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Behavioral game theory seeks to describe the way actual people (as compared to idealized, “rational” agents)
act in strategic situations. Our own recent work has identified iterative models (such as quantal cognitive hi-
erarchy) as the state of the art for predicting human play in unrepeated, simultaneous-move games [Wright
and Leyton-Brown 2012]. Iterative models predict that agents reason iteratively about their opponents,
building up from a specification of nonstrategic behavior called level-0. The modeler is in principle free to
choose any description of level-0 behavior that makes sense for the given setting; however, in practice al-
most all existing work specifies this behavior as a uniform distribution over actions. In most games it is not
plausible that even nonstrategic agents would choose an action uniformly at random, nor that other agents
would expect them to do so. A more accurate model for level-0 behavior has the potential to dramatically
improve predictions of human behavior, since a substantial fraction of agents may play level-0 strategies
directly, and furthermore since iterative models ground all higher-level strategies in responses to the level-0
strategy. Our work considers “meta-models” of level-0 behavior: models of the way in which level-0 agents
construct a probability distribution over actions, given an arbitrary game. We evaluated many such meta-
models, each of which makes its prediction based only on general features that can be computed from any
normal form game. We evaluated the effects of combining each new level-0 meta-model with various iter-
ative models, and in many cases observed large improvements in the models’ predictive accuracies. In the
end, we recommend a meta-model that achieved excellent performance across the board: a linear weighting
of features that requires the estimation of five weights.

Categories and Subject Descriptors: I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent systems

Additional Key Words and Phrases: Behavioral game theory; bounded rationality; game theory; cognitive
models; cognitive hierarchy; level-k; prediction

1. INTRODUCTION
It is well known that the standard game-theoretic assumption that agents will adopt
Nash equilibrium strategies—where each agent simultaneously responds optimally to
all the others—is often a poor predictor of actual human behavior [e.g., see Goeree and
Holt 2001]. The field of behavioral game theory aims to develop models that more accu-
rately describe such behavior, as evaluated using experimental data [Camerer 2003].
Our own recent work has identified one particular model, quantal cognitive hierar-
chy, as the state of the art behavioral model for predicting human play in unrepeated,
simultaneous-move games [Wright and Leyton-Brown 2012, 2013]. The quantal cogni-
tive hierarchy (QCH) model has two key components. The first component is quantal
response; that is, agents respond stochastically to their incentives—playing high util-
ity actions with high probability and low utility actions with low probability—rather
than best responding. This expresses the intuition that two actions that yield roughly
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equal utilities have a roughly equal chance of being chosen. The second component is
iterative reasoning; that is, agents do not reason arbitrarily deeply about their oppo-
nents’ beliefs about beliefs about beliefs, but instead start from a simple nonstrategic
strategy1 (the level-0 behavior), and then reason for some fixed number of iterations
about responses to that strategy (e.g., a “level-2” agent quantally best responds to the
combined behaviors of level-1 and level-0 agents).

Thus, in order to make use of a quantal cognitive hierarchy model one must first
commit to a specification of level-0 behavior. Indeed, this is true of iterative models
in general, such as cognitive hierarchy [Camerer et al. 2004] and level-k [Stahl and
Wilson 1994; Nagel 1995; Costa-Gomes et al. 2001]. It is important to get this spec-
ification right, for two reasons. First, there is growing evidence that a substantial
fraction of human players do act nonstrategically [Burchardi and Penczynski 2012;
Wright and Leyton-Brown 2013]. Second, the level-0 model also effectively determines
the predictions that will be made about strategic agents, because higher-level agents
are assumed to act by responding strategically to lower-level agents’ behavior.

Almost all work in the literature that uses iterative models adopts the specification
that level-0 agents play a uniform distribution over actions. (In Section 5 we discuss
the few exceptions of which we are aware, each of which is based on intuition about
a specific setting of interest.) The uniform-distribution approach has the advantage
that it does not require insight into a game’s structure, and hence can be applied to
any game. However, in many games it is not plausible that an agent would choose
an action uniformly at random, nor that any other agent would expect them to do so.
(For example, consider a dominated action that always yields very low payoffs for all
players.)

In this paper we consider the question of how to do better. Specifically, we investigate
general rules (“meta-models”) that can be used to induce a level-0 specification from
the normal-form description of an arbitrary game. In the next section we formally de-
fine our setting, and describe the data, methods, and model that we used in our work.
In Section 3, we propose a richer level-0 meta-model, computable directly from the nor-
mal form of a game. (We also investigated and ruled out a wide range of alternative
meta-models; for completeness, these are described in an appendix.) In Section 4 we
present the results of an experimental evaluation of the level-k, cognitive hierarchy,
and quantal cognitive hierarchy models, augmented to use our level-0 specification.
We found that performance always improved relative to the uniform level-0 specifica-
tion, often dramatically. We then briefly survey some related work in Section 5 before
concluding in Section 6.

