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Abstract

Mobile gaming is a rapidly growing and incredibly profitable
sector; having grown seven-fold over the past 10 years, it
now grosses over $100 billion annually. This growth was
due in large part to a shift in monetization strategies: rather
than charging players an upfront cost (“pay-to-play”), games
often request optional microtransactions throughout game-
play (“free-to-play”). We focus on a common scenario in
which games include wait times—gating either items or game
progression—that players can pay to skip. Game designers
typically say that they optimize for player happiness rather
than revenue; however, prices for skips are typically set at
levels that few players are willing to pay, leading to low pur-
chase rates. Under a traditional analysis, it would seem that
game designers fail at their stated goal if few players buy
what they are selling. We argue that an alternate model can
better explain this dynamic: players value tasks more highly
as they are perceived to be more difficult. While skips can
increase players’ utilities by providing instant gratification,
pricing skips too cheaply can lower players’ utilities by de-
creasing the perceived amount of work needed to complete a
task. We show that high revenue, high player utility, and low
purchase rates can all coexist under this model, particularly
under a realistic distribution of players having few buyers but
a few big-spending “whales.” We also investigate how a game
designer should optimize prices under our model. An appendix
of the paper with proofs, more comprehensive results and vi-
sualizations can be found at https://arxiv.org/abs/2312.10205.

Introduction
The gaming industry is larger than Hollywood and the mu-
sic industry combined; currently valued at $245.10 billion
USD, it is expected to reach $376.08 billion by 2028 (Intelli-
gence 2023). While console and PC games have historically
dominated the gaming category, mobile games have achieved
seven-fold revenue growth since 2012 (Newzoo 2022) and
accounted for a majority of gaming industry revenues in 2023
(Intelligence 2023). Reflecting this shifting marketplace, Mi-
crosoft recently announced plans to acquire Activision Bliz-
zard for $68.7 billion USD (Microsoft 2022). Just two months
after release, Diablo Immortal, Blizzard’s franchise mobile
title, surpassed $100 million USD; overall, mobile games
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account for 40% ($1.08 billion USD) of Activision’s revenue
(Partis 2022; Activision 2022).

A key factor in the rise of mobile games is a shift in pric-
ing models. Over 90% of mobile games are free to download
(“free-to-play”) and monetized by offering optional “micro-
transactional” payments throughout game-play (Misiuk 2019;
Seufert 2017; Tafradzhiyski 2023). While free-to-play is not
a novel strategy (e.g., many platforms like Spotify offer free
tiers), mobile games monetize a qualitatively different set of
behaviours. For example, mobile games often allow users
to spend money on virtual cosmetic items, extra lives that
enable longer play sessions, or items that make the game eas-
ier. We are interested in understanding what player behavior
causes these strategies and, in this paper, we focus on skips.

Games that monetize using skips have a gameplay loop
requiring “grinding”: completing tedious tasks, such as wait-
ing for a timer to tick down. Players are offered the ability
to skip the grind for a price. This style of monetization is so
successful that an entire genre of games consisting solely of
sequential timers and skips generated over $3 billion world-
wide in 2021 (Pecorella 2013b; Moloco 2021).

While the success of skip-based monetization may be sur-
prising, it is odder still how skips are priced. It is common
to see talks at game design conferences discussing the perils
of short-sighted monetization strategies (Greer 2013; Nuss-
baum and Telfer 2015; Krasilnikov 2020; Reilley 2023), or
the importance of ensuring that players feel that purchases
were “worth it” (Levy 2021; Engblom 2017; Reilley 2023).
Successful game designers understand this well; when talk-
ing about fixing stagnating revenues in Clash of Clans, the
chief game lead at the time, Eino Joas (2020) said, “reten-
tion always trumps monetization”. Despite this, virtual goods
such as skips are typically priced so high in practice that very
few people are willing to buy them. On average, only 3.5%
of players spend any money in-game and the majority of con-
verted players, or ‘minnows,’ spend only $1 to $5 a month
and contribute to less than 15% of the revenue (Brightman
2016; AppsFlyer 2020). The majority of revenue comes from
‘whales,’ who spend more than $25 per month on average and
account for less than 15% of buyers (Shi, Xia, and Huang
2015). Under traditional economic models, high average util-
ities and prices few buyers can afford are incompatible. It
might, therefore, seem either that designers are failing to
make most players happy or that they truly care more about



revenue than player utility.
We show that existing game designs can indeed yield high

