w



Now A(W)my is just the reduged data that would result from the model mq. Let us Eieﬁne and
compute the mg data matrix d as in (2) but with d; taken to be a row of s data (so d is N x s)
and denote by W the k x N matrix of weights (with unit norm rows). We get

W = arg max trace d"wrwd
w

Let us now perform a singular value decomposition (SVD) upon d=UXS". We obtain

W = arg max |[WUX||3
w

and the solution for W (under appropriate constraints) is the sub matrix of U corresponding
to the truncated SVD, which is equivalent to obtaining the first k principal components from
the data matrix d. For large scale problems, the first k left eigen vectors and the corresponding
eigen values can be estimated effectively through Lanczos iteration. In the following sections we
shall refer to this heuristic choice for W as the “SVD” choice. This heuristic approach works
almost as well as the more optimal W in the numerical examples below while avoiding the
intricate and expensive optimization process associated with the optimal weights problem. A
similar approach using the SVD for faster data processing rather than experimental design was
proposed in [23].

4 Numerical experiments

In this section we test the methods developed on two-dimensional seismic tomography problems.
First we consider a simple toy model on a square domain to test and second we consider a more
complicated reconstruction based on the Marmousi model [3].
We consider a rectangular domain 2 with the top boundary 0€2; representing a ground-air
interface while the remaining boundary 9 represent an artificial boundary of the model.
The acoustic pressure field u is determined by the Helmholtz equation with appropriate
boundary conditions:

(V-V+w*m)u=qin Q (20a)
u =0 on O (20b)
(On + iwy/m)u = 0 on 9O (20c)

where m(z) is the slowness, i.e., m = 1/¢® with ¢ the propagation velocity and g(x) represents
sources of angular frequency w. The Sommerfeld boundary condition (20c) prevents artificial
reflections from the synthetic domain boundary 9€Qs. We discretize (20) on a rectangular grid
using a five point stencil for the Laplacian which is sufficient for numerical experiments and
obtain

A%u = (=LY (m) + w’diag(m))u = q,

where the Laplace operator L depends upon m and w through the Sommerfeld boundary
condition. Note that u is a complex valued vector.

The inverse problem is to determine m from measurements of u for several given sources
qi, where ¢ = 1,... N labels the experiments which can involve several frequencies. We assume
further that all experiments measure u at the same locations which are described by the linear
sampling operator S, i.e., we measure d;, = Su;. The predicted data for a given slowness model
m is F;(m) = SA™'q; (suppressing implicit w dependence) and the least squares error is

1 X
e(m) = 5 D (F—dy)(Fi —da). (21)

i=1

We add a Tikhonov regularization term to ¢. and solve the inverse problem as

1
m”* = arg min ¢. + §A2||m||2A (22)



where || - [|a denotes the Laplacian weighted ¢ norm.
We can apply the formalism developed above and consider instead of (21)

Gelm) = 5 32(3 " wl (B - d) (3w (F, - dy) (23)

for various choices of weights. The Bayes risk function (13) is defined by linearization around a
reference model my. Because we are dealing with complex variables the weight vectors are now
complex valued and satisfy wiw = 1 and there is an additional complex phase factor e*?* for
each component in (17).

4.1 A simple toy model

For the first problem we consider we take Q to be the square domain [—1 1]? which we discretize
by a uniform 422 grid. Absorbing boundary conditions are assumed except at the top where we
impose Dirichlet boundary conditions. Sources are placed on the left boundary and 20 uniformly
spaced detectors are placed on the right. In Fig. 3(a) we depict the synthetic velocity model
which we use to compute simulated data to which we add 2% Gaussian noise. Sources of f = 0.5
(i.e., one wavelength in domain) are placed on the left in two configurations. First we consider
N = 2 experiments with a source at 1/3 depth and at 2/3 depth. Second one source is placed
in the middle. The inversion is performed as described in Section 3 and the regularization
parameter A was chosen by the Morozov discrepancy principle [16]. We solved the optimization
problem (22) using limited memory BFGS. We depict the resulting reconstructions in Fig. 3
(b-c) along with a relative error measure defined as follows:

_ Hm - mtrueHQ

=
Hmtrue”2

(24)

It is clear that for N = 2 we capture the basic structure of the model, whereas N = 1 is
insufficient.

(a) True velocity (b) Using two sources (¢ = (c¢) Using one source (e = 0.13)
0.11)
Figure 3: Reconstructions with their corresponding relative error €, = W

Next we consider using a single simultaneous source by superposition of the two sources
with a unit norm weight vector. In Fig. 4 we show reconstructions using various methods for
selection of the weights (left column). The right column shows the absolute value of the pressure
field u generated by the corresponding simultaneous source. We computed the optimal weight
vector as described in section 3 using 32 different random initial guesses for w, and selecting
the one with lowest risk. Second we used the method described in section 3.2 and finally we
generated three random phase weight vectors. It is evident that the optimal weights yield the
best reconstruction both visually and in terms of relative error as defined in 24. These optimal
results were followed closely by those of the SVD method 3.2. The random weights offered a
reasonable reconstruction in (g) but not in (e) and (i). By inspecting the fields in the rightmost

10



column is seems that the optimal choice has selected the source combination to provide the best
possible domain coverage. The source of the SVD based approach did so to a lesser extent and
the random choices essentially cover the domain randomly, as expected.