2. FRAMEWORK
We focus on unrepeated, simultaneous-move normal-form games. Formally, a normal-
form game G is a tuple (N,A, u), where N is a finite set of agents; A =

∏
i∈N Ai is

the set of possible action profiles; Ai is the finite set of actions available to agent i;
u = {ui}i∈N is a set of utility functions ui : A→ R, each of which maps from an action
profile to a utility for agent i. Let ∆(X) denote the set of probability distributions over
a finite set X. Overloading notation, we represent the expected utility of a profile of
mixed strategies s ∈ S =

∏
i∈N ∆(Ai) by ui(s). We use the notation a−i to refer to the

joint actions of all agents except for i. Our objective is to find a behavioral model which
maps from a game description G and a (human) agent i to a probability distribution

1In this work, we refer to agents that form explicit beliefs about the beliefs and/or behaviors of the other
agents as “strategic,” and agents that do not reason about other agents in this way as “nonstrategic”, hence
the oxymoronic-seeming “nonstrategic strategy”. Nonstrategic should not be taken as a synonym for unso-
phisticated or thoughtless. Some of the level-0 behavior that we describe below is rather sophisticated.



over i’s action set Ai that predicts i’s behavior in G. In this section we first describe the
model that we have shown achieves state-of-the-art performance in predicting human
behavior, Spike-Poisson QCH [Wright and Leyton-Brown 2013]. We then describe the
dataset and methods that we used to learn parameters and evaluate the performance
of extensions to Spike-Poisson QCH.

2.1. Quantal Cognitive Hierarchy
The first key component of the quantal cognitive hierarchy model is quantal best re-
sponse. Like most of the behavioral literature, we use the logit specification of this
concept.

Definition 2.1 (Quantal best response). Let ui(ai, s−i) be agent i’s expected utility
when playing action ai against strategy profile s−i. Then a quantal best response
QBRi(s−i;λ) by agent i to s−i is a mixed strategy si such that

si(ai) =
exp[λ·ui(ai, s−i)]∑
a′i

exp[λ·ui(a′i, s−i)]
, (1)

where λ (the precision) represents agents’ sensitivity to utility differences.

Note that unlike (classical) best response, which is a set-valued function, quantal best
response always returns a single mixed strategy. When λ = 0, quantal response mixes
uniformly over all of the agents’ actions; as λ→∞, quantal best response approaches
best response.

The second key component of the quantal cognitive hierarchy model is iterative re-
sponse, in which higher-level agents reason about and respond to lower-level agents.
Describing the distribution of different levels in the population of agents is a cru-
cial decision. We use the Spike-Poisson specification of this distribution [Wright and
Leyton-Brown 2013].

Definition 2.2 (Spike-Poisson QCH model). Let Poisson(m; τ) denote a Poisson dis-
tribution with mean τ evaluated at index m. Let

g(m) =

{
ε+ (1− ε)Poisson(m; τ) if m = 0,

(1− ε)Poisson(m; τ) otherwise.

Let QBRi(s−i;λ) denote i’s quantal best response to the strategy profile s−i, given
precision parameter λ. Let

πi,0:m =

m∑
`=0

g(`)
πi,`∑m

`′=0 g(`′)

be the “truncated” distribution over actions predicted for an agent conditional on that
agent’s having level 0 ≤ ` ≤ m. Now we can define πi,m ∈ ∆(Ai), the distribution over
actions predicted for an agent i with level m by the Spike-Poisson QCH model:

π∅
i,0(ai) = |Ai|−1

πi,m(ai) = QBRi(πi,0:m−1;λ).

Notice that π∅
i,0 is just the uniform distribution; that is, level-0 agents randomize uni-

formly among their actions. In Section 3, we will construct more plausible definitions
of level-0 behavior by replacing π∅

i,0 with richer distributions. This baseline model thus
has three parameters: the mean of the Poisson distribution τ , the spike probability ε,
and the precision λ. The overall predicted distribution of actions is a weighted sum of



Table I. Our datasets; units are in expected value.

Name Source Games n Units

SW94 Stahl and Wilson [1994] 10 400 $0.025
SW95 Stahl and Wilson [1995] 12 576 $0.02
CGCB98 Costa-Gomes et al. [1998] 18 1566 $0.022
GH01 Goeree and Holt [2001] 10 500 $0.01
CVH03 Cooper and Van Huyck [2003] 8 2992 $0.10
HSW01 Haruvy et al. [2001] 15 869 $0.02
HS07 Haruvy and Stahl [2007] 20 2940 $0.02
SH08 Stahl and Haruvy [2008] 18 1288 $0.02

COMBO8 400 samples from each dataset above 111 3200 $0.01

RPC09 Rogers et al. [2009] 17 1210 $0.01

the distributions for each level:

Pr(ai |G, τ, ε, λ) =

∞∑
`=0

g(`)πi,`(ai).