player utility—along with high revenue—under an alternative
model of player value. In this model, each individual player
values skips because they dislike waiting. However, skips
can decrease all players’ values for virtual goods the more
they are used. We believe that players value signaling that
they achieved a high rank by grinding for it and cheap skips
degrade this value by making progress purchasable. Mod-
eling how the purchasing of skips degrades value requires
modeling both how knowledgeable players are about other
players’ purchasing habits and how they incorporate this
knowledge into their valuations. We make these modeling
decisions based on the design dimensions of the game: the
more immersive or social a game is the more sensitive play-
ers’ values for playing are to different signals of grinding. We
use this model to explain existing pricing strategies, but also
show that, under some simplifying assumptions, game de-
signers can leverage tools from traditional mechanism design
to optimize prices.

We now describe what follows in the remainder of this
paper. We start by discussing related work studying utility
models grounded in difficulty, cost, or scarcity; offering evi-
dence about ways in which mobile game players vary; and
studying the monetization of mobile games. We then for-
mally introduce our model of player utility where players
have value functions that increase with the rarity of skip us-
age. We model three types of mobile game players, differing
in their responsiveness to other players’ behaviors: fully-
sensitive, price-sensitive, and insensitive. With our model
in hand we offer two main results. First, we demonstrate
that, when players’ value functions are price-sensitive, our
model can explain the counter-intuitive pricing observed in
practice, giving conditions under which high prices yield
both good utility and good revenue. Furthermore, we show
that these conditions are satisfied under player distributions
with few buyers but a sufficient number of “whales.” We
illustrate these theoretical results in several examples and
show that they also hold empirically in the more complicated
fully-sensitive setting. Second, we prove that when players’
value functions are insensitive, a simple pricing scheme ap-
proximates optimal revenue. We also show that this same
pricing scheme approximates optimal revenue even when
value functions are price-sensitive. We then test the simple
pricing scheme with simulations, showing that in a variety
of different settings, this scheme is competitive with other,
natural pricing schemes. Finally, we conclude our work.

Related Work
A long line of literature—both in game theory and beyond—
explores the idea that an object’s value to an agent can be
impacted by the difficulty or cost of obtaining it. For ex-
ample, this idea is implicit in the idea of conspicuous con-
sumption (Thorstein 1899; Battalio, Kagel, and Carl 1991),
which posits that agents value goods in part because they can
be used to signal wealth. In such models, higher prices and
scarcity are primary drivers of value. Conspicuous consump-
tion in mobile gaming is a well-documented phenomenon
(Martin 2008; Lehdonvirta 2009; Cai, Wohn, and Freeman

2019). Directly related to our work, Geng and Chen (2019)
investigated the freemium business model, finding that con-
spicuous consumption is a main driver of premium content
pricing. In other cases, players can be motivated to signal
their skill or commitment to a game rather than their wealth
(Carter and Björk 2016). Further work has shown how social
factors can exacerbate conspicuous consumption (O’Cass
and McEwen 2004). Realizing this, mobile games often in-
corporate social networks to reinforce the conspicuous value
of the virtual goods they offer (Fields and Cotton 2011; Choi
and Kim 2004; Grieve et al. 2013). Goetz and Lu (2022) use
data from online games to show that being matched with
other players who have acquired virtual items makes a given
player more likely to purchase them.

Of course, a player’s perception of value also depends on
intrinsic factors, such as their degree of impatience. In this
vein, Hanner and Zarnekow (2015) showed how player pur-
chasing behaviour can be predicted based on past purchases.
Additionally, these intrinsic factors can lead to very differ-
ent player behaviour. Game designers often report that in
real-world player populations, the majority of revenue comes
from a select group (around 2-3%) of “whale” players (Zatkin
2017; Shi, Xia, and Huang 2015; AppsFlyer 2020).

A key theme of this paper is that optimal pricing in mobile
games must carefully trade off the value players assign to re-
wards that are difficult to obtain and the impatience that they
experience as a result. The relationship between these two
factors has been studied in various other contexts. Hsiao and
Chen (2015); Evans (2016); Keogh and Richardson (2018)
study how these factors affect the motivations behind pur-
chases in mobile games. Recent work by Sepulveda, Besoain,
and Barriga (2019) looks at how optimizing game difficulty
can impact player satisfaction.

