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History:

1. Introduction
Over 13 months in 2016-17 the US Federal Communications Commission (FCC) conducted an
“incentive auction” to repurpose radio spectrum from broadcast television to wireless internet. The
result of the auction was to remove 14 UHF-TV channels from broadcast use, to sell 70 MHz of
wireless internet licenses for $19.8 billion, and to make 14 MHz of spectrum available for unlicensed
uses. With fewer remaining channels for TV stations, the TV spectrum needed to be reorganized;
stations interfere with each other, so not all of them could be reassigned channels in the compressed
TV band. Each station was either “repacked” in the leftover channels or voluntarily sold its broadcast
rights, either going off the air or switching to a lower-quality band. These volunteers received a
total of $10.05 billion to make repacking possible by yielding or exchanging their rights.

This paper investigates the quantitative significance of various aspects of the descending clock
“reverse” auction used to procure broadcast rights in the incentive auction. We take a computational
perspective, running extensive simulations that leverage a reverse auction simulator and realistic

models of bidder values. Why bother taking another look at the incentive auction? Because the
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design was both novel and extremely complex (Leyton-Brown et al.|2017)), it was not possible to
thoroughly consider every potential design variation before the auction was run. Our goal in this
paper is to gain new insights into how well the auction design performed, particularly asking which
elements of the design were most important and which variations of the design might have led to
even better outcomes. Such insights can inform other important resource allocation problems that
may leverage parts of the incentive auction’s design. We speculate on one example: Just as historical
US television broadcast rights varied by location and interference protections and were difficult
to adapt to valuable new uses, historical rights to surface water in Western states have similar
characteristics. Spectrum uses in a geographic area often leak interfering radiation into adjacent
areas (a negative externality), and farm irrigation often leaks usable water back into river systems
and acquifers (a positive externality). To develop a voluntary auction system that accounts for
externalities and reorganizes water rights to unlock value, market designers will benefit from a deep
understanding of which design details of the incentive auction contributed most to its successes and
which could be simplified or improved. More broadly, we hope this work will serve as an example
for how simulations can be employed to understand and evaluate alternative market designs in
complex settings.

Roughly, the reverse auction began with a clearing target or number of TV channels to decom-
mission. Stations were approached one at a time with a series of decreasing price offers for their
broadcast rights. When a station refused an offer, it exited the auction irrevocably and was guaran-
teed a spot in the leftover channels. As prices fell and more stations declined offers, the leftover
channels became more and more congested. Before any station’s bid was processed, a “feasibility
checker” ensured that the station could still fit in the leftover channels alongside the exited stations
without causing undue interference; if it could not, that station was “frozen”, meaning that its
price stopped falling and it was no longer eligible to exit the auction. The reverse auction further
included a provision that allowed stations to exchange their broadcast rights for both a channel
in a less desirable (VHF) band and monetary compensation. After the reverse auction concluded,
a “forward” ascending clock auction was used to sell licenses in the cleared spectrum to mobile
carriers. An outer-loop procedure iterated between reverse and forward auctions to identify the
largest possible clearing target for which forward auction revenues exceeded costs. We give a fuller

and more formal summary of the auction mechanics in Section

1.1. Evaluating Complex Auction Designs

The design space for combinatorial auctions is large (Pekec and Rothkopf]|2003, Anandalingam et al.
2005), including choices such as eligibility rules (Engelbrecht-Wiggans and Kahn 2005), payment
rules (Day and Raghavan |2007), and bidding languages (Bichler et al.[2022]).
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To date, the design and analysis of auctions has relied primarily on theoretical tools. Such analysis
becomes increasingly difficult as auctions become more complexL e.g., as the number of goods at
auction increases; as the number of parameters needed to describe valuation functions grows; as
heterogeneity across bidders increases; etc. Nevertheless, the reverse auction design was strongly
informed by theoretical analysis. Such analysis made critical contributions to our understanding of
the mechanism’s incentive properties, its susceptibility to collusion, and the likely revenue effects of
making asymmetric offers to different stations. We survey these and other results in Section 2] In
exchange for the universality of its findings, theoretical analysis necessarily relies on simplifications,
such as modeling the sets of stations with interference-free repackings as a uniform matroid. Such
simplifications can raise questions about the practical applicability of results. For example, [Weiss
et al.| (2017) warn that: “Deriving analytic results for [combinatorial auctions] is very challenging...
insights from small, stylized models often do not translate to practical real-world problems”.

A second approach for evaluating auction designs is data driven. There is a vast literature on
laboratory and field experiments for auctions (Ferejohn et al.|[1979, Rassenti et al.|[1982, Kwasnica,
et al.[2005, Cason et al.|[2011, ]Adomavicius et al.|[2012)). To our knowledge no such experimental
data exists evaluating the incentive auction; indeed, it would be very challenging to conduct realistic
experiments, given the real auction’s long length and extremely large number of participants. Data
can also be obtained from an auction’s practical deployment. There is an extensive structural
estimation literature in auctions and matching markets.

Such analysis has lead to significant insights in data-rich domains such as school choice (Agarwal
and Somaini 2018, |Calsamiglia et al.|2020)), highway procurement auctions (Krasnokutskaya and
Seim| 2011}, |Somaini| [2020), timber auctions (Athey et al.2011), and ad auctions (Athey and
Nekipelov|2010). Unfortunately, only a single auction has been held to date using the incentive
auction design, leaving us with only a single sample of past bids. We nevertheless leveraged this
single datapoint to inform a valuation model, described below.

This paper focuses on a third approach, computational simulations. This approach can verify
whether theoretical findings from simplified models carry over to more complex, real-world settings
and does not rely on the availability of rich historical data. The FCC used simulations in the
auction design process to verify the robustness of many design elements; some of these simulations
were publicly described (FCC|2015b). Simulations are particularly well suited to studying market
settings with complex clearing mechanisms (because such complexity tends to preclude “cleaner”
analytical results) and uncontroversial models of agent behavior (because this reduces the risk that

the model upon which the simulation relies will produce unrealistic behavior).
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Figure 1 An overview of our simulation approach. N samples from a bidder model are fed into both a modified

and unmodified simulator. The two outcome sets are converted into metrics and compared on a per-sample basis.

1.2. Our Simulation Methodology
More specifically, we advocate the following simulation methodology (see Figure [1): (1) Build an
auction simulator (choosing an appropriate level of abstraction, as auction rules are often incredibly
complex). (2) Create a bidder model, exposing parameters that control both valuations and behavior.
(3) Establish a probability distribution over parameters of the bidder model. (4) Identify many
plausible auction scenarios by sampling repeatedly from this probability distribution. (5) Run
paired simulations by holding this population of scenarios fixed and varying one or more elements
of the auction design. (6) Compare outcomes across paired samples using predetermined metrics.
For the study described in this paper we instantiated these steps as follows. First, we custom-built
the simulator used in this paper. Other incentive auction simulators have been used in previous
work (surveyed below) but ours is the most comprehensive of which we are aware, both in terms of
its scale (national) and its coverage of the auction rules (e.g., multi-stage auctions including VHF
bands). Our simulator’s code is freely available online at https://github.com/newmanne/SATFC.
Next, perhaps the most critical step in our methodology is the specification of a bidder model,
describing both valuations and behavior for each bidder. Since we focus on the reverse auction, each
of our bidders corresponds to a television station. We considered two different valuation models: (1)
the only fully specified model from the literature of which we are aware; and (2) a model we created
based on publicly released bid data. We ran simulations with both models and contrast the results
to investigate the robustness of our findings. Realistically modeling agent behavior is perhaps easiest
in settings giving rise to obviously dominant strategies (Li/[2017). A strategy is obviously dominant
if any time an agent might deviate from the strategy, the best it can do under the deviation is no
better than the worst it can do by following the strategy. Descending clock auctions make truthful
bidding obviously dominant for bidders who own a single broadcast station (but not for those
who own multiple stations)2 Unfortunately, the real reverse auction lacked obviously dominant
strategies because stations could do more than just accepting and rejecting an offer: they could
also accept a lower price and downgrade to a VHF channel. We decided to study the problem by
considering the assumptions both that VHF bidding could be abstracted away and that it could not.


https://github.com/newmanne/SATFC
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For the latter case, no equilibrium bidding strategy is known, let alone any model of how bidders
would behave if they believed that some or all of their opponents were bidding out of equilibrium.
Given the widespread belief that many bidders in this auction were unsophisticated, we modeled
bidders as bidding truthfully and myopically (see Section .

Finally, we restricted most of our comparisons to simulations that cleared the same amount of
spectrum, considering two key metrics: the sum of values of stations removed from the airwaves
(value loss) and the aggregate amount paid to stations (cost). When assessing design elements
that did affect the amount of spectrum cleared, we assumed that it was preferable to clear more

spectrum, based on statements made by the FCC about the auction’s intended goals (FCC|[2012]).

1.3. Questions Considered in Our Analysis
We ask three categories of questions about economic design and one about algorithmic design.

1. How important was it to expand the set of products included in the incentive auction? In the
incentive auction, it would have been straightforward only to buy back licenses from UHF stations,
since only UHF spectrum needed to be cleared. Instead—considerably increasing complexity—the
FCC offered to purchase licenses from both VHF and UHF stations and offered UHF stations the
option of moving into the VHF band rather than going off-air. This increased the pool of stations
eligible to participate in the auction by roughly 20%, with the potential both to increase efficiency
(a lower-value VHF station could go off-air to make room for a UHF station) and to lower costs
(c.f. Bulow and Klemperer's (1996) result that increasing competition can be more important to
revenue than setting an optimal reserve price).

Was the extra complexity worth it? We found that it was (Section : under straightforward
bidding, not repacking the VHF band could have increased the auction’s cost by 20-30% and
decreased efficiency by 5-10% (with variation depending both on random sampling and the choice
of value model). Similar issues could arise in designing an auction for water rights: for example, one
might ask whether the process should include ground water as well as surface water.

2. What was the impact of the FCC’s method of determining supply? The literature has studied
various auction designs in which the seller can adjust supply after observing demand (Back and
Zender|[2001). In the incentive auction, the FCC separately ran forward and reverse auctions at
a given clearing target; then, if forward-auction demand was insufficient to cover reverse-auction
costs, the clearing target was lowered and a new stage of the auction began. This design was novel
and received little advance comment from stakeholders. We thus investigated how it performed,
comparing it to a hypothetical auction having oracle access to the final clearing target. We found
that the clearing procedure led to significantly higher costs and less efficient outcomes (Section :

across all experiments, the clearing procedure increased average value loss by 5-26% and average
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cost by 4-50% (with variation depending on random sampling, the choice of value model used, and
whether the VHF band was repacked). We then introduce a new simple clearing procedure that
performs nearly as well without knowing the final clearing target.

3. Was price discrimination effective at reducing payments to stations and increasing the number
of channels cleared? A canonical insight from revenue maximization (Myerson |1981) is that bidders
with weaker valuation distributions should be boosted to increase competition with stronger bidders.
The incentive auction attempted to do something similar, reducing initial price offers for stations
that reached smaller populations of viewers. The reduced price offers, called “pops scoring”, were
politically contentious. In Section [6.3, we show that the effects of scoring were not robust across
value models. Under our new value model, pops scoring led to average costs 5% (2%) higher than
head-to-head pricing when the VHF band was (was not) repacked. Under the value model from the
literature, head-to-head pricing led to average costs that were 39% (5%) higher relative to pops
scoring when the VHF was (was not) repacked.

4. How important was it to optimize a solver for the computationally hard problems embedded
in the auction design? Auctions can include problems that (in general) may not be solvable in
a reasonable amount of time; a well-studied example is the winner determination problem in
combinatorial auctions (Rothkopf et al.[1998). Exact solutions can be replaced with approximations,
but this may degrade outcomes and incentives. We investigated station repacking, a hard problem
embedded in the incentive auction. Was auction performance significantly improved by the FCC’s
use of a customized feasibility checker to determine whether a station could be repacked alongside
the set of stations continuing over-the-air broadcasting? How large might that effect have been?
The auction was robust from an incentive perspective to not solving every repacking problem, but
the impact on cost and efficiency was harder to reason about. This question is important because
the design of customized feasibility checkers required a nontrivial effort; such efforts should only be
made in the future if they yield gains. We answer this question affirmatively in Section We
show that substituting the custom feasibility checker with the best off-the-shelf alternative could
have increased both average costs and value loss by more than 20%.