11
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(a) Optimal weights (error (b) Field
0.113)
(c) SVD weights (error 0.123) (d) Field

(e) Random weights (error 0.135) (f) Field
(g) Random weights (error (h) Field
0.132)

: | H

(i) Random weights (error 0.136) (j) Field

Figure 4: Reconstructions with a single combined source using various weight choices (left). On the
right the fields generated by the sources are displayed.
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4.2 Marmousi model

As a second numerical experiment we consider the true velocity model depicted in Fig. 5(f) of
the Marmousi model. The domain is 3 km by 10 km and velocity is given in km/sec units. We
use a 208 x 60 grid for the discretization. 40 emitters are placed at uniform distances on the
surface and 39 receivers are placed in between the emitters. We generate data for 5 distinct
frequencies f = 0.2, 1.5, 3, 4.5, 6 (in Hz), with a total of 5 x 40 = 200 experiments. We
note that the low frequencies are needed to avoid local minima, but are not quite realistic. We
added 3% Gaussian noise to the synthetic data. Optimal weights were precomputed before the
inversion by linearization around a constant mg = 2 km/sec background model which was also
used for the SVD method for selection weights.

First of all we present the reconstructions for a single frequency of 0.2 Hz using all 40
experiments and with K = 2 weight vectors, each a combination of the 40 sources. For the
latter we show the results for the optimal weights, SVD based weight selection, and random
phase weights in two realizations. It is clear from Fig. 5 that the random weight selection
performs much worse that the other methods. In this case the SVD reconstruction is even
better than using the optimal weights.

In Fig. 6 we depict the resulting pressure field from the two simultaneous sources. We observe
again that the optimal and SVD weights result in a more or less uniform and balanced coverage
of the domain whereas the random choices do no share this virtue.

To obtain more accurate reconstructions higher frequencies must be included. Because of the
non-convexity of the problem we perform a frequency continuation by which we first solve (to
full convergence) for the lowest frequency, then use the result as initial guess for the next stage
where we add an additional frequency, etc. Because accuracy of the reconstruction increases
we can expect to require more simultaneous sources as well as more and more frequencies are
included. In this example we use K = 2, 6, 12, 20, 30, simultaneous sources corresponding
to frequencies f = 0.2, 1.5, 3, 4.5, 6, again for the aforementioned 3 methods for weights
selection. In Fig. 7 we depict the resulted reconstructions. Remarkably, the reconstructions
with the SVD or optimal weights are no worse visually than the reconstruction using all the
data, whereas the random weights do not offer comparable results. We note that the advantage
of using simultaneous sources decreases with higher frequencies.

5 Summary and conclusions

We have introduced a novel methodology for optimal experimental design of acquisitions in-
volving simultaneous sources. Based on an optimal Bayesian risk statistical framework and the
assumption of a linear inverse problem we have formulated an optimality criterion for selection
of the weights in which individual observations should be combined. We derived a heuristic
guess for the optimal weights based upon the singular value decomposition and we performed
numerical experiments to test the efficacy of the method. In all cases it was found that an
informed choice of the weights generally outperforms a random weight choice. This is because
our statistical framework incorporates information about the domain under consideration and
the experimental setup.

Even though for most realistic applications the numerical models lead to nonlinear inverse
problems, both weight selection based on a linearized version of the model was still found
to perform quite well. Development of computationally viable optimal simultaneous source
experimental design that accounts for the non-linear nature of the observation model is a subject
for future work.

In this study, Gaussian assumptions were taken for the noise model and Tikhonov regular-
ization was considered for the ill-posed case. These choices are by no mean exclusive, and in
principle, derivation of optimal experimental design for simultaneous sources can be performed
for other alternative noise models as well as for other forms of regularization.

So far incorporation of constraints was not considered (other than such that can be in-
troduced in the form of exact penalty). Future research would be to generalize the proposed
formulation to account for such.
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) All data (e, = 0.2) b) Optimal 2 weights (e, = 0.25)

) SVD weights (e, = 0.22) ) Random weights (1) (e, = 0.31)

(e) Random weights (2) (e» = 0.28) (f) True model

Figure 5: Reconstructions of the Marmousi velocity model using only the low frequency f = 0.2
data with all and with 2 simultaneous sources. We also indicate the relative reconstruction error
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Figure 7: Reconstructions of the Marmousi velocity model using the protocol described. We compare
the final result using all the data, and a simultaneous sources protocol with optimal, SVD, and
random weights.
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