Player happiness is a first-order consideration in the mone-
tization of mobile games: games that rely on microtransac-
tions need players to keep coming back to play more and pay
more. The link between retention and revenue has been well
studied in both academia and the game industry, with many
approaches for increasing retention being empirically vali-
dated and widely deployed (Nojima 2007; Pecorella 2013a).
For example, Xue et al. (2017); Huang, Jasin, and Manchanda
(2019) study how to adjust the difficulty of a game or oppo-
nents to keep players from leaving.

Payments for skipping past obstacles yield considerable
revenue in mobile games (Pecorella 2013b). This style of
difficulty-reducing monetization has started to gain attention
in the optimization literature. Sheng et al. (2020) study the
revenue and retention implications of offering items that
make the game easier, focusing on games that provide these
items in exchange for watching an ad. Further afield, Jiao,
Tang, and Wang (2021) study the impact of selling skill-
boosting items in multiplayer, competitive games.

Other recent papers study additional challenges related
to game monetization that overlap less with our own work.
Examples include optimizing pricing for loot boxes, which
are lotteries over virtual items (Chen et al. 2021), and charac-
terizing tradeoffs between perpetual and subscription-based
licensing (Dierks and Seuken 2020).



Our Model
The most straightforward rationale for players valuing game
playing is that the game mechanic itself is enjoyable: it is
fun to blast meteors out of the sky; to explore an open world;
to solve puzzles; etc. Many mobile games have mechanics
that defy such an explanation. Instead, in order to complete a
level or unlock an item, players must simply wait for a timer
to tick down. It is hard to believe that there is anything fun
about this kind of game mechanic (e.g., most people dislike
waiting for a bus or a checkout clerk). Furthermore, players
would not value the opportunity to skip timers if waiting were
what made the game enjoyable.

Our model rests on a sharply different assumption: that
players value achieving tasks because of the perceived diffi-
culty of completing them. This means that as achievements
become scarcer in the player population, their value increases.
FarmVille crops that take days to grow have high value be-
cause they are hard to obtain; a Town Hall Level 12 in Clash
of Clans is desirable because obtaining one requires 2 years
and 2 days of waiting through timers (Crux 2023). This is sim-
ilar to existing models of conspicuous consumption except
that the cost is denominated in time rather than money.

While there is value in difficult gameplay, there is also frus-
tration. We assume that a player’s demand for skips comes
from a time discount in the reward for completing the task,
which we model as their type γ ∈ [0, 1]. We allow for players
to differ in their impatience: they draw their types privately
and i.i.d. from some prior continuous distribution Fγ . Further-
more, value in difficult gameplay can be shaped by the way
other players in the player base accomplish their own tasks:
players trying to signal their commitment to grinding care
about how they compare to others. Skip prices can therefore
affect the conspicuous value of a task, as lower skip prices
decrease the fraction of players who accomplished a task by
waiting. Typically, every player views the same price for a
task and has no way to tell if another player completed a task
by waiting or by skipping. Thus, the perceived value of a
task falls with the cost of skipping it, even if the number of
players who accomplish it is held constant.

How players’ values for signalling grinding are impacted
by skip prices depends heavily on how games are designed.
We divide mobile games into three broad categories—mid-
core, casual, and hypercasual—and argue that each gives rise
to a different level of sensitivity to other players’ behavior.
First, mid-core games (e.g., Clash of Clans, Game of War)
incorporate in-game communities as a way to foster conspic-
uous value and immersion. For instance, a crucial part of
game-playing in Clash of Clans is joining ‘clans’ with other
players. Players can see the progress of other members in
their clan and easily deduce if a clan member’s rank was
gained by purchasing or waiting. We say that players in these
games are fully-sensitive and assume they know the full type
distribution. We assume that fully-sensitive players determine
their value based on both the price of a skip as well as the
type distribution of other players.

Definition 1.1. A fully-sensitive player with type γ drawn
from type distribution Fγ , at the beginning of a task has pro-
jected value γv(Fγ , p) for finishing the task without skipping,

Figure 1: The purple and green lines are examples of value
functions satisfying all of our assumptions for fully-sensitive
and price-sensitive players, and the blue line satisfies our
assumptions for insensitive players.

when the skip price is p.