The rest of the paper proceeds as follows. Section [2| surveys related work. Section |3 explains
the reverse auction in detail. Section [4] defines our valuation model and bidding model. Section
details our experimental setup and Section [6] reports our experimental findings. Endnotes appear in

Appendix [A] and 14 subsequent appendices contain additional technical material.

2. Related Work

The incentive auction’s design was strongly informed by theoretical analysis, which has shown that

deferred acceptance (DA) auctions have many good properties® DA auctions exhibit “unconditional
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winner privacy” (Milgrom and Segal |2020), meaning that winners are only required to reveal as
much about their valuation as is necessary to prove that they are winners. When stations’ bids are
binary responses to a series of descending offers and when stations are all independently owned, DA
auctions are obviously strategy-proof (Li2017) and weakly group strategy-proof. When the sets
of stations that can be jointly repacked form a uniform matroid, DA auctions repack the efficient
set of stations (Bikhchandani et al.|2011)); if furthermore bidder values are drawn independently
from known distributions, scoring offers according to virtual values can implement the Myerson
“optimal auction” (Milgrom and Segal/2020)). Both |Ausubel (2004) and [Bikhchandani et al.| (2011)
study settings in which some DA auction achieves efficiency and characterize that auction. Our
contribution, similar to that of Milgrom and Segal (2020), is to study properties of DA auctions in
more general settings in which efficiency is not achievable.

Other questions about the incentive auction’s design were addressed via simulations. The FCC
conducted its own (mostly unpublished) internal simulations, leveraging a variety of techniques from
operations research (Kiddoo et al.[2019). The broader research community conducted simulation
studies of the reverse auction at various points in the design process and differing in the fidelity
with which they modeled the auction mechanism; the degree to which they made simplifications for
computational reasons; and the valuation models they employed. Before the auction mechanism
was finalized, |Kearns and Dworkin (2014) used simulations to characterize the space of feasible
repackings based only on the interference constraints, e.g., estimating the relationship between the
number of broadcasters relinquishing licenses and the feasibility of different clearing targets. This
work used a bidder model that consisted entirely of determining which stations would participate,
which they studied both using independent coin flips for every station and more complex models in
which stations affiliated with the same broadcast networks made correlated decisions. Feasibility
testing was performed using off-the-shelf SAT solvers. Later in the design process, [Cramton et al.
(2015)) used simulations to lobby for design changes such as changing the scoring rule and removing
Dynamic Reserve Pricing (DRP). They leveraged a (non-public) valuation model developed through
“discussions with many broadcasters, taking into account revenue data, historical station sales
prices, station affiliation information, total market revenue, and other factors”. DRP was ultimately
scrapped but remains a topic of interest (Bazelon|2022)). Three studies were published after the
auction concluded. First, Doraszelski et al.| (2017) used simulations to estimate how profitable and
how risky bidder collusion strategies might have been, restricting experiments to regional scale
(considering subsets of at most 8% of UHF stations) and furthermore skipping certain feasibility
checks (“limited repacking”) to speed up computation. They concluded that the auction could have
mitigated the harm imposed by owners of multiple stations artificially reducing supply by restricting

the sets of stations such owners could have used to participate in the auction. This work leveraged a
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novel value model for reverse-auction participants, which we discuss further in Section because
we used it in our own simulations. Second, Newman et al.| (2017) designed a simulator to evaluate
the quality of the auction’s deployed feasibility checker. This simulator leveraged the value model
from [Doraszelski et al.| (2017) and operated at a national scale but was restricted to a single stage.
Newman et al.| (2017) concluded that the deployed feasibility checker outperformed off-the-shelf
alternatives and also showed in smaller, regional simulations that the reverse auction’s allocations
were nearly efficient when using this feasibility checker. These results were further discussed in
Leyton-Brown et al. (2017)), which provided context for the unique challenges faced in the incentive
auction (e.g., defining property rights for television stations), and in [Milgrom and Segal| (2020), a
theoretical paper studying the properties of deferred acceptance auctions® The simulator used in
this paper substantially extends the one used in Newman et al.| (2017) and thereby more accurately
simulates the actual reverse auction design than any other simulator of which we are aware®
Our most significant extensions are integrating a new value model and supporting auctions with
multiple stages. We revisit the feasibility checker experiments of Newman et al.| (2017) (Section ,
performing a far more exhaustive assessment based on 1300 simulations instead of the original
experiment’s 60. The bulk of our paper, however, focuses on three other broad questions about
the auction design, none of which was considered experimentally in any previous work. Finally,
Ausubel et al.| (2017) performed a post-mortem analysis of the incentive auction in a similar vein
to this paper, but with a primary focus on the forward auction; we discuss one of their proposed
amendments to the clearing algorithm in Section [6.2.2

Before proceeding, we survey some related work further afield from the incentive auction. Two
papers studied how prices should be set in a clock auction. First, Nguyen and Sandholm/ (2014)
considered how to set prices to minimize expected cost, using the reverse auction as a test setting.
Their methods reduce prices until feasibility is violated and then use a final adjustment round to
regain feasibility. Their results are not therefore directly comparable to the FCC’s design, which
maintains feasibility throughout and never increases stations’ prices. Second, Bichler et al.| (2020)
investigated the allocative efficiency of DA auctions under different scoring rules in the problem of
Steiner tree construction. They found that the choice of scoring rule affected the efficiency of the
auction tremendously and that, under some scoring rules, DA auctions were competitive with other
mechanisms based on well-studied approximation algorithms.

Even more generally, there exists an extensive literature on data-driven analysis and optimization
of auctions. For example, one line of work considers using past bids to learn an approximately
revenue-maximizing auction (Morgenstern and Roughgarden|2015) and another considers approaches
for setting personalized reserve prices (Paes Leme et al.[2016, (Golrezaei et al.[2017, |Roughgarden

and Wang||2019, Derakhshan et al.|2019, 2021)). Simulating the behavior of candidate market designs



Author: Incentive Auction Design Alternatives: A Simulation Study
Management Science 00(0), pp. 000-000, © 0000 INFORMS 9

in complex settings is a technique widely applicable beyond the incentive auction; a few examples
from diverse domains, each with their own literature, include matching mechanisms for refugee
resettlement (Delacrétaz et al.|2019)); school assignment policies |Allman et al.| (2022); dock allocation
and rebalancing in bike sharing networks (Freund et al.|2018); patrolling strategies for wildlife
protection (Yang et al.[2014)); reallocating fishing licenses (Bichler et al.[|2019); and matching in

organ exchanges (Santos et al.|[2017)).

3. The Reverse Auction
In this section we describe the reverse auction and show where it fits within the context of the
incentive auction. We begin by introducing the station repacking problem. Solving repacking

problems is a key subroutine within the reverse auction loop. We then proceed to the auction rules.

3.1. Station Repacking

Prior to the auction, each television station s € S in the US and Canada® was assigned to a channel
¢s € C C N. The set of channels C can be partitioned into three equivalence classes, referred to
as bands. Listed in decreasing order of desirability, these bands are: UHF (channels 14-51), high
VHF (“HVHF”, channels 7-13) and low VHF (“LVHF”, channels 1-6). We use pre(s) to refer to a
station’s pre-auction band, sometimes called a station’s home band.

Each station was only eligible to be assigned a channel on a subset of C, given by a domain function
D:S — 2¢ that maps from stations to these sets. The FCC determined pairs of channel assignments
that would cause harmful interference based on a complex, grid-based physical simulation (“OET-69”
FCC| (2013)); this pairwise constraint data is publicly available (FCC|[2015¢c]). Let Z C (S x C)?
denote a set of forbidden station—channel pairs {(s,c),(s',c')}, each representing the proposition
that stations s and s’ could not concurrently be assigned to channels ¢ and ¢/, respectively.

The goal of the incentive auction was to remove some broadcasters from the airwaves and assign
the remaining stations new channels from a reduced set C = {c € C | ¢ < ¢}. This reduced set is
defined by ¢ € C; each choice of ¢ corresponds to some clearing target. The actual incentive auction
ended with ¢ = 37, allowing the higher numbered channels to be used for other purposes.

A feasible assignment is a mapping 7 : S — C that assigns each station a channel from its domain
that satisfies the interference constraints: i.e., for which 7(s) € D(s) for all s € S, and v(s) =¢
implies that v(s') # ¢ for all {(s,c),(s’,¢')} € Z. As it turns out, interference constraints come in two
kinds. Co-channel constraints specify that two stations may not be assigned to the same channel;
adjacent-channel constraints specify that two stations may not be assigned to some pair of nearby
channels. Thus, forbidden station—channel pairs are always of the form {(s,¢),(s’,c+1)} for some

stations s,s' € S, channel c€C, and i € {0,1,2}.
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Lastly, we define the interference graph as an undirected graph in which there is one vertex per
station and an edge exists between two vertices s and s if the corresponding stations participate
together in any interference constraint: i.e., if there exist ¢,¢’ € C' such that {(s,c),(s',¢)} € 1.

Figure [3] shows the interference graph for the US and Canada.

3.2. Reverse Auction

We now describe a simplified version of the reverse auction in which only the UHF band is repacked:
only UHF stations participate in the auction and the only possible outcomes for each station are
going off-air or continuing to broadcast in UHF. We provide pseudocode for the reverse auction in
Appendix [C] as Algorithm [T} The real auction also repacked two VHF bands, but the inclusion of
these bands complicates things significantly; we briefly sketch some details in Section [3.3.1] and
further elaborate on pricing VHF options in Appendix [D| The complete set of auction rules was
published by the FCC in a 230-page document (FCC|2015a).

We begin by describing the reverse auction at a high level before giving more details about various
key elements. First, stations respond to opening prices and decide whether to participate in the
auction. Next, a solver finds an initial feasible channel assignment for all non-participating stations
to minimize the number of channels required for those broadcasters, setting an initial clearing target
¢. The auction then attempts to buy broadcast rights as necessary so that all stations remaining
on air can fit into the available channels. It proceeds over a series of rounds, which consist of: (1)
decrementing the clock and determining new prices, (2) collecting bids and (3) processing bids.

A forward auction to sell the cleared spectrum follows the reverse auction. If sufficient revenue
is raised in the forward auction, the incentive auction terminates; otherwise, the reverse auction

resumes with a lower clearing target. We elaborate on each step of the reverse auction below.

3.2.1. Prices Prior to the auction, the FCC used a scoring rule to assign a score (also
sometimes referred to as a volume) to each station, which we denote by score (s). The score was
used to determine individualized opening prices and was a function of both the station’s interference
constraints and the population of viewers that a station reached before the auction, which we denote
by Population (s). We will have more to say about scoring rules in Section

The reverse auction is a descending clock auction. The initial base clock price was py = $900

both in the incentive auction and in our simulations. At the start of each round, the base clock

Pt—1 Ppo

price is reduced to p, = p;_1 — d;, where d; = max(“5;+, £%

). Scores transform base clock prices to
individualized station prices; this is, prices in each round P;; are computed as P;; = score(s) - ;.
We use Ps,open to refer to the auction’s opening prices.

A “winning” station is one that ultimately goes off-air or moves to a different band. More

specifically, if the final channel assignment is «, s is winning if post(~, s) # pre(s), where post(vy, s)
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returns either the band to which s is assigned under v or OFF if s is not assigned to a band under 7.
We refer to the set of winning stations as Syinners- Lhroughout the auction, we track each station’s
“winning price” P:S — R*. P (s) is the price that would have to be paid to s if the auction were to

end immediately and s was a winning station. Initially P (s) = Ps.open-

3.2.2. Bidding When only the UHF band is repacked, a bid in a given round corresponds to a
binary decision. A station can accept P, indicating that it prefers to relinquish its broadcast rights
and receive P;,. Alternatively, a station can reject P, indicating that it prefers to continue to
broadcast. If a station’s bid to reject an offer is ever processed (as will be explained in the following
section), it is said to have “exited” the auction. Such a station is never asked to bid again. An
exited station receives no compensation and will continue to broadcast in its pre-auction band after
the auction (albeit on a possibly different channel). We refer to the set of exited stations by Sexited-

3.2.3. Bid Processing In the bid processing step, stations are considered one after another, in

Pls)=Psit

score(s) When a station s is considered, first the feasibility checker is invoked

descending order of
to determine whether it is possible to repack s along with the exited stations: i.e., given a time
limit, it tries to find a feasible assignment for {s} U Seitea. If the feasibility checker cannot repack
s, its bid is not examined, and s is said to be “frozen”. A station that is guaranteed to be frozen
for the remainder of the stage is called a provisional winner; in a UHF-only auction, every frozen
station is provisionally winning. In this case, P(s) is not reduced and s will no longer be asked to
bid. If the feasibility checker can repack s, then P(s) is reduced and its bid is examined. If s bid to

accept Py, P(s) is lowered to Ps; and s remains “active”, meaning it will be asked to bid again

next round. If s bids to reject P, s permanently exits the auction.