In previous work, we found that the distributions of levels with the highest posterior
probability tended to have large proportions of level-0 agents (the “spike”) and level-2
agents, but very few level-1 agents [Wright and Leyton-Brown 2012, 2013]. (We also
found that the number of higher-level agents decreased steadily after level 2). The
spike-Poisson specification allows us to represent a distribution with such a shape
much more closely than the more common Poisson distribution, which is unimodal.
At the same time, it requires only two parameters, unlike a categorical distribution,
which requires a number of parameters linear in the maximum level.

2.2. Data
We analyzed data from the nine experimental studies summarized in Table I. In Stahl
and Wilson [1994] experimental subjects played 10 normal-form games, where every
point represented a 1% chance (per game) of winning $2.50. In Stahl and Wilson [1995],
subjects played 12 normal-form games, where each point of payoff gave a 1% chance
(per game) of winning $2.00. In Costa-Gomes et al. [1998] subjects played 18 normal-
form games, with each point of payoff worth 40 cents. However, subjects were paid
based on the outcome of only one randomly-selected game. Goeree and Holt [2001]
presented 10 games in which subjects’ behavior was close to that predicted by Nash
equilibrium, and 10 other small variations on the same games in which subjects’ be-
havior was not well-predicted by Nash equilibrium. The payoffs for each game were de-
nominated in pennies. We included the 10 games that were in normal form. In Cooper
and Van Huyck [2003], agents played the normal forms of 8 games, followed by ex-
tensive form games with the same induced normal forms; we include only the data
from the normal-form games. Payoffs were denominated in 10 cent units. In Haruvy
et al. [2001], subjects played 15 symmetric 3× 3 normal form games. The payoffs were
“points” representing a percentage chance of winning $2.00 for each game. In Haruvy
and Stahl [2007], subjects played 20 games, again for payoff points representing a per-
centage chance of winning $2.00 per game. Stahl and Haruvy [2008] present new data
on 15 games that contain strategies that are dominated in ways that are “obvious” to
varying degrees, again for percentage chances of winning $2.00 per game. Finally, in
Rogers et al. [2009], subjects played 17 normal-form games, with payoffs denominated
in pennies.



We represent each observation of an action by an experimental subject as a pair
(G, ai), where ai is the action that the subject took when playing as player i in game G.
All games had two players, so each single play of a game generated two observations.

Rather than analyze each dataset separately, we combined eight2 of them into a sin-
gle omnibus dataset (COMBO8) containing observations from each source dataset. To
ensure that each was equally represented, despite their differences in size, we included
exactly 400 observations from each dataset (sampled uniformly without replacement).
We also renormalized all games so that their payoffs were in expected cents. This was
important because the precision parameter for quantal response is not scale invari-
ant: the correct value of λ can differ depending upon the units in which payoffs are
expressed.

2.3. Methods
To evaluate a given model’s performance, we performed 10 rounds of 10-fold cross-
validation, following our past work [Wright and Leyton-Brown 2010]. Specifically, for
each round, we randomly divided the dataset into 10 parts. For each of the 10 ways
of selecting 9 parts from the 10, we computed the maximum likelihood estimate of
the model’s parameters based on those 9 parts, using the Covariance Matrix Adapta-
tion Evolution Strategy (CMA-ES) algorithm [Hansen and Ostermeier 2001]. We then
determined the log likelihood of the remaining part given the prediction. We call the
average of this quantity across all 10 parts the cross-validated log likelihood. The av-
erage (across rounds) of the cross-validated log likelihoods is distributed according to a
Student’s-t distribution [see, e.g., Witten and Frank 2000]. We compared the predictive
power of different behavioral models by comparing the average cross-validated log like-
lihood of the dataset under each model. We say that one model predicted significantly
better than another when the 95% confidence intervals for the average cross-validated
log likelihoods do not overlap.

We use likelihood as our scoring criterion because we are attempting to measure how
closely the predicted distribution of play matches an underlying “true” distribution of
play, based on a finite sample from this distribution. Although “accuracy” has a more
intuitive interpretation, it has the undesirable property of only being sensitive to the
most likely action; in contrast, we are interested in accurately modeling the entire
distribution of play.