We insist that these value functions maintain some nice
properties with respect to price. First, the limit case of zero-
cost skips is nonsensical (they would always be chosen), so
we assume that v(Fγ , 0) = 0. We also assume that value is
monotonically increasing and concave in p. These two con-
ditions mean that as the price increases, the probability of
sale for skips weakly decreases and the value of the accom-
plishment weakly increases. To avoid the uninteresting cases
where players obtain non-positive utility at all skip prices we
assume that the v′(Fγ , 0) is greater than 1. Finally, we assume
that there exists a point pend > 0 where v(Fγ , pend) = pend
at which point the value function becomes a constant pend.
Otherwise, the designer can give players arbitrarily high util-
ity by setting prices arbitrarily high. Figure 1 illustrates two
value functions that satisfy the properties above, with the
shaded region indicating values for v(Fγ , p) that yield nega-
tive utility at price p.

Casual games (e.g., AdVenture Capitalist), on the other
hand, are generally simple, easy to learn, and easy to play.
The play style of casual games reflects their simplicity: most
play for a short time while in a line at a supermarket or wait-
ing for a friend (Turkowski 2023). Designers of casual games
generally do not incorporate in-game social communities and
often obscure information about other players’ purchasing
habits such as whether they paid to accomplish tasks. Still,
players can be very invested in casual games, spending large
amounts time and money to progress (Pecorella 2013b; Apps-
Flyer 2020). We assume these players do not know the type
distribution induced by the given game but instead have a
prior over what the type distribution might be. In this case,
the true type distribution cannot affect player value, so a
price-sensitive player’s value function depends only on price.

Definition 1.2. A price-sensitive player with type γ at the
beginning of a task has projected value γv(p) for finishing
the task without skipping, when the skip price is p.

We assume the same properties about the relationship be-
tween value and price hold as just described.

Lastly, we look at players of hypercasual games (e.g., Cow
Clicker, Cookie Clicker, Clicker Heroes). Such players play
many hypercasual games and are not invested in any particu-



lar game (Turkowski 2023). We therefore consider it unlikely
that players of hypercasual games are knowledgeable about
the distribution of players for any given game. Furthermore,
hypercasual players predominantly play to relieve stress, pass
time between daily activities, or while multitasking, making
it unlikely that they are reasoning about how price impacts
their enjoyment (Facebook 2019). While skip prices may
still need to be set high enough that the game does not feel
pointless, beyond this threshold players value functions are
insensitive to skip prices.

Definition 1.3. An insensitive player with type γ at the be-
ginning of a task has projected value vc(p) = γv when the
skip price p > c for some constant c, and 0 otherwise, for
finishing the task without skipping. We assume c is the same
for all players.

For ease of exposition, the rest of this section will define
player utilities with respect to price-sensitive values. The
corresponding definitions for fully-sensitive and insensitive
values are very similar and can be found in Appendix A of
the extended version.

Definition 1.4. At the beginning of a task, the marginal value
a player with type γ has for a skip at price p is vm(p) =
(1− γ)v(p). The utility a player receives if they purchase a
skip at price p is u(v(p), p) = v(p)− p. We assume players
are utility maximizers. Therefore, the utility a player receives
in a task is umax(v(p), p, γ) = max(γv(p), v(p)− p).

Our technical results in this paper leverage a common
distributional condition from the economics literature called
a monotone hazard rate (MHR).

Definition 1.5. A distribution F (x) satisfies the MHR con-
dition if the inverse hazard rate, 1−F (x)

f(x) , is monotone non-
increasing.

Optimal Pricing for Sensitive Players
We begin with studying price-sensitive players and show that
they naturally give rise to the phenomenon of utility-optimal
and revenue-optimal pricing coinciding at high prices. In
particular, we show this when the game exhibits a whale
distribution: (1) a large majority of the population never
buys anything; and (2) a small fraction of players (whales)
that generate a large majority of overall revenue. We then
empirically demonstrate distributions where the results with
price-sensitive players carry over to fully-sensitive players
and others where their pricing behavior is different. Note that
while we will be characterizing the distributions that give rise
to high prices, we only allow the game designer to control
skip prices. For the entirety of this section we focus on the
setting with a single unrepeated task.

Price-Sensitive Players
The technical work of this section unfolds in three parts. First,
we show a condition on the type distribution under which it
is utility optimal to set skip prices arbitrarily high and that
it is satisfied by distributions with feature (1). Second, we
give a characterization of how the value function can drive
the revenue-optimal price higher and demonstrate the impact

of distributions with feature (2). Finally, we leverage these
two conditions to construct distributions where the revenue
optimal payment still yields high utility. In this section, for
analytic convenience, we only consider value functions that
are differentiable everywhere.

We first need a description of the total utility generated by
skips in a task.