3.2.4. Transitioning Between Auction Stages A reverse auction stage ends when all
stations are either frozen or have exited. Following each reverse auction stage is a forward auction
stage where mobile carriers bid on licenses in the cleared spectrum. If the forward auction generates
enough revenue to cover the costs of the reverse auction (the payouts to the winning stations

2

unsuccessful forward auction (one that does not raise sufficient revenue) triggers another stage of

seswinncrsp(s)),m the incentive auction terminates and each frozen station is paid P(s). An
the reverse auction with a smaller clearing target.

The incentive auction thus determines the amount of spectrum to clear endogenously by iterating
through stages of reverse and forward auctions that clear progressively less spectrum until a stage
occurs in which the forward auction covers the costs of the reverse auction. When a new reverse
auction stage begins, ¢ is increased, expanding the set C. Given additional channels, some frozen
stations may now be repackable; such stations are said to be in “catch-up” mode. At the beginning

of a new reverse auction stage, the base clock p; resets. A station in catch-up mode “unfreezes” if it
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Figure 2 An illustration of the reverse auction example described in Section Each row corresponds to a
stage; a new image is drawn each time a station exits. Active stations are dashed, exited stations are solid, frozen
stations are dotted, and stations with catch-up status are dashdotted. Connected stations cannot jointly
broadcast on the same channel. B and C additionally cannot jointly broadcast on adjacent channels (shown by

the thick bold edge between them). To the left of each image is the current clock price.

can be repacked in the first round in which it would face a weakly lower price than the price at

which it froze, P(s). Subsequent stages otherwise proceed like the initial stage.

3.3. Worked Example
Figure [2] illustrates the reverse auction through a worked example. Consider an auction setting with
six stations A, B,C, D, E, F having valuations V4 > Vg > Vo > Vp > Vg > Vr. Assume that stations
bid straightforwardly: they accept offers above their values and reject offers below their values. Let
each station be identically scored (so starting prices are the same for all stations); thus, we can drop
the station subscript when discussing prices, writing P; instead of P;,;. Assume that the feasibility
checker is perfect, always finding a feasible assignment when one exists and always determining
infeasibility otherwise. For convenience, let clock decrements be so small that we can model the
clock as falling continuously. Let C = {1,2,3} and let Z be structured so that all stations have
co-channel constraints on every channel with each neighboring station according to the interference
graph in Figure [2] Let stations B and C additionally have adjacency constraints with each other
due to their close proximity, prohibiting them from jointly broadcasting on adjacent channels.
Let ¢ =2 initially, so that the auction begins trying to repack the stations into a single channel.
Near the high opening prices, stations bid to remain off-air and their bids are processed because

each station can exit. Nothing changes until P, < V,, at which point station A exits the auction.
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This movement freezes station B at price P(B) = Vy4, since A and B cannot both broadcast on the
single channel. Other stations remain bidding and prices continue to fall until P, < Vo and C' exits
the auction. C’s exit does not impact the other stations, so they continue to bid until P, < Vp. At
this point, D exits the auction, freezing F and F each P(E)=P(F) = Vp. Every station is now
either frozen or has exited, so the stage ends. Stations B, E, and F' are frozen at the end of the
stage. If the incentive auction does not proceed to another stage, the total value removed from the
airwaves will be Vp + Vg + Vi and the total cost of freeing up two channels will be V4 + 2Vp.

Let us assume that in the forward auction, wireless carriers are unwilling to pay the repacking
cost of V4 + 2V to repurpose two channels worth of spectrum. The incentive auction then proceeds
to a second stage where ¢ = 3: only one channel is cleared and two channels remain for repacking
stations. Stations E¥ and F' can now be repacked alongside the exited stations and so enter catch-up
mode. B cannot be repacked and remains frozen. P, resets to a high value and then descends until
P, < Vp. At this point, E and F both transition from catch-up mode to bidding, since Vp was the
price at which they froze. The auction continues until P; < Vg, at which point E exits and freezes F’
at a price P(F) = V. Again, all stations are either frozen or exited, so the second stage completes.
Assuming the ensuing forward auction raises sufficient revenue, stations B and F will removed from

the airwaves for a value loss of Vg + Vr and a cost of V4 + V5.

3.3.1. Repacking VHF We conclude by noting some of the reverse auction modifications
when the VHF band is also repacked and stations can additionally bid to move between bands. Let
bs. € By, represent station s’s bid in round ¢, where B, C {OFF, LVHF, HVHF, UHF} denotes
the options available to s in round ¢. To reduce strategic options available to bidders, bidding is a
restricted by a “ladder constraint”: Stations can never move “down” the ladder of bands (ordered
as in the list above, with UHF at the top and OFF at the bottom) and can never go higher than
their home band. For example, a station with a home band of HVHF currently assigned to OFF
could bid to remain in OFF, move to LVHF, or exit to HVHF, but would not be allowed to move to
UHF since UHF is above its home band. If the station were instead assigned to LVHF, it could bid
to remain in LVHF or exit to HVHF'; it would not be able to bid for OFF because OFF is below
LVHF, and it would still not be able to bid for UHF because UHF is above its home band. In each
round, each bidding station is offered a separate price for each of its legal movements. We use P,
to represent the price offered to station s in round ¢ for selecting band b. We discuss how prices are
computed in Appendix [D] A final difference we will mention is the introduction of fallback bids.
While any number of stations can go off-air, the VHF bands have limited capacity. As a result, the
auction may not be able to accommodate certain bids for moving into VHF bands. For example,

consider a UHF station s that bid for going off-air in the previous round and in the current round
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bids to move to HVHF. If s is not frozen when its bid is examined, the feasibility checker will try
to determine if it is possible to fit s alongside the set of exited stations whose home band is HVHF.
If the feasibility checker cannot find a feasible repacking, s’s fallback bid is examined. This fallback
bid can be either to exit or duplicate the previous bid (i.e., in the example, it would be as if s had

again bid to go off-air). We denote such bids as fallbacks ;.

4. Value and Bidding Models

This section begins by describing two value models. The first follows [Doraszelski et al. (2017)); we
created the second for this study, based on bid data released after the auction by the FCC. An
advantage of considering two different value models is that we were able to compare simulation
results under both settings to assess the robustness of our findings. We conclude the section by

describing a model of how stations bid as a function of these values.

4.1. Value Models

Each station s has a value v, for broadcasting in each permissible band b. We normalize so that
a station has no value for being off-air, i.e., v, orr = 0. Both models only provide v, yur, that is,
home band values for UHF stations. For the two VHF bands in the auction, lower and higher VHF,
% - vs,unr - N(1,0.05) and

% - s yar - N (1,0.05)—i.e., roughly two thirds and one third of the

we model a UHF station’s value for switching to the HVHF band as
similarly for the LVHF band as:
station’s UHF value with some multiplicative Gaussian noise. We describe robustness experiments on
alternate parameter choices in Appendix [E} our qualitative findings remain the same. We generated
values for VHF stations by computing a hypothetical UHF value and then applying the fractional
reductions for VHF bands just described.

4.1.1. The MCS Value Model. Doraszelski et al.’s (2017) valuation model, which we dub
the MCS (Max of Cash flow and Stick value) model® treats a station’s value as the maximum of
its cash flow value as a business and its stick value. The stick value represents the value of the
broadcast license and tower, independent of the business; it can be more appropriate than cash flow
when valuing non-commercial stations. Both of these were estimated from various sources including

transaction data of station sales, advertising revenue, and station features.

4.1.2. A Novel Value Model based on Bid Data. Two years after the incentive auction
concluded, the FCC released the auction bids. We used this data to construct a “realistic” model
for station valuations. While the bids are not sufficient to reveal station values, they do allow us
to infer bounds on values. In some cases these bounds are relatively tight, with upper and lower
bounds separated by a single clock interval. Most of the time they are looser, in some cases, to an

extent that does not allow us to improve on the trivial bound.
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We inferred bounds on each UHF station’s home band value, vs ypr. For details, see Appendix
We then used these bounds to fit a model. We assumed that value is proportional (in expectation)
to population® v, yyr = Population (s) - n,. Here n, is some number in units of $/pop, sampled
from an unknown cumulative distribution function (CDF) N. Our upper and lower bounds on
a given station’s home band value can be translated into upper and lower bounds on a station’s
$/pop by dividing by s’s population. We computed a non-parametric maximum likelihood estimate
of the distribution function N. Note that by definition N(y;) — N(zs) =Pr(z; <n, <ys). Our goal
was to maximize the product of these terms subject to constraints ensuring that N is a valid CDF.
The results (Figure [4)) suggest that NV is a log-linear function. Data was sparsest in the tails of the
distribution, especially in the right tail, so we replaced the log-linear segments in both tails with
Generalized Pareto Distributions (GPDs). For more details, see Appendix

To generate UHF values, we multiply a station’s population by a sample from the modeled

distribution of N. In what follows, we refer to this model as the BD (bid data) model.

4.2. Bidding Model
We now describe our model of how stations bid. A station participated in our simulations if its
opening price for going off-air exceeded its value for continuing to broadcast in its home band, i.e.,
if Py,0Fr;0pen = Vs pre(s)- After excluding 64 non-mainland stations (see Appendix , we considered
1813 stations eligible to participate in our simulations: 1407 UHF, 367 HVHF, and 39 LVHF.
Our two value models differ substantially in the participation rates that they predict. In the MCS
model, station values tend to be low relative to opening prices, leading to very high participation
rates. For example, considering 10000 sampled value profiles of UHF stations, the mean number
of participants was 1416. 1196 of these stations participated in every sample, and only 46 had
less than an 80% chance of participating. In contrast, when running the same experiment with

the BD model, no station participated in every sample and average participation rates were 60%
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(877 stations), closer to the 64% participation rate of UHF stations (930 stations) in the incentive
auction. For reference, a total of 1030 stations (including VHF stations) actually did participate in
the incentive auction (FCC2019).

In auctions with UHF options only, in which bidders are able only to remain off-air or to exit the
auction, a single station faces a strategic situation in which its utility is “obviously” maximized
by remaining off-air if the price exceeds its value and by exiting otherwise—that is, by bidding
myopically (Li2017). The situation when VHF options are included is no longer obvious in this
sense, but we continue to assume for simplicity that when bidding in round ¢, a station selects
the offer that myopically maximizes its net profit, arg max,. Bat Pyt +vs. When fallback bids
are required, we again assume that stations select the option that maximizes their net profit. We
note that in the released bid data, only 52% (13%) of bids to move into LVHF (HVHF) were
successful. Given that stations seeking to move to a VHF band faced a meaningful risk that their
bid might fail to execute, some bidders might have benefited by bidding on VHF bands before it
was straightforwardly optimal to do so. However, despite the potential drawbacks of straightforward
VHF bidding, we are not aware of any behavioral rule that can be applied to all bidders and that is

arguably more realistic.

5. Simulator Design and Experimental Considerations

As the reverse auction is simplest to reason about when only the UHF band is repacked, we ran both
simulations that only repacked the UHF band and simulations that also repacked the VHF band.
This allowed us to investigate which of our results generalize across settings. We ran simulations on
both value models described in Section [l Unless otherwise stated, in every one of our experiments
we took 50 samples per treatment. We gave feasibility checks 60 seconds to complete (as in the
real auction, though of course we were unable to use exactly the same hardware) unless otherwise
stated I We now explain how we compare simulated outcomes and discuss some simplifications
our simulations make relative to the real auction process. We report additional elements of our

experimental setup details in Appendix [G]

5.1. Metrics

One goal for the auction is efficiency: for any given clearing target, to maximize the total value of the
stations that remain on the air, or equivalently, to minimize the total value of the stations removed
from the airwaves. We focus on the latter definition—walue lost instead of value preserved—because
it is unaffected by value estimates for large, highly valuable stations that do not participate in the
auction. That is, value preserved includes the values of easy-to-repack stations, even those that do

not participate in any interference constraints, and leads to efficiency estimates near 100% when
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few stations go off-air relative to the number that remain on air, even when the number of stations
going off-air is large relative to the number required by an optimal solution.