In Section 4.3, we analyze posterior distributions over the parameters of the mod-
els we consider. To compute these posteriors, we used a sequential Monte Carlo tech-
nique called annealed importance sampling, or AIS [Neal 2001]. AIS allows for effi-
cient sampling from high dimensional distributions, similarly to Markov Chain Monte
Carlo (MCMC) techniques. We used the proposal distributions and hyperparameters
described in Wright and Leyton-Brown [2012]. We used the following uninformative
prior distributions for the parameters of the QCH model and weighted linear meta-
model (see Section 3):

ε ∼ U [0, 1]

τ ∼ U [0, 20]

λ ∼ U [0, 20]

w ∼ Dirichlet(1, 1, 1, 1, 1, 1)

The Dirichlet distribution on the weight vector amounts to a uniform distribution over
all coefficient vectors that sum to 1. The prior distribution for λ warrants particular at-

2We held out the RPC09 dataset to test whether we had overfit the COMBO8 data during model selection
(see Section 2.3). We chose RPC09 for this task because it contains the widest variety of game types.



tention. A more conventional choice of prior for a scaling parameter such as λ would be
an exponential distribution. We chose to use a uniform distribution with wide support
instead, to ensure that we would not privilege smaller values of λ, as the maximum
likelihood fits for λ on COMBO8 tended to be rather small. The posterior medians were
essentially identical to the maximum likelihood fits in the end, even with a prior that
placed most of its weight on values above 1.

We performed our experiments on the hermes cluster of WestGrid (www.westgrid.ca),
which consists of 2112 cores, each having either 2GB or 4GB of RAM. In total, the
results reported in this paper required approximately 16 CPU years of machine time,
primarily for model fitting.

3. LEVEL-0 META-MODEL
In this section we present a “meta-model” for computing a distribution of play for level-
0 agents. This model can be applied to any normal form game, without relying on any
game-specific domain expertise. We settled on this model after exploring a much larger
range of other models not described here; see Appendix A for details. The model is
based on features computed for each of an agent’s action. We first describe each feature,
and then describe the way that we combine them to obtain a level-0 prediction.

3.1. Level-0 Features
The core idea of our work is that nonstrategic behavior need not be uniform. How
then might a nonstrategic agent behave? We argue that agents consider simple rules
(“features”) that recommend one or more actions. (Thus, all of our features have range
{0, 1}.) To be eligible for inclusion in our level-0 specification, we required that rules not
depend on beliefs about the actions of other agents in a game. The rules we propose be-
low depend only on a game’s payoff structure. Like the meta-model itself, we obtained
this list by exploring a much larger space of candidate features (many of which took
on real rather than Boolean values); again, see Appendix A for details.

For each feature, we briefly describe its motivation and then formally define it. Many
of our features have been investigated in both the classical and behavioral game theory
literature in other contexts. In particular, the maxmax payoff, maxmin payoff, and
maxmax efficiency features correspond to the Optimistic, Pessimistic, and Altruistic
nonstrategic types in Costa-Gomes et al. [2001].

3.1.1. Maxmin payoff. A maxmin action for agent i is the action with the best worst-case
guarantee. That is,

fmaxmin(ai) =

{
1 if ai ∈ arg maxa′i∈Ai

mina−i∈A−i
ui(a

′
i, a−i),

0 otherwise.

This is the safest action to play against hostile agents.

3.1.2. Maxmax payoff. In contrast, a maxmax action for agent i is the action with the
best best case. That is,

fmaxmax(ai) =

{
1 if ai ∈ arg maxa′i∈Ai

maxa−i∈A−i ui(a
′
i, a−i),

0 otherwise.

An agent who wishes to maximize his possible payoff will play a maxmax action.

3.1.3. Minimax regret. Savage [1951] proposed the minimax regret criterion for making
decisions in the absence of probabilistic beliefs. In a game theoretic context, it works as
follows. For each action profile, an agent has a possible regret: how much more utility
could the agent have gained by playing the best response to the other agents’ actions?



Each of the agent’s actions is therefore associated with a vector of possible regrets,
one for each possible profile of the other agents’ actions. A minimax regret action is an
action whose maximum regret (in the vector of possible regrets) is minimal. That is, if

r(ai, a−i) = ui(ai, a−i)− max
a∗i∈Ai

ui(a
∗
i , a−i)

is the regret of agent i in action profile (ai, a−i), then

fmmr(ai) =

{
1 if ai ∈ arg mina′i∈Ai

maxa−i∈A−i
r(ai, a−i),

0 otherwise.

3.1.4. Fairness. A concern for the fairness of outcomes is a common feature of human
play in strategic situations, as has been confirmed in multiple behavioral studies, most
famously in the Ultimatum game [Thaler 1988; Camerer and Thaler 1995]. Let the
unfairness of an action profile be the difference between the maximum and minimum
payoffs among the agents under that action profile:

d(a) = max
i,j∈N

ui(a)− uj(a).

Then a “fair” outcome minimizes this difference in utilities. The fairness feature selects
every action which is part of a minimally unfair action profile.

f fair(ai) =

{
1 if ai ∈ arg mina′i∈Ai

mina−i∈A−i
d(a′i, a−i),

0 otherwise.