Proposition 2.1. The expected utility (of all players) from
a single task is Eγ [umax(·)] = Fγ

(
1− p

v(p)

)
(v(p) − p)+(

1− Fγ

(
1− p

v(p)

))
Eγ [γ|γ > 1 − p

v(p) ]v(p). We denote

the utility-optimal price as putil = argmaxp Eγ [umax(·)],
and the resulting utility it achieves as Umax .

All proofs for this section can be found in the extended ver-
sion.

We begin by giving a condition implying that the utility-
maximizing price is arbitrarily close to pend. The following
condition is of interest on its own, as it characterizes some
cases when offering skip microtransactions becomes detri-
mental to expected player happiness.

Theorem 2.2. If Fγ

(
v′(0)−1
v′(0)

)
≤ v′(pend)

1−v′(pend)
Eγ [γ], then

∀ϵ > 0, Eγ [umax(v(pend), pend, γ)] ≥ Umax −ϵ.

The proof for this theorem follows from rearranging the
definition of optimal utility and can be found in the appendix.
It is useful to interpret this condition through the lens of
feature (1) of whale distributions. The left hand side of the
condition represents the highest possible probability of sale
across all non-zero prices. Meanwhile, the right hand side
contains the expectation of γ which grows as the population
becomes more patient. Whale distributions, given a fixed
value function, make this condition easier to satisfy; as the
number of non-paying players increases, the probability of
sale on the left hand side decreases and the expected value on
the right hand side increases. The intuition behind this result
is quite simple: when there are enough patient players in the
population, more total utility is gained by raising the price to
make them happy than by providing cheap skips as an easy
out for impatient players.

We now have a condition on the type distribution that
would imply that the utility-optimal game design sets a price
with zero probability of sale. The next step is to characterize
distributions for which the revenue-optimal price monetizes
only a small fraction of players. First, we describe the rev-
enue generated by skips in a single task with respect to the
distribution over impatience. It is useful to keep in mind
that a player with high γ is a patient player, therefore the
distribution over 1− γ is a distribution over “impatience.”

Proposition 2.3. The revenue generated from offering
a skip price p from a single task is R(v(p), p, γ) =

p
(
1− F1−γ

(
p

v(p)

))
.

Lemma 2.4. The revenue-optimal price prev ≥ p∗ if for all

p ≤ p∗,
1−F1−γ( p

v(p) )
f1−γ( p

v(p) )
≥ p

v(p)

(
1− pv′(p)

v(p)

)
. Furthermore, if

F1−γ satisfies MHR then the optimal price is the point where
this is satisfied with equality.



Here, we interpret what this says for type distributions and
their revenue-optimal payments. This lemma’s first condition
is a lower bound on the inverse hazard rate of the impatience
distribution. The larger the domain over which this holds, the
larger lower bound we have for the revenue-optimal payment.
As the density of the most impatient players increases, the
domain where this condition is satisfied can only grow. One
might worry that having the high density of patient non-
buyers necessary for Theorem 2.2 could violate Lemma 2.4.
However, the density of players who would never buy are
not considered directly by this condition; for large enough γ,
1− γ ̸= p/v(p) for any price, so their density never appears
in the inverse hazard rate.

The second part of the lemma gives us an analogue to
virtual values. Traditionally, virtual values are defined with
respect to a constant value function. Suppose we define a
constant value function as v = v(p∗) where p∗ is some fixed
point, the resulting virtual values will be greater for any point
p∗∗ > p∗ than defined with respect to v(p∗∗). To see this,
note that the virtual value for a constant value function would
be identical except for the term (1− pv′(p)/v(p)) which is
always less than one while the value function is increasing.
This demonstrates the upward pressure an increasing value
function has on pricing.

Putting together the conditions from Theorem 2.2 and
Lemma 2.4, we characterize a price that provides both high
utility and high revenue.

Corollary 2.5. Let prev be the revenue optimal price and
mrev be the slope of the value function at v(prev). If the con-
dition in Theorem 2.2 holds, then setting the revenue-optimal
price prev achieves utility Eγ [umax(v(prev), prev, γ)] ≥
Umax −mrev(pend − prev).

This simple fact demonstrates that we can ensure near-
optimal utility by setting prices high enough to reach a near-
flat region of the value function. As mentioned in the begin-
ning of the section, while high revenue-optimal and utility-
optimal prices seem at odds with traditional mechanism de-
sign, many game designers are often encouraged to increase
their prices for microtransactions and find increases in both
overall retention and revenue (Levy 2016).