We define the value loss of an auction outcome as ESES Vs pre(s) — Us,post(v,s)- 1deally, our metric
for allocative efficiency would be the ratio of the value loss of a simulation’s final assignment, =,

relative to an assignment from an efficient repacking v* that minimizes the value loss for a given

ZSES Vs, pre(s) ~ Vs, post(y,s)
’ ZSES VUs,pre(s) ~ Vs,post(y*,s)

convert our absolute metric into a relative one by comparing the value loss between two simulations’

value profile, i.e. . In general, however, v* is too difficult to compute, so we
final assignments (i.e., the ratio of value loss ratios, noticing that the denominators which depend
on v* cancel out in this case).

Our second metric is the cost of reaching the specified clearing target: the prices paid to all
winning stations, > .o P (s).

We use the terms “efficiency” and “cost” below as abbreviations that refer to value loss and the
total payments made to broadcasters that go off-air or change bands. Outcomes with high efficiency
(low value loss) and low cost are preferable. It is straightforward to compare two outcomes if they
both clear the same amount of spectrum and one is both more efficient and cheaper; otherwise, any

comparison requires a judgement call about how the two metrics should be traded off.

5.2. Impairments

The incentive auction’s design requires it to begin from a feasible channel assignment for the
non-participating stations. However, it may not always be possible to find a feasible repacking for
the non-participating stations in the set of remaining channels C induced by the initial clearing
target ¢. The FCC’s rules therefore allowed a small number of stations to be assigned to channels
within the spectrum that was otherwise resold (i.e., channels in C\ C), even though doing so degrades
the desirability of the mobile broadband licenses sold in the forward auction. Such stations are
referred to as “impairing”. There are two types of impairments: those caused by non-US stations
that would be present even if every US station participated in the auction (“essential impairments”)
and those caused by non-participating US stations.

Despite our best efforts to make our simulations realistic, we could not replicate the optimization
procedure the FCC used to determine the initial clearing target ¢ and the set of impairing stations.
This optimization relied on data that is not publicly available: the Inter-Service Interference (“ISIX”)
constraints that determine which geographic areas are impaired when a station is placed on channels
to be resold. Without the ISIX data, we also could not replicate the analogous optimizations that
the FCC conducted between auction stages.

Instead of determining the initial clearing target via an optimization, except when otherwise

noted, we started our simulations at the 84 MHz clearing target (the clearing target at which the
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real incentive auction concluded) and ran auctions for only a single stage. We did this both because
running multiple stages of the reverse auction is computationally expensive and because multi-stage
simulations depend on additional assumptions about the forward auction. A channel uses 6 MHz of
spectrum, so a clearing target of 84 MHz corresponds to clearing 14 channels; see Figure for
more details on possible clearing targets. We do explore multi-stage auctions that begin from other
clearing targets (including 126 MHz, the clearing target on which the incentive auction began) in
Section Our methodology for selecting which stations to impair is described in Appendix [H]
In our simulations, stations marked as impairing do not interfere with each other or with stations

assigned to channels in C.

6. Experiments

Our experiments are divided into four categories, based on which element of the auction design
they investigate: (1) repacking the VHF band in addition to UHF; (2) choosing the order in which
stations are processed via a scoring function; (3) determining a clearing target by iterating between
reverse and forward auction stages; and (4) determining which stations to freeze by checking the

feasibility of station repackings.

6.1. Repacking the VHF Band

The incentive auction reduced only the number of UHF channels, but repacked stations in three
bands: UHF, HVHF, and LVHF. Repacking the two VHF bands offered the potential for cost
savings and efficiency gains, as UHF stations might have been willing to accept a smaller payment
to move to a VHF channel instead of going off the air and this could have constituted a net gain,
even taking into account the need to compensate VHF stations for going off-air to make space. An
optimal repacking for a given value profile can only become weakly more efficient when the VHF
bands are included as more configurations of stations become available.

However, adding extra bands to the reverse auction complicated an otherwise elegant design
(see Section and Appendix @ Stations no longer possessed obviously dominant strategies
and might have benefited from reasoning about when to move up the ladder. Price calculations
became more involved as each option had to be priced appropriately. The bidding language had to
be augmented with fallback bids. Also, unlike in UHF-only settings where freezing is permanent,
VHF stations can freeze and later unfreeze within the same stage if other stations move out of
their home bands, complicating bid processing. All of this extra complexity made the auction more
difficult to explain to station owners, which mattered since some of the participants were relatively
unsophisticated and encouraging them to participate was a first-order concern. It is thus sensible to
ask whether the additional complexity was worthwhile. While repacking VHF raised the possibility

of more efficient allocations, such gains might have been small, arising only under exotic bidding
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behavior, or have come at a high cost. We thus asked: What changes to efficiency and cost arise
when VHF options are included and bidders bid straightforwardly?

To answer this question, we ran two sets of auctions: the first repacking both the VHF and UHF
bands, the other repacking only the UHF band. Our results are shown in Figure [5| (In what follows,
we typically present figures for repacking both UHF and VHF using the BD value model, but discuss
our findings across all experimental settings. The remaining graphs are presented in Appendix )
Each point in the figure represents the outcome of one simulation, with its x-axis position denoting
its efficiency and its y-axis position denoting its cost. Since it is difficult to show graphically which
auctions use the same paired value profiles for even a modest number of samples, rather than
plotting raw efficiency and cost on each axis we instead plot normalized efficiency and cost. That
is, we select one setting (in this case, auctions that repack VHF) as the reference treatment, and
then plot the ratio of the efficiency (cost) of each simulation from additional treatments relative to
the corresponding simulation using the same value profile in the reference treatment. With this
choice, the reference treatment always corresponds to the point (1, 1), represented in our figures by
a diamond. For each treatment we also plot a star to indicate each metric’s mean value.

The experiments just described took a little over one CPU year to run. Using both value models,
we observed that repacking the VHF band led to a significant reduction in payments—on average,
sampled UHF-only auctions cost 1.23 and 1.32 times as much as their VHF-repacking counterparts
using the MCS and BD value models, respectively. The impact on efficiency was more modest and
less uniformly positive. Under the MCS (BD) value model, sampled UHF-only auctions experienced
1.05 (1.12) times higher value loss on average. On the whole, our simulations suggest that if bidders
continued to bid straightforwardly despite the complex design, repacking the VHF band was an

important design choice that likely led to lower costs and also somewhat more efficient outcomes.
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6.2. Multi-Stage Clearing

The incentive auction allowed for multiple stages of reverse followed by forward auctions in order to
let market forces determine the appropriate amount of spectrum to clear. Each successive stage
began with a reverse auction clearing a smaller amount of spectrum to achieve a lower overall cost
than the previous stage. The actual incentive auction went through four stages.

One obvious practical drawback of a multi-stage approach is its impact on auction length: running
multiple stages takes time. As noted by |Ausubel et al.| (2017) “One potential criticism of the
incentive auction is that it lasted too long. If, after the initial commitment, the FCC had selected
a clearing target of 84 MHz (instead of 126 MHz), it is very likely that the auction would have
concluded after a single stage with significantly fewer rounds.”

A less obvious concern is how the multi-stage approach impacted the final outcome. In general, if
the clock auction perfectly optimizes for each clearing target and if the stations packed for the higher
target are not a subset of those packed for the lower target, then one should expect a multi-stage
auction to perform worse than an auction that starts by setting the correct target. We investigate
these dynamics in Appendix [[] considering elaborations of our previous worked example. First, we
show how stations packed in late rounds of an early stage can cause problems in subsequent stages.
Then, we show the clock auction’s greedy optimization procedure can also lead to the reverse: an
auctioneer benefiting from running a multi-stage rather than a single-stage auction.

Having observed that multi-stage clearing can yield both economic benefits and harms, we turn
to simulations, asking two questions: (1) What, if any, economic costs arose due to multi-stage

clearing? (2) Would an “early-stopping” alternative to the reverse auction have performed better?

6.2.1. The Economic Impact of Multi-Stage Clearing. To assess the economic impact
of multi-stage clearing, we ran experiments that began trying to clear 126, 114, 108, and 84 MHz
of spectrum, each proceeding to follow the ordering of clearing targets selected by the FCC (see
Figure , and each terminating at 84 MHz, leading to four-, three-, two- and single-stage
auctions, respectively. These experiments took 31 years of CPU time.

A complicating factor in this comparison is that for any given value profile, the final set of
impairing stations may differ based on the starting stage, which muddies the interpretation of cleared
spectrum as a measure of performance. Our impairment mechanism (described in Appendix
attempts to remove impairments in between stages. The cleared spectrum is only comparable if
exactly the same set of impairing stations remain at the auction’s termination. To improve the
comparison, we analyze the results of these experiments in two ways. The first is to consider a
world without impairments, corresponding to the case where the FCC is willing in principle to pay

any amount to stations to eliminate impairments and therefore sets high opening prices. Under this
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assumption we observed that running the auction through multiple stages degraded both cost and
efficiency, especially when the VHF band was repacked (Figure @ In VHF-repacking simulations
using the MCS (BD) model, on average four-stage auctions cost 1.50 (1.19) times as much as their
single-stage counterparts and had 1.26 (1.14) times the value loss. The results were similar but
less dramatic in magnitude for UHF-only auctions. In UHF-only simulations using the MCS (BD)
model, four-stage auctions cost roughly 5% (10%) more and had roughly 5% (10%) additional
value loss compared to perfectly forecasting the clearing target. In all cases, even if the exact stage
was not perfectly selected, starting the auction closer to the final stage would also have yielded
significant improvements to both metrics on average.

A second way of analyzing the results is to account for impairing stations. Of course, this leads
to “apples-to-oranges” comparisons in the sense that the quality of cleared spectrum varies across
simulations. We do not have a reliable way of assessing how much a given impairment devalues
spectrum. The answer surely depends on the location and power of the exact stations in question,
but a blunt proxy number for how bad a set of impairing stations might be is the sum of their
population (less is better). In our experiments, there were never any impairing stations remaining
at the final stage when using the MCS value model, so results remained unchanged for this model.
We visualize results for the BD model in Figure [.L14 We observe much higher variance than in
the previous analysis. With VHF repacking, we again observe that multi-stage auctions performed
much worse than single-stage auctions, with four-stage simulations costing 1.25 times more and
experiencing 1.10 times more value loss than single-stage auctions. In the UHF-only case we no
longer observe the trend that more stages led to worse outcomes—on average, four-stage simulations
cost and had value loss about 1% higher than single-stage simulations, and two- and three-stage
simulations performed a little better (1-2%) on average on each metric. However, single-stage
auctions resulted on average in the least impaired spectrum (according to our population metric):
four-stage, three-stage, and two-stage simulations had mean impairing populations of 206, 205,
and 206 million respectively compared to 192 million for single-stage simulations. Our results for
repacking the VHF band look similar, with 205, 203, and 207 million mean impairing population for

four-, three-, and two-stage auctions respectively compared to 192 million for single-stage auctions.