3.1.5. Efficiency. A final reason that a nonstrategic agent might find an action profile
desirable is that it produces the best overall benefit to the collection of agents. The
efficiency feature selects every action that is part of some action profile that maximizes
the sum of utilities:

f efficient(ai) =

{
1 if ai ∈ arg maxa′i∈Ai

maxa−i∈A−i

∑
j∈N uj(a

′
i, a−i),

0 otherwise.

3.2. Weighted Linear Meta-Model
The model of level-0 behavior that we recommend is a linear weighting of “informative”
features for a game. We call a feature informative when it is able to distinguish at least
one pair of actions.

Definition 3.1 (Informative features). A feature f is informative in a gameG if there
exists i ∈ N and ai, a

′
i ∈ Ai such that f(ai) 6= f(a′i). Let I be an indicator function for

informative features:

I(f) =

{
1 if ∃i ∈ N, ai, a′i ∈ Ai : f(ai) 6= f(a′i),

0 otherwise.

The weighted linear specification of level-0 behavior produces a prediction over ac-
tions for a given agent by taking a weighted sum of feature outputs for each action,
and then normalizing to produce a distribution.

Definition 3.2 (Weighted linear level-0 specification). Let F be a set of features
mapping from an action to {0, 1}.3 For each feature f ∈ F , let wf ∈ [0, 1] be a weight

3We restrict attention to binary features, but this model is easily extended to real-valued features.
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Fig. 1. Average likelihood ratios of model predictions to random predictions across different models. The
“efficient frontier” of models from our past work [Wright and Leyton-Brown 2012] is indicated in green; the
rightmost “uniform L0” datapoint is QCH5, the best-performing model from that work. The solid black dot is
the weighted linear meta-model that we describe in later sections. The open circles are the weighted linear
model using different subsets of features. The blue X’s are alternative meta-models that we considered;
observe that many of them perform worse than the uniform meta-model.

parameter. Let
∑

f∈F wf ≤ 1, and let w0 = 1 −
∑

f∈F wf . Then the weighted linear
level-0 specification predicts the following distribution of actions for level-0 agents:

πF
i,0(ai) =

w0 +
∑

f∈F wfI(f)f(ai)∑
a′i∈Ai

w0 +
∑

f∈F wfI(f)f(a′i)
.

Notice that πF
i,0 reduces to the uniform distribution π∅

i,0 when no features are informa-
tive.

Given an iterative model, we can construct an extended iterative model by replacing
its level-0 specification. For example, we extended the Spike-Poisson QCH model of
Section 2.1 by replacing π∅

i,0 with πF
i,0, setting F to be the set of features presented in

Section 3.1.

4. RESULTS
In this section we present the results of our experiments. First, we justify our choice
of the weighted linear meta-model by illustrating the outcome of our model selection
procedure. Second, we more deeply investigate the performance of our selected level-0
meta-model when combined with multiple iterative models. Finally, we interpret the
values we fit for the weighted linear meta-model’s parameters.



4.1. Model Selection
In our attempts to design a highly predictive level-0 meta-model, we explored a wide
range of alternative meta-model and feature specifications (see Appendix A). This sec-
tion describes the range of empirical performance we obtained across the different
meta-models we investigated, and thus helps to explain our focus on the weighted lin-
ear meta-model. We also investigated variants of this meta-model, evaluating all sub-
sets of our five features. In the end, we selected weighted linear with all five (binary)
features.

Our methodology for model selection was as follows. We evaluated candidate meta-
models in terms of their cross-validated likelihood on the COMBO8 dataset when used
in conjunction with the spike-Poisson QCH model. We used cross-validation to guard
against overfitting the parameters of the models that we evaluated. To ensure that our
results were not skewed because we had selecting a model that was overly specialized
to a single dataset or because we had overfit this dataset via model selection itself, we
also held out one dataset (RPC09) for final testing, which we did not consider until the
experiments reported in Section 4.2.

Figure 1 shows the performance of all the models that we considered. The x-axis
indicates the total number of parameters when the given meta-model is combined with
(3-parameter) spike-Poisson; the y-axis indicates the cross-validated performance of
the model on COMBO8. The solid black datapoint is the 8-parameter weighted linear
meta-model that we selected. The gray circles are variations on the weighted linear
model (feature subsets). To help give meaning to the likelihood improvement scale,
we also include the performance of four iterative models from the literature, all of
which use uniform level-0 specifications. The green line connects Poisson-CH, spike-
Poisson QCH and QCH5, three models which our past work [Wright and Leyton-Brown
2013] identified as lying on a Pareto frontier trading off complexity with performance.
This allows us to put our dramatic performance improvements using richer level-0
models in the context of earlier improvements: QCH5 achieved less than a factor of
10 better performance than spike-Poisson QCH in exchange for doubling the number
of parameters; in contrast weighted linear improves upon spike-Poisson’s performance
by a factor of 100,000,000.4