Fully-Sensitive Players
The results of the previous section depend on both the value
function and the type distribution. It is not obvious if these
results hold when the value function itself depends on the
type distribution. We now show empirically that for value
functions that are linear in the probability of sale we can still
get high utility and revenue optimal prices but sometimes op-
timal prices can be pushed down if the value function grows
too slowly with price. The fully-sensitive value functions
that we consider satisfy the desired properties we listed, for
specifics on how to construct such value functions and a more
detailed breakdown of pricing behavior in this setting, see
the extended version of this paper.

For a while, our intuition from the price-sensitive model
holds; create enough patient players and the utility-optimal
price goes to the max. However, if there are too many pa-
tient players in the population, the value function plateaus

(a) Truncated exponential distri-
butions with rate parameter λ ∈
{1, 5, 15}.

(b) Utility optimal prices (▼, ▼,
▼) changing as density of patient
players concentrates.

Figure 2: Utility-optimal price as type distributions concen-
trate on patient players. Value functions plotted on the right
generated by corresponding type distributions on the left.

sharply and the trend flips: the utility-optimal price starts to
drop (seen in Figure 2b). This is because the utility for non-
buyers in this region of price-insensitivity remains relatively
constant, while buyers’ utility drops linearly with p.

We find that heavier tails usually mean higher revenue-
optimal prices. However, it becomes more difficult to drive
prices to the extremes in cases where the utility-optimal price
is also high. This is because as the function gets flatter the
upward pressure exerted on the price lessens. We offer more
discussion and visualizations in the extended version.

This section shows that when value functions are sensitive
to changes in price across the domain, the designer’s job is rel-
atively simple. The utility-optimal price often dominates the
revenue-optimal price, so setting a high price and lowering it
over time provides little risk in losing players. In fact, this is a
strategy that game designers are sometimes advised to imple-
ment (Levy 2016). However, when value functions have large
regions of insensitivity, the trade-off between buyer utility
and revenue is non-obvious. This trade-off is the focus of the
next section.

Optimal Pricing for Insensitive Players
We now tackle optimizing revenue for players insensitive
to skip prices. We also note that we can transform fully-
and price-sensitive value functions into an insensitive value
function, allowing the results in this section to provide a good
approximation when these sensitive value functions have
large regions of low sensitivity. By definition, insensitive
players have a minimum price below which their value is 0.
However, this point does not affect the analysis, so we assume
it is at 0 for the remainder of the section and let v := vc(p).
For more discussion see Appendix D in the extended version.

In this section, we leverage the analytic tractability af-
forded when players are insensitive to investigate the harder
problem of repeated task pricing. Our main result is a simple
pricing scheme that gives a constant approximation to the
revenue of the optimal pricing scheme. This approximation
ratio holds even if the designer is allowed to set multiple
prices based on how much of the task players complete. Not
only is our simple pricing scheme interesting theoretically, it
is also practically relevant: we often see pricing schemes in



which a single price is offered regardless of how much time
has elapsed, even in mid-core (Clash of Clans) and casual
games (AdVenture Capitalist). We end the section by testing
our results in richer environments through simulations.

Repeated Tasks
We now introduce the further modeling assumptions and no-
tation that we will need to study repeated tasks. We make
two main assumptions: player’s types remain constant across
tasks, and players are myopic to future value. That is, they
only consider the value of the task at hand rather than account-
ing for future value they might obtain by completing subse-
quent tasks. This matches experimental results on human
behaviour showing that people often bracket their choices,
optimizing piecemeal, rather than considering them jointly
(Tversky and Kahneman 1985). Mobile games often exac-
erbate this effect, obscuring the amount of time needed to
complete subsequent tasks. For example, Clicker Heroes
only shows the timers for current tasks, hiding all future wait
timers.

Definition 3.1. At the beginning of each task k, the designer
sets a take-it-or-leave-it price pk. This results in an infinite
sequence of prices {pk}k∈N.

One might imagine that game designers try to extract as much
revenue from their players as possible. However, their task
is not so simple. The mobile game marketplace is highly
saturated with offerings in every conceivable permutation
of aesthetic elements; e.g., Cow Clicker, Cookie Clicker,
Planet Clicker, Room Clicker, Battery Clicker, and Candy
Clicker are all real games! In such a marketplace, players
who are retained in one round may not be retained in the
next; designers have to worry about losing players to these
outside options at every round of the game. We characterize
the appeal of these outside options as a retention threshold
resampled from a static distribution at the beginning of every
task. This utility check means a game is always at a risk of
losing its least satisfied players.