6.2.2. Early Stopping The results just presented led us to ask: is there any other way the
FCC could have determined a clearing target endogenously with less impact on cost and efficiency?
We propose a simple answer, which we call early stopping: for each candidate clearing target,
conduct the forward auction before the corresponding reverse auction, and stop each reverse auction
as soon as its cost exceeds the forward auction revenue. To see why this would help, consider again

our example in Figure [2] but now imagine that the auctioneer knows going into the first reverse
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auction stage that the forward auction revenue is some number less than V4. Once station B freezes
at a price of Vy, the provisional cost exceeds the forward auction revenue. Following our proposal,
the first reverse auction stage would immediately stop and so station C' would not exit. Then, in the
second stage, station B would exit next and the outcome would exactly match that of an auction
in which the clearing target had initially been set to the second stage target. In general, continuing
the reverse auction instead of aborting can only result in more stations exiting, limiting flexibility
in later stages™ The original design proposed that the forward and reverse auctions be run in
parallel, but due to finite staffing resources, the auctions had to be sequenced. We note that early
stopping represents a potential algorithmic improvement even over the original parallel design.
Early stopping does not always outperform the original design; it is possible to construct examples
(see Appendix where the commitments made in earlier stages are better than those made in
later stages. Nevertheless, we believed that early stopping would typically help in practice. To
test this, we ran two sets of experiments. The first set compared early stopping auctions against
single-stage stations that “knew” the correct clearing target. The second set compared the amount
of spectrum cleared by early stopping auctions to auctions using the original design. Both of these
experiments required forward auction revenues as inputs. We had little data to use for modeling these
revenues—one observation for each of the four clearing targets that were reached in practice—so
we adopted a convenient model described in Appendix [N} Unlike previous experiments where we
assumed a predetermined number of stages, we now determined the auction’s end by comparing
forward auction revenues to clearing costs. This meant that auctions could end at any stage, so
the amount of spectrum sold could differ across paired simulations. We assume that clearing more
spectrum is preferable to clearing less, noting the FCC’s stated goals. We ran early stopping auctions
with an initial clearing target of 126 MHz (corresponding to the first stage of the real auction) and

following the 600 MHz band plan (see Figure [B.11]) from that point onI2
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Once these experiments completed, we determined the final stage of each early stopping simulation
and ran a corresponding single-stage auction in order to assess the “penalty” due to early stopping
vs. perfect forecasting of the clearing target. The results are shown in Figure [7] For computational
reasons, we only ran UHF-only simulations; even so, the experiments took more than 15 CPU
years overall. To avoid making comparisons between different qualities of spectrum, we disabled our
impairment mechanism and let prices start as high as required for full participation. We observed
that in both value models, early stopping performed well relative to single-stage auctions, with
increases to average cost and value loss of no more than about 1%. These results are particularly
encouraging when compared to the multi-stage experiments described earlier, in which we observed
significant gaps between multi-stage clearing and perfect forecasting.

We next ran simulations that compared early stopping to the original clearing procedure to
determine which cleared more spectrum. Under both value models, on average more mobile licenses
were created when by early stopping than the original algorithm—0.50 and 0.22 extra licenses under
the BD and MCS models, respectively. Early stopping also led to shorter auctions, averaging 30%
and 76% of the rounds required by the original algorithm under BD and MCS, respectively.

We conclude by reflecting on some concrete numbers from the real auction. At the end of the first
round of the first stage, payments to frozen stations already exceeded $50 billion; when the stage
finished, these payments were $86 billion. In the subsequent forward auction, revenues were only
$23 billion. Early stopping would have terminated the reverse auction during the very first round of
bidding. The first reverse auction stage took one full month to resolve. This month, and possibly

more time in future stages, would have been saved if early stopping had been implemented &

6.3. Scoring Rules
Stations’ starting prices in the incentive auction were not all the same: they were set proportionally
to an assigned score, determined by a scoring rule. Under truthful bidding in a UHF-only auction,
an unfrozen station will remain off-air for exactly as many rounds as it takes for its price to fall
below its value, at which point it will exit. Using scoring to raise or lower a station’s initial price
relative to others is one control knob an auctioneer has over the order in which stations exit.
Theoretically, scoring performs two distinct functions. First, because every descending clock
auction is equivalent to a greedy algorithm for packing stations into the broadcast spectrum, it may
be possible to pack a larger and more valuable set of stations if the algorithm prioritizes stations that
interfere with fewer neighbours. In the FCC’s design, this was achieved by offering higher prices to
stations with more “interference links"™ so that those stations would be less likely to exit. Second,
scoring reduces an auction’s expected cost by offering lower prices to stations that would be likelier

to accept them, following Myerson| (1981)). In the FCC’s design, this was implemented by reducing
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prices offered to stations serving smaller populations. (This design element was controversial: it was
vigorously opposed by a coalition of owners of lower powered stations serving smaller populations,
the “Equal Opportunity for Broadcasters Coalition”, whose starting prices in the clock auction
were reduced.) Overall, the two elements were combined by setting opening prices in proportion to
the square root of the product of a station’s population and its interference links.

In our experiments, we compared the following four scoring rules: (1) “Incentive Auction”, the
scoring rule used in the actual auction; (2) “Interference”, the square root of a station’s interference
links; (3) “Population”, the square root of a station’s population; and (4) “Uniform”, scoring each
station identically. As in the actual auction, we normalized all scores so that the highest scoring
UHF station had a score of 1 million.

We note a subtlety in these experiments: scoring rules impact prices, so simulations differing only
in their scoring rules will not necessarily select the same set of impairing stations given the same value
profile. To prevent “apples-to-oranges” comparisons across auctions clearing spectrum of varying
quality, we disabled our impairment mechanism and ran simulations with high enough base clock
prices to elicit full UHF-station participation (thereby avoiding all “unessential” impairments) I
Running with no impairment mechanism corresponds to considering a world in which the FCC is
unwilling to accept any degradation to the cleared spectrum.

Results for our simulations using the various scoring rules are shown in Figure [§] Under the
MCS value model, when the VHF band was repacked, we observed that simulations using only
interference scoring cost 1.24 times as much and experienced 1.11 times as much value loss as
simulations that combined population and interference scoring (the FCC’s scoring rule). Uniformly
scoring stations was not effective in this setting, with simulations averaging nearly 50% higher costs
and 25% higher value loss. When only the UHF band was repacked, the scoring rule appeared to
matter much less. Here, the interference scoring rule outperformed other scoring rules on average,
with mean costs and value losses of 0.93 and 0.99 times respectively compared to corresponding
simulations using the FCC’s scoring rule. Under the BD value model, we observed much higher
variance across simulations. If we nevertheless consider average performance, the FCC’s scoring
rule was outperformed in both metrics by every other scoring rule considered regardless of whether
the VHF band was repacked. When the VHF band was repacked, the lowest value losses and costs
were achieved, surprisingly, by the uniform scoring rule (94% mean value loss and 88% cost relative
to the FCC’s scoring rule). When only the UHF band was repacked, the lowest average value losses
and costs were achieved by interference scoring (97% and 95% of the FCC scoring rule). On the
whole, beyond a single setting (MCSMCS values and UHF + VHF repacking) we did not find robust

evidence for population-based scoring. These experiments required 3.5 years of CPU time to run.
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All of the scoring rules that we considered are static: they assign each station a single, fixed score.
The theory of descending clock auctions also considers scores that respond to auction history in a
dynamic fashion (provided that they never increase a station’s price). We leave the investigation
of dynamic scoring rules for this setting as future work, but note that our simulations’ failure to

crisply recommend any of the static scoring rules we considered may motivate such an investigation.

6.4. Feasibility Checking
The feasibility checker determines if a given station can be repacked alongside the stations that
have previously exited the auction. Feasibility checking was a large concern in the incentive auction
because the station repacking problem is hard both theoretically—it is NP-complete—and in
practice. When the feasibility checker cannot find a way to repack a station, either by proving
that no repacking exists or by running out of time, a station freezes: it stops bidding and its
compensation stops falling. The feasibility checker’s quality therefore has a direct effect on both the
cost and efficiency of the auction: if the feasibility checker fails to find an assignment that repacks a
station when such an assignment exists, this station will freeze at an unnecessarily high price. If
the station would otherwise never freeze at all, the value loss of the allocation is changed.

Do auctions achieve better efficiency and/or lower costs as the feasibility checker improves? Our
intuition is that better feasibility checking should lead to better results. However, this intuition is

not always correct; see Appendix [O] for a counterexample.

6.4.1. Effect of the Feasibility Checker on Auction Outcomes. SATFC 2.3.1, the feasi-
bility checker that was used in the incentive auction, was designed over several years (Fréchette
et al|[2016, Newman et al|[2017) ™ The solver combines complete and local-search SAT-encoded
feasibility checking with a wide range of domain-specific techniques, such as constraint graph
decomposition. Automatic algorithm configuration techniques were applied to construct a portfolio
of eight complementary algorithms from these various components. We now investigate whether the
effort invested in making SATFC 2.3.1 was helpful, or whether a more off-the-shelf solution would
have sufficed. To do so, we ran simulations in which we exchanged SATFC 2.3.1 with alternative
solvers.

Newman et al. (2017) ran 22 solvers from ACLib (Hutter et al. 2014)) (a library of solvers that
support algorithm configuration) on a benchmark set of sampled station repacking problems from
their reverse auction simulations™ The results are shown in Figure We selected certain solvers
from this figure and ran simulations, using each as the feasibility checker. Specifically, we compared
the following solvers: SATFC 2.3.1: the feasibility checker used in the incentive auction; Greedy:
a solver that simply checks whether a previous assignment can be augmented directly, without

changing the assignments of any other stations (this algorithm is the simplest reasonable feasibility
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checker and thus serves as a baseline); PicoSAT: To our knowledge, alongside MIP approaches, the
only other solver that has been used in publications on the incentive auction, probably because it
was shown to be the best among a set of alternatives in an early talk at the FCC on the subject
(Leyton-Brown|2013)); Gurobi and CPLEX: MIP solvers initially considered by the FCC; and
Gnovelty+PCL: the best performing of the 22 ACLib solvers on the benchmark data described
above. We note that similar experiments were performed in Newman et al.| (2017)). The experiments
presented here go beyond those both by being larger in scale and by the inclusion of a new feasibility
checker (Gnovelty+PCL), UHF-only experiments, and consideration of a new value model.

Our experiments took just over two CPU years. Results are shown in Figure @IIEI We observed
that stronger feasibility checkers led to better outcomes according to both of our metrics: the
relative rankings of the solvers in the benchmark study translated exactly into the relative rankings
across both of our metrics, regardless of whether the VHF band was repacked and regardless of our
choice of value model. In particular, we observed that SATFC 2.3.1 dominated all other solvers on
both metrics, not only on average but in each individual simulation and across both value models.
Reverse auctions run using the best off-the-shelf solver, gnovelty+pcl, cost between 1.22 and 1.45
times more on average (depending on bands being repacked and the value model used) and lost

between 1.22 and 1.45 times as much broadcaster value as those based on SATFC 2.3.1 23

6.4.2. Alternative Bid Processing Algorithms. Given our findings about the impact of
a strong feasibility checker, we asked: Could allowing more time for solving individual repacking
problems have led to fewer stations freezing unnecessarily and thereby have improved economic
outcomes? Figure makes a compelling case that problems that are not solved quickly are
overwhelmingly infeasible, yet it is difficult to say without experimentation what the impact of

solving the remaining truly feasible problems might be. Significantly increasing the cutoff time given
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to each problem would not have been practical. The first round of the reverse auction had 1030
bidding stations. A worst-case scenario of each sequential repacking problem taking one hour, say,
would have required more than 42 days. This would have slowed the pace of the auction to a halt!

Going beyond the feasibility checker comparisons in Newman et al. (2017)), we explored two
variants to the bid processing algorithm that increase the computation time available to processing
stations before declaring them frozen while also respecting the time constraints of the auction. The
first optimistically does not freeze a station with an indeterminate check, allowing future rounds
to revisit whether the station is indeed frozen; the second leverages parallel computation to make
better use of the full time window allotted to a given round.

Revisiting Indeterminate Feasibility Checks. The incentive auction froze a station whenever the
feasibility checker could not prove that the station could be repacked. We note that indeterminate
cases did not have to be treated this way: incentive constraints require only that a station’s winning
price does not decrease if it cannot exit. While calling these stations infeasible saves computation
time as there is no need to recheck them in later rounds, it is possible that as other stations exit, a
given station’s repacking problem becomes more constrained and thus easier to solve. An alternative
is for the bid processing algorithm, upon encountering an indeterminate feasibility check for a
station, simply not to process that station’s bid. Such a station is not frozen and will be asked to
bid again in the next round. The prices offered to that station decreases as normal, but its winning
payment P(s) will not decrease unless the solver finds a feasible repacking for the station. The
auction designers rejected this alternative on the grounds that the actual rules would be simpler for
bidders, but until now the alternative has never been quantitatively investigated.

Figure [.18 compares the results of the standard bid processing algorithm against one that does
not freeze stations with indeterminate results. These experiments took 3 CPU years to run. We
observed on average, in UHF-only simulations, small (about 0.5-1%) improvements to both metrics
when we revisited indeterminate results.