We also explored several real-valued versions of our set of features in addition to the
binary valued versions presented in Section 3.1. We were surprised to discover that
they tended to yield worse performance than the same meta-model with binary-only
features.5

4.2. Model Performance
We compared the predictive performance of three iterative models using two different
specifications of level-0 behavior. The results are displayed in Figure 2. The y-axis gives
the average ratio of the cross-validated likelihood of the extended models’ predictions
divided by the likelihood of a uniform random prediction; in other words, each bar is
the factor by which an extended model predicts better than a purely random guess. We
present results for both cross-validation (i.e., testing on held-out data from the same

4In all cases, note that because we consider cross-validated likelihood ratios, we do not need to worry that
more flexible models achieve better performance because they overfit their training data.
5We also explored several features based on the idea that agents may be drawn to “salient” actions for
reasons unrelated to the structure of the game (e.g., based on payoff values’ position in the game matrix or
number of digits). Some of these features did prove useful, but we nevertheless omitted them from our final
analysis. This was because we wanted to focus on meta-models that were completely general, in the sense
of being based entirely on the mathematical structure of the game, without requiring details of the game’s
presentation; and indeed, in our dataset it was not always clear how a given game had been presented to
subjects, making the features ambiguous.
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(a) Cross-validated performance on COMBO8.
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(b) Cross-validated performance on RPC09.

Fig. 2. Average likelihood ratios of model predictions to random predictions, with 95% confidence intervals.
Results are shown for three different iterative models (Poisson cognitive hierarchy [Camerer et al. 2004],
level-k [Costa-Gomes et al. 2001], and spike-Poisson quantal cognitive hierarchy [see Section 2.1 and Wright
and Leyton-Brown 2013]) using two different level-0 meta-models (uniform randomization and weighted
linear (Section 3.2)).

distribution used to train the model) and RPC09, a dataset that we did not use for any
purpose—including the evaluation of different candidate meta-models and features—
before generating the figure presented here. Observe that while the differences seem
smaller on RPC09, this is largely an artifact of the way likelihood ratios are computed:
RPC09 has about half as many data points as COMBO8, and all things being equal,
likelihood differences grow with dataset size. Notice also that the difference between
the three models under a uniform level-0 specification are small on RPC09; this may
indicate that there is just less room for improvement in this dataset for a more sophis-
ticated model to extract.

The weighted linear model used all five features productively, but two of them had
much higher weights (see Section 4.3). Nevertheless, omitting the remaining three
features consistently worsened prediction performance.

The weighted linear meta-model achieved the best performance when used to aug-
ment each of the three iterative models. The worst-performing models benefited dis-
proportionately from the weighted linear meta-model, especially on COMBO8. Spike-
Poisson QCH performed decisively better than the other two models under a uniform
level-0 meta-model, but the three models had much more similar (and improved) per-
formance under a weighted linear meta-model.

4.3. Parameter Analysis
In this section, we examine and interpret the posterior distributions for the spike-
Poisson model’s parameters under the two different level-0 specifications, following
methodology described in our past work [Wright and Leyton-Brown 2012]. Here we
concentrate on the COMBO9 dataset; our findings for RPC09 were qualitatively simi-
lar except for one exception, noted below.

Figure 3 shows the marginal posterior distribution for each level in the population
(up to level 3), for both the weighted linear meta-model and the uniform meta-model.
There were two broad patterns. The first was a striking shift of probability mass from
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Fig. 3. Marginal cumulative posterior distributions of levels of reasoning in the COMBO8 dataset, for spike-
Poisson QCH with weighted linear and uniform meta-models.

higher-level agents to level-0 agents under the weighted linear meta-model; the me-
dian posterior estimate for the proportion of level-0 agents was 0.44, compared with
0.33 for the uniform meta-model. For every nonzero level, the proportion estimated by
the weighted linear meta-model was lower than that estimated by the uniform meta-
model. As described in the introduction, there are two ways that an improved level-0
meta-model could improve an iterative model’s predictions. First, it could simply de-
scribe the actions of level-0 agents more accurately. Second, it could also allow the
model to more accurately describe the actions of higher-level agents, because higher-
level agents form their strategies by best responding to the strategies of lower-level



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

c
u

m
u

la
ti
v
e
 p

ro
b
a

b
ili

ty

feature weight

fairness
maxmax
maxmin

regret
total

Fig. 4. Marginal cumulative posterior distributions over weight parameters of the weighted linear meta-
model, for spike-Poisson QCH on the COMBO8 dataset.

agents, ultimately “grounding out” in a best response to the level-0 strategy. The large
increase in the estimated number of level-0 agents emphasizes the importance of un-
derstanding these agents’ behavior, both for predicting their actions and for predicting
the behavior of the agents who respond to them.