Definition 3.2. At the end of each task k ∈ [1,∞), all
players realize a retention threshold rk ∼ Fr, where
supp(Fr) = [0,∞). A player quits the game immediately
if u(k)

max(v(pk), pk, γ) < rk, where u
(k)
max(v(pk), pk, γ) =

max(γv(pk), v(pk)− pk).

An Upper Bound on Optimal Revenue
Characterizing the optimal sequence of prices is difficult,
especially when one must worry about the type distribution
changing over time due to retention. However, the revenue
generated when players’ types are known to the designer is
not only easy to characterize but upper bounds the revenue
when types are unknown. Within this known types setting,
the optimal strategy sets pi = (1 − γi)v for each player i
which is guaranteed to sell and static across tasks. We use
the term unknown types for the setting where the designer
has only a prior over players’ types and must price each
round anonymously. Note that in either setting the designer
only has access to the distribution over retention thresholds.
We assume designers exponentially discount future rewards

characterized by β. The proofs in this section can be found
in the extended version.

Proposition 3.3. The revenue generated from offering a
static skip price pi to a player i with known type γi and
game designer discount β is R(v, pi, γi) =

pi

1−βFr(v−pi)
, if

pi ≤ (1− γi)v and 0 otherwise.

We now make an assumption on the retention distribu-
tion that is similar to regularity (many common distributions
satisfy it e.g., uniform, exponential, Pareto).

Definition 3.4. We say a retention distribution Fr(x) is reten-
tion regular if x− 1−βFr(v−x)

βfr(v−x) is monotone non-decreasing.

Proposition 3.5. The optimal price for a player i given
known types, under retention regularity of the retention dis-
tribution, is pi = min

(
(1− γi)v,

1−βFr(v−p)
βfr(v−p)

)
, where p is

the unique solution to the equation q = 1−βFr(v−q)
βfr(v−q) .

Notice that retention adds a constant upper bound on
the price we should charge. For players with high enough
marginal value, charging a price that is too high may leave
them with low utility, risking revenue from future tasks. Con-
versely, if a player has low marginal value for a skip, full
surplus extraction may still leave them with high enough
utility to be retained. We build on these observations for our
simple pricing scheme later in this section.

Of course, designers are not restricted to offering only one
skip per task, for example they could charge less if the player
waits for half the task. We show that setting multiple prices
can generate more revenue in Appendix E in the extended
version. While even finding a closed form for such a pricing
scheme is difficult, they are also upper bounded by the known
types setting.

We note that without any distributional assumption on
the marginal value distribution there is an unbounded rev-
enue gap between known and unknown types, so we have no
simple tool for bounding the performance of these complex
pricing schemes.

Theorem 3.6. For any constant c, there exists a retention
distribution Fr and marginal value distribution Fm such that
a game designer with known types achieves c times more
revenue than the revenue optimal price for unknown types.

This theorem relies on reducing our setting to a well known
setting in the literature known as the equal-revenue distribu-
tion (Hartline and Roughgarden 2009; Hartline 2013). A
natural question is whether there is a restricted class of distri-
butions in which pricing schemes with unknown types can
still perform competitively. Distributions with a monotone
hazard rate (MHR) are one such example.

Simple Skip Pricing
The technical content unfolds in two steps: (1) we bound the
gap in revenue at a given round between the known types
setting and a simple pricing scheme using a result from the lit-
erature on distributions with a monotone hazard rate (MHR);
and (2) we show our pricing scheme maintains at least as
many players as the known types setting and always preserves



MHR. Combining these two facts guarantees a simple pric-
ing scheme can 1/e-approximate the optimal revenue. See the
extended version for the definition of revenue in the unknown
types setting.

We begin by defining how retention impacts the marginal
value distribution across tasks in the unknown types setting.
Note that at the start of the game, the distribution over players’
marginal values is Fm(p) = Prγ [(1− γ)v ≤ p].

Definition 3.7. A marginal value distribution F
(k)
m at task

k > 0 if a retention threshold of rk−1 was drawn at the
end of task k − 1 is defined as: F

(k)
m (x) := F

(k−1)
m (x |

umax(v(p), pk−1, γ) ≥ rk−1), where F
(0)
m (x) := Fm(x).