The First to Finish Algorithm. Bid processing for each round was required to complete within a
fixed time window. Since stations were checked sequentially, with a fixed cutoff time allotted to
each check, and since empirically most checks finished very quickly (see Figure , many rounds
terminated earlier than they were required to. Recognizing that stations’ incentives are unaffected
by the order in which their feasibility checks are performed, we propose an alternate bid processing
algorithm (dubbed “first to finish”) that aims to order feasibility checks in ascending order of their
runtimes, ensuring that a round never terminates early unless all feasibility problems have been
solved ZI This can be achieved by running all feasibility checks in parallel, each with a cutoff equal
to the entire amount of time remaining in the round. As soon as any feasibility check completes, we

process the corresponding station’s bid. If the station remains in its current band, we leave all other
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feasibility checks running unchanged; otherwise, we update them to include the changes implied by
the just-processed station, and restart all of them in parallel with a new cutoff corresponding to all
of the remaining time. We provide pseudocode in Appendix [J] as Algorithm

The first-to-finish algorithm consumes dramatically more compute power than the standard
bid processing algorithm: checking the status of all 1030 participating stations in parallel would
require on the order of 10000 CPUs, since each run of SATFC 2.3.1 uses 8 parallel threads. At the
scale of the incentive auction and given modern cloud computing resources, such computational
requirements would not have been prohibitive. However, given that most feasibility checks are
extremely fast (see Figure , a more practical variant might be to run each check sequentially
with a tiny cutoff before switching to fully parallel. In our experiments (described below), in all
rounds at most 27 stations had checks that took longer than 1 second, meaning this variant would
have required dramatically fewer CPUs than suggested by the worst-case bound.

Our experiments compare the first-to-finish algorithm?? with a one-hour-per-round cutoff against
the traditional bid processing algorithm with the usual one-minute-per-problem cutoff. Due to
the computational requirements of these experiments, we considered only 20 samples of UHF-only
simulations; still, they took more than 6 CPU years to run. The results are shown in Figure We
observed moderate noise in both metrics and a small average effect: about a 1% improvement in
both metrics under the MCS value model, and a 1% improvement to value loss and a 0.5% increase
in cost under the BD value model. We conclude that increased cutoffs would not have made a
significant difference to the auction outcome. We do expect that the first-to-finish algorithm would
have yielded larger gains if paired with a weaker feasibility checker or a larger incentive auction

that gave rise to even harder feasibility checking problems.

7. Conclusions

We outlined a six-step simulation methodology and instantiated it in the context of the incentive
auction to investigate previously unanswerable questions about the cost and efficiency of certain
alternative designs. To validate the robustness of our results, we used two quite different value
models: one from the empirical economics literature and another that we constructed to rationalize
public bid data. Our main findings were that: repacking VHF led to significantly lower costs and
more efficient outcomes; the multiple stage clearing rule substantially both increased costs and
reduced efficiency; a simple amendment to the clearing algorithm could nearly eliminate multi-round
inefficiency; the performance of pops scoring relative to other scoring rules varied widely based on the
value model and whether the VHF band was repacked; the specialized feasibility checker developed
for the auction significantly improved both cost and efficiency; and alternative bid processing

algorithms, while helpful, would not have made a significant difference to auction outcomes. We
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hope these specific insights can help to inform future auction designsZ More broadly, our analysis
demonstrates the practicality?® and promise of large-scale computational analysis of the simulated

behavior of candidate market designs in highly complex settings.
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Appendix A: Endnotes

. For example, [Kelly and Steinberg| (2000) note of the Progressive Adaptive User Selection Environment (PAUSE)

auction format that their design is “probably too complex to admit much theoretical analysis”.

. An agent can deviate from truthful bidding in this setting either by (1) accepting an offer below its value, or (2)

by rejecting an offer above its value. Since prices only descend, these deviations either lead to selling at a loss or
not selling at all, thus having a best-case utility of zero. Since truthful bidding has a worst-case utility of zero, it

constitutes an obviously dominant strategy in this setting.

. Theory on DA auctions has continued to evolve since the auction: for example, |Gkatzelis et al.| (2017) generalize

deferred acceptance auctions to non-binary settings.

. Neither of these papers included novel experiments; unlike our current study, their focus was not evaluating the

empirical performance of counterfactual designs.

. We make no comment about the fidelity of the FCC’s own simulator, since details about it are not publicly available.
. Canadian stations did not bid in the auction but could be reassigned new channels.

. Technically, the forward auction had to generate about $2 billion more: it also had to cover FCC expenses and the

estimated costs of station retuning. In our examples and experiments, we ignore these additional requirements and

only focus on the payments to winning stations.

. Our implementation follows the value model described in a 2016 draft of the paper; the authors have subsequently made

revisions (e.g., to the way that population is counted for low-power non-commercial stations). We used parameters

obtained directly from the authors.

. A television station’s value obviously depends on more than just the population it can reach. It is likely that other

important features include the station’s location (e.g., high-income versus low-income areas), and whether or not it is
a commercial operation, for example. We opted for a simple model that only uses population, which the FCC used as

a proxy for station value, acknowledging it will not capture all of the heterogeneity in station value.

We note a subtlety regarding runtime measurements. Since the feasibility checker uses a walltime cutoff, there will be
some degree of unavoidable noise (i.e., problems that require time very similar to the cutoff threshold). As a result,
different auction trajectories starting from the same value profile can occasionally be caused by such measurement
noise rather than a given design change being tested. This is difficult to control for, but the effect is random and
averages out across samples. One alternative (which we did not employ) to enhance repeatability would have been to
cache results (e.g., as described in Section 4.4 of |[Fréchette et al.| (2016])) so that a given station repacking problem

always produced a deterministic outcome.

A suggestion along similar lines was given by |Ausubel et al.| (2017)). Rather than swapping the order of the reverse
and forward auctions, they proposed forecasting reasonable bounds on forward auction revenue (i.e., asserting that
it would be unlikely for telecoms to pay more than $X for a given amount of spectrum) for each stage. The reverse
auction would then terminate when the provisional cost reached $X, the following forward auction would be skipped,
and the next stage of the reverse auction would be begin. They argue that first, this would have reduced the auction
duration, and second, that bidders in the forward auction had a sense in early stages that the prices were too high for

the auction to terminate, so they did not bid sincerely.
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We note an implementation detail: The reverse auction detects “unconstrained” stations and forces them to exit at
the end of each round. Unconstrained stations are those that can be provably feasibly repacked for the remainder of
the stage, and hence would otherwise simply bid until their clocks wound down to zero or they exited of their own
accord. In an early stopping auction, forcing these stations to exit no longer makes sense, as such stations may not be

unconstrained in the next stage. Therefore, we disabled these checks in our early stopping simulations.

One advantage of the ultimately implemented reverse-first ordering is that it allowed the forward auction to terminate
early when it was clear from looking at the high-value products (Category 1 products in High Demand Partial
Economic Areas) that the auction would require another stage, skipping the rounds that would have otherwise been
required to let every product’s demand settle. The speedups from terminating the reverse auction early would need to

be traded off against terminating the forward auction early; we did not perform such an analysis.

More precisely: “an index of the number and significance of co- and adjacent channel interference constraints that

station would impose on repacking.” (FCC|2015al)

We continued to lock the VHF band until the base clock price reached the FCC’s starting base clock price as described
in Appendix [H] because the heuristics that set VHF prices are fragile and we were concerned that altering them might

cause unintended effects on the VHF allocation.

Another reason not to run our impairment mechanism in this case is that the starting base clock price would surely
change under a shift in the distribution of station scores; by not running our impairment procedure our results are not

sensitive to this parameter.

While the prototype of SATFC was developed quickly, various unrelated legal and logistical delays to the auction’s
launch provided SATFC’s authors with time to refine it.

This benchmark can be downloaded at https://www.cs.ubc.ca/labs/beta/wwwu-projects/SATFC/cacm_cnfs.tar.gz

Our simulator always attempted to solve each feasibility check using the greedy algorithm before calling another
solver, so every other feasibility checker can be understood as a sequential portfolio of the greedy solver and itself.
We used this heuristic for good reason: the vast majority of feasibility checking problems encountered in a typical
simulation can be solved greedily. Lastly, we note that for consistency we always used SATFC 2.3.1 as the feasibility

checker in all experiments during the impairment phase (see Appendix.

We emphasize that these experiments considered only each solver’s default parameter setting, and do not investigate

the performance each solver could have achieved if it had been tuned or otherwise customized.

In fact, we first raised this idea as the last details of the incentive auction were being finalized. Although the design
team received the idea positively, it was not pursued because altering the bid processing algorithm would have

contradicted the published auction rules, which was no longer possible by that time.

Since we lacked access to the required number of parallel computers, we ran a sequential version of the first to finish
algorithm. The sequential version runs all of the unprocessed checks for a small cutoff and then processes them in
order of completion time until encountering a movement or exit bid, at which point checks are restarted. If at the end
of the cutoff, only indeterminate problems remain, the cutoff is set to the minimum of double the current cutoff or the

remaining time left in the round.
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Kiddoo et al.| (2019) remark: “Numerous government regulators around the world have sought FCC input on how they

could apply market-based mechanisms such as the Incentive Auction to clear spectrum”.

Altogether, our final experiments took more than 60 CPU years to run. Writing this paper consumed perhaps 200-300
CPU years of compute in total, since we often found ourselves needing to rerun experiments as we uncovered bugs,
changed parameters, or refined our experimental questions. We do not provide these CPU time numbers with the goal
of impressing the reader with how much compute power we used. Instead, we hope (a) to give other researchers a
sense of the scale of experiments that we consider necessary for answering questions like the ones we tackled here, and

(b) to reassure the reader that we ran more or less the largest experiments that were practically feasible.

Appendix B: FCC Band Plan

42 [21]22]23[24]25]26]27 28293031 [32]33 34353687 [38[30[40]41[4243][4a4] 11 [aJB] i1 [ae

48 [21[22]23[24]25]26]27 28293031 [32]33 34353687 [38[39[40]41[42]43] 7 [a]E[c] 11 [AaJE]C

60 [21]22]23]24[25]26 272829303132 [33[34[35[36[3F[38[a0]40[sa1[ 9 Ja[e]e[o] 11 [a[eJec]p

72 [21]2z2[23]24]25]26 |27 [28[29[30[31[32[33[34|35]36[a8r[38[a0] 1 [Aa[eJe[oJe] 1 [afeec]p]E

78 [21]22[23]24|25]26 |27 [28[29[30[31[32|33[34|35[36[a7[3s[ 7 [A|B]ec[o[eE]F] 1 TaJele[o[E]F|=
84 [21]22]23]24 252627282930 [31 323334 [35[s6 [Br[3[aEe[c[n[E[F]e] 1 |A\a|c\n|s|s\sg
108 [21]22]23[24[25]26[27 282030 [31[32] 1 Ja[e[3[3r[3[c[p[F[F[ec[u] 11 [aJeJc[p]e[F]c]Hn §
114 [21]22]23]24[25]26 27282030317 [ae]e[o[a[ar[3[E[fle[n]1] 11 [ale[c]p]e[F]e]u]l
126 [21]22]23]24[25[26[27[28]29] 8 Ja[efc[o[E[F[B[s7[3[e[A[IJa[ 11 [aJeJe]oJe[Ffec[u]i]
138 [21]22]23]24[25[26 27 A1 JafeJe[oJe[r[e[n[a[ar[s[ I Ja[K] 11 TafeJe[oJeJF]e[H]II]K
144 [21]22]23]24[25[26 7 [a]e]e o [e[Fe[a[i[[3[37[3[Kk[r] 11 [a|efc[oJe]FJe[H]IJI]K]E

Figure B.11 The FCC'’s band plan for 600 MHz. Each row corresponds to a different clearing target and shows

which channels would be repurposed and which would remain for TV broadcasting.
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Appendix C: Reverse Auction Pseudocode