The second pattern was a much sharper identification of the posterior estimated
proportions. The vertical portions of the cumulative distributions represent modes of
the density function. Each level has a very sharp modal estimate under the weighted
linear meta-model. In contrast, the marginal distributions under the uniform meta-
model, although roughly unimodal, do not have pronounced modes. Put another way,
the data argues strongly for much more specific estimates under the weighted linear
meta-model than under the uniform meta-model.

Figure 4 shows the marginal posterior distribution for the weights of the linear
weighted meta-model on the COMBO8 dataset. As with the distribution over levels,
the posterior distributions on the weight parameters had very tall modes and narrow
support, indicating that the data argued strongly for specific ranges of parameter val-
ues; the fairness parameter seems to have two modes of differing heights, but both
of these modes were in qualitatively the same range of the space (i.e., much larger
than any of the other features). The fairness parameter had by far the highest median
posterior weight; the remaining weight was split approximately evenly among the uni-
form noise, maxmax payoff, and maxmin payoff features. While both minimax regret
and efficiency had very small median posterior weights, we observed a substantial
performance degradation during model selection when we omitted them altogether.

The precision parameter, λ, was stable across both meta-models, with average fitted
values of 0.24 ± 0.001 for the uniform meta-model and 0.19 ± 0.0001 for the weighted-
linear meta-model. This parameter was the only one for which we saw qualitatively dif-
ferent values on RPC09. On that distribution λ took very large values (60 and above),
which again occurred across both meta-models.



5. RELATED WORK
Almost every study that employs iterative reasoning models of either the level-k or
cognitive hierarchy types assumes a uniform distribution of play for level-0 agents.
However, there are a few exceptions. Crawford and Iriberri [2007b] specified truth-
telling as the single salient action in first-price auctions. Crawford and Iriberri [2007a]
manually designated certain actions as “salient” (based on visual features such as “left-
most”) in a hide-and-seek game. They then estimated an iterative model with a level-0
specification in which level-0 agents play salient actions, with the strengths of each
action’s salience estimated under the assumption that no agent truly plays a level-0
distribution. Arad and Rubinstein [2009] specified a single action of reinforcing all bat-
tlefields equally in a Col. Blotto game as the sole level-0 action. Arad and Rubinstein
[2012] specified the highest possible request as the level-0 action in a money-request
game where players receive the amount of money they request, but also receive a rel-
atively large bonus for requesting exactly 1 shekel less than the other player. Arad
[2012] manually specified two “anchor” strategies for a Col. Blotto-like game in which
players simultaneously assign four representatives to four separate contests in order
of the representatives’ ability.

In spite of the crucial dependence of iterative models upon the specification of the
level-0 distribution, few studies have empirically investigated level-0 play. Agranov
et al. [2010] incentivized subjects to choose an action quickly (and then to revise it
after thinking) by imposing a randomized time limit when playing the beauty-contest
game of Nagel [1995]. They hypothesized that early actions represent level-0 choices
and that later actions represent higher-level choices. Based on this assumption, they
found that level-0 behavior did not differ significantly from a uniform distribution. In
contrast, Burchardi and Penczynski [2012] incentivized players to reveal their reason-
ing by allowing a one-time simultaneous exchange of messages between teammates
playing a beauty-contest game. Teams of two simultaneously sent each other a sin-
gle message containing arguments in favor of a given action, and then simultaneously
chose an action, with the team’s action being chosen randomly from the two choices.
Burchardi and Penczynski then classified each argument according to level of reason-
ing, and extracted the level-0 behavior from both level-0 and higher-level arguments.
They found that level-0 play was significantly different from uniform. Intriguingly,
they also found that the level-0 behavior hypothesized by higher-level players was very
similar to the level-0 behavior that was actually proposed.

6. CONCLUSIONS
Our main result is a specification of level-0 behavior that dramatically improves the
performance of each of the iterative models we evaluated—level-k, cognitive hierarchy,
and quantal cognitive hierarchy. This specification depends only upon the payoffs of
the game, and is thus generally applicable to any domain, even ones in which human
intuition gives little guidance about the level-0 specification. A linear weighting of five
nonstrategic features (maxmax payoff, maxmin payoff, minmin unfairness, minimax
regret, and maxmax payoff sum) improved all three models’ performances to the extent
that it nearly erased differences between the original models. Omitting any of the
features degraded the performance of this model, even though the median posterior
weights of some features were much larger than others.