We formalize the observation of “threshold” pricing from
the known types setting for the unknown types setting.
Definition 3.8 (Myerson Threshold (MT) Pricing). First,
the designer computes pr = (1−βFr(v−p))/βfr(v−p). Then at
each task k, they compute the Myerson optimal posted price
with respect to the marginal value distribution at that task:
pmyer
k = (1−F (k)

m (x))/f(k)
m (x). Finally, for task k, the designer

charges pk = min (pr, p
myer
k ).

Note that the pr computation is the same as in Proposition
3.5. We can think of this as the retention distribution setting
a constant upper bound on the price across all tasks.

We leverage the following result to lower-bound the rev-
enue obtained by the Myerson optimal price.
Lemma 3.9. (Hartline 2013, Theorem 4.37) For any
marginal value distribution F

(k)
m satisfying the MHR property,

the expected value is at most e times the expected revenue
generated in one round by setting the optimal posted price.

Finally, we show that as long as the marginal value dis-
tribution satisfies MHR at the first task, threshold pricing
achieves a 1/e-approximation of the optimal revenue.
Theorem 3.10. For every retention distribution Fr satisfy-
ing retention regularity and marginal value distribution Fm

satisfying MHR, Myerson Threshold (MT) pricing generates
a 1/e fraction of the revenue in the known types setting.

Note that for any discount factor, marginal values decrease
as the task goes on. Since in the known-type case the de-
signer can guarantee a sale, they will always sell in the first
round. This means the upper bound used in the proof of
Theorem 3.10 applies equally to the multiple prices setting.
Corollary 3.11. For every retention distribution Fr satisfy-
ing retention regularity and marginal value distribution Fm

satisfying MHR, Myerson Threshold (MT) pricing generates
a 1/e fraction of the revenue of any complex pricing scheme.

Simulations
In this section, we simulate populations of players to study
what features of the problem make MT pricing perform well.
We also test the robustness of MT pricing by adding new
ingredients that break away from some of our previous as-
sumptions. Namely, we allow the population to grow from
newly acquired players and players to be heterogeneous with
respect to retention draws. Full details of the parameters used
in the simulations and the formal descriptions of these new

ingredients can be found in Appendix G in the extended ver-
sion. We note that even when adding these new ingredients,
MT pricing gets at least a 1/e fraction of the optimal known
types’ revenue. Therefore, we compare MT pricing’s perfor-
mance to other simple pricing schemes to learn what features
of the problem makes each option perform well. Histograms
of the relative performance of MT pricing and the next best
alternative for each of the following sections can be found in
Appendix H in the extended version.

Comparison to Myerson and Retention Threshold Pricing
We begin by comparing two alternative pricing strategies: at
each round, charge only the Myerson optimal price or the
retention threshold price. The results suggest that the lower
price often achieves the higher revenue. Setting a retention
threshold price achieves higher revenue in over 20% of the
instances and most of these instances are when Myerson
takes a risk in setting a high price and loses too many players.

This matches the advice we see from the gaming com-
munity. Rather than losing too many players trying to make
a quick buck, MT pricing keeps enough players around to
monetize in the next task. In fact, the revenue generated from
MT pricing is within 1% of the revenue from the max of
the two other pricing schemes in 82% of cases and strictly
outperforms the next best option in 12% of cases.

Viral Population Growth The gap in performance be-
tween MT pricing and the alternatives is small in most set-
tings. This should not be surprising; MT charges the mini-
mum of Myerson and the retention threshold and in many
cases this results in exactly the same strategy as one of them,
including retaining the same individuals.

Independently Drawn Retention Once again, the strat-
egy that sets the lower price often generates higher average
revenue. However, Myerson pricing now consistently loses
players when it gambles on a high price, eliminating any
extra gains it could have achieved.

Lowering Payments The main finding of our simulations
thus far is that lower prices are usually better. One might
wonder if the MT pricing algorithm could be improved by
charging pk = min (pr, cp

myer
k ) where c is a constant less

than one. We re-examine a subset of previous settings that
showed evidence of lower prices being performant and find
that decreasing the scaling factor can be relatively safe for
large enough values of c. However, for values lower than
1/2, the variance in the performance not only increases but
average performance decreases.

Conclusion
Mobile games give rise to various phenomena that are diffi-
cult to explain with standard economic models. This paper
aims to explain the paradoxical relationship between util-
ity and revenue when selling skips. We find that optimal
pricing requires maintaining high player utility within and
across tasks; high enough to have value in the game but low
enough to monetize long-term. We believe that we have only
scratched the surface of a rich economic domain; there are
many other phenomena within mobile games (and beyond)
upon which our behavioural model could shed light.
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