Algorithm 1 Multi-Stage UHF-Only Reverse Auction Without Impairment

1: Input: Sexitea contains initial set of non-participating stations; we assume no impairments. Spiqding contains the set of
participating stations. € is the initial clearing target. C, Z, D are the set of channels, the interference constraints, and the
station domains respectively. FC is the feasibility checker. cutoff is the amount of time given to FC. po is the starting clock

price.
2: Swinners < {} > Set of provisionally winning stations, initially empty
3: P(s) < 0 Vs € Sbidding > Provisionally winning prices; initially all 0
4: C+{ceCl|ec<z} > Channels available for repacking
5 t+1
6: while The incentive auction has not terminated do
7 // Start a new stage
8: Pt < Po > Reset clock prices
9 while ‘Sbiddingl >0do
10 pt < pr —max (0.05 - p¢,0.01 - po) > Decrease clock price
11: // Check if any stations frozen in earlier stages have “caught up”. Can be skipped in the first stage.
12: for {s|s € Scatchup APt - SCORE(s) <P (s)} do
13: Scatchup = Scatchup \ {5}
14: if REPACKABLE({s} U Sexitea) then
15: Shidding < Sbidding U {s}
16: else
17: Swinners — Swinuers U {S}
18: // Update prices
19: for s € Sbidding do
20: Py,+ < p: - SCORE(S)
21: // Bid processing
22: Collect bid bs;; from each station in Shidding
23: for s € Sbidding do
24: if Not REPACKABLE({s} U Sexitea) then > s freezes
25: Swinners — Swinners U {S}
26: Shidding ¢ Sbidding \ {S}
27: P (s) + Pss
28: else if b,;; = Exit then > s can be repacked and bid to exit
29: Shidding = Sbidding \ {5}
30: Sexited $— Shidding U {s}
31: t—t+1
32: Conduct a forward auction for the cleared spectrum {c€C |c>7¢}
33: Reverse auction cost <3 s P(s)
34: if Revenue raised in forward auction > Reverse auction cost then
35: Terminate the incentive auction
36: else
37: C < next clearing target > Selected according to band plan
38: C+{ceC|c<z} > Update channels available for repacking
39: Scatchup < {8 € Swinners | REPACKABLE({s} U Sexited }) > Find stations that may unfreeze
40: Swinners = Swinners \ Scatchup

41: // Incentive auction terminated
42: Pay P (s) to s € Swinners

43: function REPACKABLE(S) B
44: Ask FC to find an assignment v such that v(s) € D(s)NC V s €S, and y(s) =c=-~(s") # ¢ for all {(s,c),(s’,c')} €T

45: if A feasible assignment is found within cutoff seconds then
46: Return True
47: else

48: Return False
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Appendix D: VHF Option Pricing
In this appendix, we describe how VHF options are priced in the reverse auction.

D.1. An Ideal Case: Similar Stations

The easiest case to reason about is when there are three stations which serve identical populations: a UHF
station, an HVHF station, and an LVHF station, with the property that none of these stations can co-exist
on the same band, and that if any station moves to a lower band, its interference constraints in the new band
are identical to the station it displaces. There are then four ways to clear the UHF channel, each of which
create the same amount of value and hence should cost the same amount.

1. The UHF station can go to OFF for a price of $X

2. The UHF station can go LVHF for a price of $Y (where $Y < $X) and the LVHF station can go to
OFF at a price of $X — $Y

3. The UHF station can move to HVHF for a price of $Z (where $Z < $Y") and the HVHF station can go
OFF at a price of $X —$Z

4. The UHF station can move to HVHF for a price of $Z, the LVHF station can go to OFF for a price of
$X —$Y, and the HVHF station can go to LVHF at a price of $Y — $7.

D.2. Benchmark Prices

The reverse auction uses benchmark prices based on the above thought experiment: the auction first pretends
that we are in the scenario of the above example where comparable stations exist and computes a benchmark
price which it later transforms into an actual price as described below.

To compute the benchmark price for a station s in round ¢ for the option of moving into b, the previous
round’s benchmark price is decremented by a fraction of d,. This fraction is called a reduction coefficient,

Ts.:- We will describe the computation of reduction coefficients shortly.

ps;t;b :ps;tflgb - 7ns;t;b : dt (1)

The initial benchmark prices, denoted pg;, are chosen prior to the auction (with p,.o.unr =0). The

benchmark price is then converted to an actual price as follows.

Ps;t;b = score (S) -max {07 min {ps;t;OFvas;t;b _ps;t;vswpre(s) }} (2)

Let us break down this formula: The prices are weighted by volume as before. The max ensures the price is
non-negative and the min upper bounds the price by the price offered to a UHF station to go to OFF. Lastly,
the second term in the min reflects the pricing division described in Section

D.3. Vacancy

Before describing the calculation of reduction coefficients, we need to introduce vacancy. Vacancy, denoted
Vi s, 1s a heuristic that estimates the competition that a station s faces for a spot in band b in round ¢, with
higher values indicating less competition. More formally, vacancy is a volume weighted average of a function

f over potential competitors for the vacant space in the band: Let G (¢, s,b) denote the set containing both s
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and stations which have the possibility to interfere with s in b which are currently bidding on options below
b. The function f is computed by taking the number of channels in b to which s can be feasibly assigned
(given the current assignment of the exited stations) and normalizing by the number of channels in b. If s

cannot be assigned to any channels, 0.5 is used in place of the numerator.

# of feasible channels for s in b in round ¢

f(t sb)=

# of channels in b
Zs’éG(t,s,b) score (sl) : f (t7 8/7 b)

Zs’EG(t,s,b) score (Sl)

‘/t,s,b =

D.4. Reduction Coefficients

We now provide equations for computing the reduction coefficients. The full decrement is always applied to
going off-air, that is r;, s opr = 1.

The reduction coefficient for moving to HVHF is:

. Po,avVHF * \/ Vi,s,UHF (5)
t,s, HVHF —
(po,OFF —po,HVHF) Vi Vt,s,HVHF + Po,HVHF * 4/ Vt,s,UHF

Finally, the reduction coefficient for moving to LVHF is:

, (Po,LveF — Po,avaF) - \/ Vi,s,HVHF
t,s, LVHF = .
(Po,0FF — Po,uvar) - \/ Vi,s,uvar + (Do, ivar — Poavar) -/ Vi,s, HVHF

(1 —rysmvar) + T s HVHF

Appendix E: Robustness Experiments

Recall from Section that we model a UHF station’s value for switching to the HVHF band as % - Vs, UHF *
N (1,0.05) and similarly for the LVHF band with % instead of % These fractions were chosen for simplicity,
drawing on some degree of domain knowledge about the values of VHF bidders. After performing our analysis,
we wanted to understand how much our results depended on the specifics of our modelling choices. What if
we had used other fractions instead? Here we describe the results of rerunning several experiments under
three alternate sets of fractions. The FCC set opening off-air prices for HVHF and LVHF stations at % and
i respectively of corresponding UHF stations. We reran experiments using % and i as the fractions in our
value model. We refer to this parameterization as “Lower Values”, as stations have lower values for the VHF
bands when compared to our standard value model. For symmetry, we also reran experiments incrementing
the fractions by corresponding amounts, leading to % and % We refer to this parameterization as “Higher
Values”. We also were interested in whether the Gaussian noise was consequential, so we created another
parameterization where no noise was applied which we refer to as “No Gaussian Noise”.

For each of our three value model parameterizations, we reran one experiment related to each question
we posed in the introduction. Specifically, we compared: auctions that repacked the VHF band with those
that did not (“Repacking VHF”); auctions that ran for four stages against those that simply ran for a single
stage beginning at the fourth clearing target (“Clearing Procedure”); auctions that used the FCC’s scoring
rule against those that only used the population component (“Scoring Rules”); and lastly, auctions that

used SATFC 2.3.1 as their feasibility checker against those that used the best off-the-shelf feasibility checker
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Value Loss
Repacking VHF Clearing Procedure Scoring Rules Feasibility Checker
Model Change

None 0.92 (0.15) 0.95 (0.24) 0.94 (0.08) 1.4 (0.31)

Lower Values 0.96 (0.14) 0.95 (0.18) 0.97 (0.08) 1.51 (0.41)

Higher Values 0.87 (0.15) 0.91 (0.17) 0.93 (0.09)  1.53 (0.33)

No Gaussian Noise 0.9 (0.13) 0.94 (0.19) 0.95 (0.08) 1.48 (0.31)
Cost

Repacking VHF Clearing Procedure Scoring Rules Feasibility Checker
Model Change

None 0.78 (0.15) 0.85 (0.2) 0.96 (0.19) 1.4 (0.29)
Lower Values 0.86 (0.13) 0.89 (0.21) 0.98 (0.18) 1.48 (0.32)
Higher Values 0.74 (0.16) 0.81 (0.17) 0.93 (0.18) 1.55 (0.34)
No Gaussian Noise 0.79 (0.14) 0.85 (0.18) 0.95 (0.19) 1.49 (0.31)

Table 1 A summary of the results of changing the value model on four replicated experiments from the main
paper. Each row corresponds to a different change to the value model, and each column corresponds to an
experiment. The “None” row refers to the original experiment. Values in each cell represent the mean and

standard deviation of value loss (upper table) and cost (lower table) of an altered auction design relative to the

real auction design across all paired simulations.

(“Feasibility Checker”). We ran 50 paired simulations for each experiment, just as we did for the corresponding
main results. These experiments took roughly 20 CPU years to run.

The results are summarized in Table |1} We observed slightly different results among the three parameteri-
zations: for example, the cost savings estimate from repacking VHF bands varied from 14-26% depending on
how substitutable stations felt the VHF bands were for the UHF band. However, no change to the value
model substantially altered the conclusions we drew from any experiment, giving us confidence that our

results are relatively robust to the particular choices we made.

Appendix F: Additional Details of the BD Value Model
F.1. Inferring Bounds on Values from Bids

The FCC’s data contains the selected band and price (and fallback band and price when applicable) for each
bid that was processed. It additionally contains the offers and set of bands for which each station s accepted
opening prices, which we call PermissibleStartBands, 23

We began with the trivial bounds 0 < v, yur < co. We tightened bounds by applying the following ruledZd
to the released bids:

1. OFF € PermissibleStartBands, = v, uur < Ps;0FF;0pen

2. OFF ¢ PermissibleStartBands 20 —- Vs, UHF = Ps,0FF;0pen

3. 8 € Syinners Apost(s) = OFF = v, yur <P (s) P

4. by, = OFF V fallback, ; = OFF = v, ynr < Ps.oFF:

5. (b, = Exit V fallback, , = Exit) Ay, (s) = OFF = v, ynur > Ps.orF:
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In words, we inferred that a station that included (did not include) starting off-air as a permissible option
had a value less than (greater than) its opening price for starting off-air. A station that froze while bidding
for off-air and became a winner had a home band value less than its compensation. Whenever a station bid
to remain off-air, including as a fallback bid when attempting to move between bands, we inferred that the
station’s value was less than its price for remaining off-air. Similarly, whenever a station bid to drop out of
the auction (including as a fallback bid) while off-air, we inferred that the station’s value was greater than its
price for remaining off-air.

F.2. Fitting our Value Distribution
Let x, and y, represent lower and upper bounds respectively on s’s observed $/pop sample n,, i.e., z, =

Vs,UHF,Lower Bound __ Ys,UHF,Upper Bound
Population(s) Ys Population(s)

. Let Z be a list containing all of the x, and y, in ascending order, such

that Z; is the smallest element and Zy g the largest. Our problem was then as follows.

maximize H (N(ys) — N(zs)) (6)
subject to N(z,),N(y,) €[0,1]Vse€ S (7)
N(Z2) EN(Z) <+ < N(Zags) (®)

Noting that taking the log of the objective function preserves its maximum, we minimized the negative log
likelihood, — > _slog (N (ys) — N(x,)). This is a constrained optimization problem with a nonlinear convex
objective function and convex constraints. The constraints ensure that the values of N must fall between 0
and 1 and that N must be non-decreasing. The solution uniquely identifies the value of N at each point x,
and y,. We translated this problem into a second-order cone program using cvxpy (Diamond and Boyd|[2016)
and solved it using the ECOS (Domahidi et al.|2013|) solver.

We then fit a GPD to each of our tails. Specifically, we labelled the bottom 15% segment of the CDF the
left tail and top 30% segment the right tail. The CDF of the GPD is F'(z) =1 — (1 4+ =~ f)% for £ £0,
where 1, 0,& are the location, scale, and shape parameters respectively. We fit the left tail to the set of points
Z falling in the region described (about 7% of our data). We did not have any data to fit the right tail of
the distribution, so we fit a GPD using control points such that a $/pop value 12.5% higher than any we
observed occurred at y =0.975 and one 25% higher than any we ever observed occurred at y = 0.99.