The conventional wisdom in economics is that level-0 agents exist only in the minds
of higher level agents; that is, that a level-0 specification acts solely as a starting point
for higher level agents’ strategies. Our results argue against this point of view: the best
performing model estimated that over half of the agents were level-0. These results are
strong evidence that nonstrategic behavior is an important aspect of human behavior,



even in strategic settings. Further refining our understanding of nonstrategic behavior
is an important direction for future work, both in terms of the factors that are consid-
ered by nonstrategic agents, and in terms of the details of incorporating these factors
into predictive behavioral models.
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A. OTHER MODELS AND FEATURES
In this appendix we provide a brief overview of some of the different functional forms
and features that we rejected in favor of the weighted linear meta-model.

Logit and log link functions. In addition to the weighted linear form, we also investi-
gated generalized linear models with a logit link function—i.e., we computed weighted
linear sums and then normalized over the exponentials of the sums. We also looked
at the opposite: normalizing over the log of the sums. The rationale for the logit link
was that, as with quantal response, broadly similar sums ought to have broadly simi-
lar probabilities. The rationale for the log translation was that, as values grow large,
larger differences would be required to yield the same impact on level-0 probabilities.
We used these functional forms particularly for non-binary feature specifications, in
which an “almost” maxmax payoff action might be expected nearly as often as the
maxmax payoff action.

Ordered veto. In an attempt to reduce the number of parameters required to specify
a weighted linear meta-model, we deeply investigated a family of models that we refer
to as “ordered veto”. In this specification, a single weight is learned for a fixed, ordered
list of features. The prediction of the first informative feature (in the sense described
in Section 3.2) is combined with the uniform prediction according to the single weight
to produce the level-0 prediction.

Using the ordered veto level-0 specification adds only a single parameter (w1) to any
iterative model. It is also more cognitively plausible, as multiple behavioral studies
have proposed that agents attempt to simplify decision tasks by searching for a deci-
sion that can be justified by a single attribute comparison without the need for explicit
tradeoffs [e.g., see Simonson 1989; Ariely and Wallsten 1995]. The optimal feature set
for ordered veto contained only two features (fairness and maxmax payoff). Although
the ordered veto model yielded incremental improvements to prediction performance
over the uniform-random meta-model, we still obtained substantially worse perfor-
mance than that of the linear meta-model.

Veto voting. The fact that the optimal feature set for ordered veto contains only two
features was surprising to us; for the weighted linear meta-models, adding a new ele-
ment to the feature set always improved performance. On the theory that there must
be information in the additional features as well, we modified the ordered veto model
as follows. First, divide the features into two sets: the veto features, and the voting
features. Predict using the first informative veto feature, as in ordered veto. If neither
of the veto features is informative, take an average among the voting features.

Naı̈ve Bayesian. We evaluated two specifications of a Bayesian model, in which we
conditioned on features of an action to compute the probability that a level-0 agent
would play the action. If an action had a feature, its probability would be adjusted
upward by a parameterized factor. The two specifications coincided for binary features,
but differed for real valued features.

Informativeness. In addition to binary informativeness, which can only be applied to
binary features, we evaluated two other approaches. The first was to omit informative-
ness checks. This led to serious degradations in performance when used with binary
features. The second was to generalize the notion of informativeness. We attempted
to capture the degree to which a feature distinguished among actions; we measured
this degree of distinction by the Shannon entropy of the (normalized) distribution of
feature values among the actions.



Soft features. The binary features indicate whether a given action maximizes or min-
imizes a particular quantity (e.g., maximum regret, minimum payoff). Rather than use
binary features indicating whether an action attains an extreme value of these quanti-
ties, we also evaluated features that used the quantities directly. Another real-valued
version of the features was a logit translation, which was intended to express how
likely an agent would be to believe that the action attained the extreme value of the
quantity (e.g., had the best best case among all the actions) under a particular error
structure.

Salience features. In addition to the features that we chose, we also evaluated fea-
tures that aimed to capture an action’s “salience”; that is, how easily the action would
come to an agent’s attention, based on the way in which it had been presented. Many
of these features broadly performed well, but in the interests of a more generally ap-
plicable model,we eliminated them in order to focus on features based solely on the
strategic structure of the game. We evaluated the following.

(1) “First” action: The “first” action is the visually first item presented to the experi-
mental subject; in matrix games, this is the topmost action for the row player and
the leftmost action for the column player. Empirically there is evidence that the
first element of a set is more available to an agent for processing.

(2) Round numbers: Actions that had a payoff ending in 0 were flagged by this fea-
ture, on the theory that round numbers are more focal. There were two variations
depending on whether other agents’ payoffs were considered or not.

(3) Digit count: Actions that had payoffs with unusual numbers of digits (longer or
shorter) were flagged by this feature. There were two variations depending on
whether other agents’ payoffs were considered or not.