While we recognize that the value distribution’s right tail is the most ad hoc part of our model, we believe
that the choices we made about this part of the distribution are unlikely to have substantially impacted our
results. The reason is that stations with sufficiently high values are unlikely to choose to participate even at
the incentive auction’s opening prices, at which point it does not matter to the auction’s outcome exactly
how high those values are. Indeed, we calculated that only 3.4% of UHF stations nationally would have any
chance of participating in the auction conditional on their values having been sampled from any part of the
right tail. Since each station has a 30% chance of having its value sampled from the right tail in any given
simulation, in expectation any change to this section of the curve would alter the bidding behaviour of fewer

than 1% of UHF stations. Furthermore, it is likely that conditional on a station’s value having been drawn
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from the right tail and the station having chosen to participate, these stations would exit early in the auction
before interference constraints start to bind tightly, and that this behaviour would not depend on the exact

shape of the right-tail distribution.
Appendix G: Additional Simulation Details
G.1. Computational Environment

Our experiments were performed on two different compute clusters (the same cluster was used consistently
for each experiment). Our first cluster ran on AWS, using c¢5.18xlarge nodes. Each node had 72 vCPUs (each
a hyperthread on a 3.0 GHz Intel Xeon Platinum 8000-series processor) and 144 GB of RAM. Our second
cluster consisted of nodes equipped with 32 2.10GHz Intel Xeon E5-2683 v4 CPUs with 40960 KB cache and
96 GB RAM. SATFC runs a portfolio of 8 algorithms in parallel; jobs were always scheduled such that each
simulation had access to 8 CPUs and 20 GB of RAM.

G.2. Handling Missing Data in the MCS Value Model

The MCS model does not provide values for stations in Hawaii, Puerto Rico, or the Virgin Islands. We

¢

therefore excluded all of these “non-mainland” stations from our analysis completely when using both value
models to preserve the same interference graph across simulations. We note that there are few such stations
and they reach relatively small populations, so this exclusion is unlikely to have impacted our qualitative
findings.

The MCS model also does not provide values for 25 mainland UHF stations. For these stations, we set

v, unr to be proportional to population. We sampled the constant of proportionality from a log-normal

Vs, UHF

—=2_ from other stations
Population(s)

distribution, where the mean and variance were calculated from samples of

in that station’s Designated Market Area (DMA 2 or nationally if there were no other stations in the DMA.

G.3. Additional Value Model Details

The Gaussian noise in our value model can occasionally cause a station to violate v, yur > Vs nvur > Vs, LVHF-
In these rare cases, we resample. We rounded all values to the nearest thousand dollars. In rare cases when

the value model provides an extremely low sample for v, yur, we set v, ygr = $3000.

G.4. Initial Band Assignment

In the real auction, stations could choose to participate conditional on being initially assigned to one of
a subset of bands. One role of the initial clearing target optimization was to accommodate such stations.
Since we could not replicate this optimization, we did not allow stations to select their preferred starting
bands. Instead, in our simulations, all participating stations start off-air. In the real incentive auction, 85%
of stations indicated off-air as their preferred starting band and only 5% of stations declined off-air as a

permissible starting band.

G.5. Canadian Stations

Canadian stations were also involved in the repacking process (they could be moved to a new channel, but
did not participate in the auction and could not be purchased). We included all 793 Canadian stations in our

simulations.
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G.6. Station Volumes

We used population and interference values from the FCC’s opening prices document (FCC|[2015d), noting
that the links heuristic is calculated on the full interference graph. We continue to use these values in our
UHF-only auctions, even though the underlying interference graph changes (the number of links goes down).
We observe that the interference graph somewhat similarly changed between each stage of the incentive
auction (the values correspond to the full graph, or the final stage of the band plan) but nevertheless the
same values for the links heuristic were used throughout the auction.

Appendix H: Impairing Stations

In this appendix, we describe how we choose which set of stations will be impairing given that we cannot
replicate the initial clearing target optimization.

Given a clearing target, our simulator determines which stations to impair as follows. First, we ensure
full participation of UHF stations by increasing the FCC’s base clock price in 5% increments until no UHF
stations reject their initial offers. We then solve an optimization problem to find an initial assignment ~ that
minimizes the number of essential impairing stations, breaking ties by minimizing the aggregate population
of impairing stations. Having dealt with the essential impairments, we then run the auction starting from
the inflated base clock price. While the base clock price remains higher than its normal starting point, the
VHF band is considered “locked”—only UHF stations are asked to bid and stations cannot bid to move
into the VHF band. When the FCC'’s starting base clock price is reached, any station that would not have
participated at the opening prices will have exited or be frozen. We consider any stations that have frozen at
this point to be impairing; we do not include impairing stations in any of our metrics unless explicitly noted.
At this point, VHF stations make their participation decisions, the VHF band is “unlocked”, and the auction
proceeds as normal.

In a multi-stage auction, impairing stations may be able to leverage the newly available spectrum to become
non-impairing. At the start of each new stage, we again solve an optimization procedure to move as many
essential impairments to C as possible. We then proceed with the between-rounds transition as described in
Section except that p; can be reset back to the impairment regime, following the same rules as above
until the FCC’s base clock price is reached. Lastly, we note that there are no essential impairments given a

clearing target of 84 MHz and that there are 9 at a clearing target of 128 MHz.
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Appendix I: Full Experimental Results

In this appendix, we provide figures showing the results of our simulations in each of our experiments. Results

are shown for both value models and for both auctions that repack and do not repack the VHF band as

available.
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Figure 1.12 Comparing auctions that only repack the UHF band against auctions that also repack VHF bands.
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with no impairing stations.
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factoring in impairing stations. The BD value model is used for all simulations.
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Figure 1.17 Comparing auctions using different feasibility checkers.
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Figure 1.19 Comparing the first to finish algorithm against the standard bid processing algorithm for

single-stage 126 MHz auctions.
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Appendix J: First-to-Finish Algorithm Pseudocode

Algorithm 2 First-to-Finish Bid Processing

1: Unprocessed < Shidding
2: while Time remains in the round and |Unprocessed| >0 do
Launch a parallel feasibility check for each s € Unprocessed, with a cutoff equal to time remaining in the round
repeat
Wait for a check to complete
if s is not frozen then
Process s’s bid and remove s from Unprocessed

until A station exits or moves bands
Interrupt all ongoing checks

Appendix K: Station Repacking Problem Runtimes
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Figure K.20 Empirical Cumulative Density Function of runtimes for default configurations of MIP and SAT
solvers and for SATFC 2.3.1 on a benchmark set of 10000 non-trivial problems. Figure taken from (Newman et al.
[2017). The curves show fraction of instances solved (y axis) within different amounts of time (x axis; note the log
scale). The legend is ordered by percentage of problems solved before the cutoff. The histogram indicates density

of SAT and UNSAT instances binned by their (fastest) runtimes; unsatisfiable instances constituted fewer than

1% of solved instances.

Appendix L: Single-stage vs Multi-stage Auctions Examples

In this appendix, we give an example of how running a single stage auction can lead to a better outcome

than iterating through multiple stages (for a fixed final clearing target).

Example L.1 We return to the example in Figure[d and ask what would have happened if the auction had
nitially set ¢ =3 and tried to repack stations into two channels from the outset. We visualize this scenario in
Figure[L.21l As before, A is the first to exit. However, B does not freeze this time around, because A and B
are both repackable using two channels. When P, < Vg, B will exit. At this point C freezes at P(C)=Vg. D
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is the mext to ewit, followed by E, finally freezing F at P(F)=Vg. Recall that the value loss and cost of the
two stage auction were Vg + Vi and V4, + Vg respectively. In the single-stage alternative, the value loss is

Ve + Ve and the cost is Vg + Vg : the outcome is preferable according to both of our metrics!

Figure L.21

Next, we provide an example showing that this is not always the case. Here, we show an example where a

single stage auction leads to a worse outcome than a multi-stage auction.

Example L.2 Consider a setting with four identically scored stations A, B,C, D with V4> Vg > Vs> Vp,
Ve < Ve +Vp and V4 < 2Vp. In the final stage, the feasible sets are {A, B},{A,C, D} and all subsets of these
sets. As prices drop, A exits first, followed by B, which freezes C and D at prices of Vg. So the single-stage
approach gives a value loss of Vo 4+ Vp and a cost of 2V

In the multi-stage setting, in the first stage assume the feasible sets are {B},{A,C,D} and all subsets of
these sets. A will exit first, freezing B at a price of Va. B and C' then exit, concluding the stage. In the second
stage, B never unfreezes. Therefore, the total cost of the multi-stage approach is V4 and the value loss is V.
By the inequalities assumed above, this is a cheaper, more efficient outcome than the single-stage auction that

predetermined the amount of spectrum to clear.

Appendix M: Early Stopping Counterexample

In this appendix, we provide an example where early stopping leads to a worse outcome than the standard

clearing procedure.

Example M.1 Consider four identically scored stations A, B,C, D with V4 > Vg >Ve>Vp, Ve <Vo+Vp
and Vy < 2Vg. Let the forward auction run first and have a purchasing price of V4. Let the feasible sets in
the first stage be {A,C},{A, D}, {B} and all subsets of these sets. In the second stage, the feasible sets add
{A,B},{A,C,D} and all subsets. In both cases, the auction begins with A exiting and B freezing at price V.
In an early stopping auction, this will trigger the end of stage one. In stage two, B unfreezes and exits. Then
C and D freeze at price Vg. This leads to a value loss of Vo +Vp and a cost of 2Vg. In an auction without
early stopping, C would exit, freezing D at price V. This would trigger the stage to end. In the next stage, B
would remain frozen and D would unfreeze and exit, leading to a value loss of Vi and a cost of V4. Using the

inequalities on the values above, the auction that does not use early stopping performs better in both metrics.
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Appendix N: Modeling Forward Auction Revenue

When using the early stopping algorithm, the reverse auction takes as input the output of the previous
forward auction (the amount that mobile carriers will pay for the spectrum). Therefore, in order to simulate
early stopping auctions, we need to model forward auction revenues.

While we have access to the real forward auction revenues, the incentive auction only went through four
stages, and simulations could potentially go to stages beyond the fourth. To address this issue, we performed
a log-log fit on the number of mobile licenses and forward auction proceeds in the first three stages (i.e., with
3 data points we fit In(#licenses) = a - In(cost) + b for some constants a,b). We ignored the revenue in the
fourth stage when performing this fit because the price per license rose significantly relative to the other
stages, and we suspect that the price increase was likely due to an understanding among bidders that the
auction would terminate in this stage. After the fit was established, we scaled the entire model by a constant

so that the model’s prediction for the fourth stage matched the observed real revenue. The results appear in

Figure
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Figure N.22 Forward auction revenues observed in the incentive auction (“Actual”) and our model of forward

auction revenue.

We used the same forward auction revenues across all sampled station value profiles for a given value model.
When using the MCS model, we observed that reverse auction simulations rarely produced high enough
procurement costs to trigger early stopping in the first stage, leading to uninformative behavior in which the
auction simply ends after the first stage. To get around this, we scaled our forward auction model downwards

by a factor of 2 when running simulations for the MCS.
Appendix O: Feasibility Checker Counterexample

In this appendix, we provide an example showing that a better feasibility checker does not necessarily lead to
better outcomes, and can even lead to worse ones.

For a fixed cutoff, a feasibility checker can be thought of as a mapping from a set of stations to
{Feasible, Infeasible,Unknown}. We can define an ordering over feasibility checkers such that a feasi-
bility checker F} is strictly better than a second F; if and only if for all possible sets of stations s € 29,
Fy(s) = Feasible = F(s) = Feasible and s such that F;(s) = Feasible and F5(s) = Unknown. Impor-
tantly note that for the purposes of this definition we don’t care about the feasibility checker’s ability to prove
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infeasibility: while this is important for saving time, it does not ultimately impact the result of the auction

since infeasibility and indeterminate solutions are treated identically. We now proceed to the example.

Example O.1 Imagine a UHF-only setting involving four bidding stations A, B, C, and D. Let Vy, =Vg =
Ve =Vp =V and let all stations have the same score. The constraints are such that the repackable sets
are either {B,C,D} or {A,D} (and all subsets). There are two feasibility checkers: Fy can find all feasible
repackings, but Fo({A, D}) = Unknown. Consider the first round in which each station is being offered a price
p just below V' and assume that the bid processing order is D, A, B,C. D exits the auction. Under Fy, A is
allowed to exit the auction. This freezes B and C. The value loss for these two stations will be 2V and the
payment will be just under 2V . Fy, however, cannot pack A, and so A freezes. B and C then exit the auction.
The value loss in this scenario is V and the payment is just under V, so this outcome is strictly better than

the previous even though Fy is strictly better than Fy.
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