Mulitagent Reinforcement Learning in Stochastic
Games with Continuous Action Spaces

Albert Xin Jiang
Department of Computer Science, University of British Columbia
jlang@cs.ubc.ca

April 27, 2004

Abstract

We investigate the learning problem in stochastic games with continu-
ous action spaces. We focus on repeated normal form games, and discuss
issues in modelling mixed strategies and adapting learning algorithms in
finite-action games to the continuous-action domain. We applied variable
resolution techniques to two simple multi-agent reinforcement learning al-
gorithms PHC and Minimax(Q. Preliminary experiments shows that our
variable resolution partitioning method is successful at identifying im-
portant regions of the action space while keeping the total number of
partitions low.

1 Introduction

Stochastic games (SGs) has been used as a framework to study the multiagent
learning problem, where an agent tries to learn a policy in the presence of other
agents. Stochastic games are a natural extension of Markov decision processes
(MDPs) to the multiagent scenario. Reinforcement learning (RL) [KLM96] has
been successful at finding optimal policies in MDPs, and has been used as basis
for learning in stochastic games.

Researchers has proposed quite a few learning algorithms for SGs, for exam-
ple MinimaxQ [Lit94], PHC [BV01], IGA [SKMO00] and HyperQ [Tes03]. These
algorithms all assume that the set of actions available to agents is finite. In this
paper, we investigate the problem of learning in SGs with continuous action
spaces. In many multiagent domains such as Robot Soccer and some scenarios
in economics, agents need to choose from a continuum of actions.

Compared with SGs with finite action sets, continuous action SGs are much
more complex because agents have infinite number of choices. But in most of
domains involving continuous actions, similar actions tend to produce similar
effects. This allows us to use approximation techniques: actions that generate
similar effects can be grouped together as one action. This also allows us to

generalize when learning: information we have learned about one action can be
generalized to similar actions.

In this paper, we concentrate our attention to a special class of SGs: re-
peated normal form games. We discuss methods to model mixed strategies, and
highlight issues in adapting RL algorithms for finite-action stochastic games
to the continuous-action domain. We then adapted two simple RL algorithms
(PHC and MinimaxQ) using one of our proposed variable-resolution techniques.
In Section 2 we introduce the theory on normal form games of finite and con-
tinuous action spaces. Section 3 defines stochastic games and repeated games.
Section 4 discusses issues on designing a reinforcement learning algorithm for
repeated games, and describes our modified PHC and MinimaxQ algorithms.
Section 5 describes our experiments and results. Section 6 discusses future work
and gives concluding remarks.

2 Normal Form Games

Normal form games has been well studied in non-cooperative game theory. A
normal form game is a tuple (n, A,U), where n is the number of agents, A =
Aj x---x A, and A; is the set of actions available to agent i, U = Uy x - -- x U,
and U; : A — R is the payoff to agent i. Actions a; € A; are also called pure
strategies. a = (a1 ...a,) € A is called a pure strategy profile. Let a_; € A_;
denote the tuple of actions of agents other than 7. Then we can write a as the
tuple (a;,a_;). A two-person game is called zero-sum if U;(a) + Uz(a) = 0 for
all a.

If A; are finite sets, a mized strategy p; of player ¢ assigns a probability to
each pure strategies of agent ¢. A mixed strategy profile yu = (1 ... i) specifies
a mixed strategy for each player. p can also be written as (u;, p—;), where pu_;
denote the tuple of mixed strategies of agents other than i. Given a mixed
strategy profile u, the expected payoff for player ¢ is

n

Eipw)= > Uila) []wia) (1)

a=(ai...an)EA j=1

where 1j(a;) denotes the probability assigned to a; by j’s mixed strategy.

A mixed strategy u; is a best response to p—; if E; (i, pi—;) > Fi(wi’y p—i), Vg’
1 is a Nash equilibrium if each p; in p is a best response to the other agents’
mixed strategies. All finite games have at least one Nash equilibrium [Nas50].

For normal form games with continuous action space, A; C R™. We gen-
erally make the assumption that A; be non-empty and compact'. A mixed
strategy ; is then a probability distribution on A;. Analogously we define ex-
pected payoff to be Ei(u) = [Ui(a)d([];—; pj(a;)). Best response and Nash
equilibrium are defined similarly.

The existence of Nash equilibrium in continuous action normal form games
depends on the form of the payoff function U;(a). Glicksberg proved that if U;

Lcompactness in R™ means that the set is closed and bounded

are continuous, there exists a mixed strategy Nash equilibrium [Gli52]. Cer-
tain classes of games with some discontinuities in payoff functions also have
Nash equilibria. These equilibria can be approximated by the equilibria of a
series of finite games [DM86, Sim87]. However, there exist games with simple
piecewise-continuous payoffs that don’t have equilibrium. Section 5.1.3 has a
simple example of such games.

3 Stochastic Games and Repeated Normal Form
Games

A stochastic game is a tuple (n, S, A, T, R), where n is the number of agents, S
is a set of states, A; is a set of actions available to ¢, T is a transition function
Sx AxS —]0,1], and R; is a reward function: S x A — R. The goal of the
game is to maximize the discounted future reward with discount factor ~.

SGs are combinations of normal form games and MDPs. In each state s,
agents play a normal form game with payoff R;(s,a), and the transition proba-
bilities for the next state is determined by their joint actions.

In general, a mixed strategy in a SG may depend on the entire history of
the game. Formally, u; : (S x A)N — D(A;), where N is the set of natural
numbers and D(4;) is the set of probability distributions on A;. A stationary
policy is a special kind of mixed strategy that only depends on the current state:
pi S — D(A;).

Just as in normal form games, we can define best response for i given y_;
to be a mixed strategy that achieves maximum payoff against pu_;, and Nash
equilibrium to be a mixed strategy profile in which each player is playing her
best response.

Repeated normal form games are a special class of SGs. In a repeated game,
the same normal form game (called the stage game) is played repeatedly. This is
equivalent to an SG with only one state and with the state transition function
pointing to itself. A stationary policy profile that plays a Nash equilibrium
strategy profile in the normal form game, is also a Nash equilibrium in the
repeated game. However, there exist Nash equilibria of the repeated game that
consist of non-stationary strategies.

4 Reinforcement Learning in Repeated Normal
Form Games

4.1 Problem Statement

In this paper, we investigate the learning problem in repeated games with 1-
dimensional continuous action space A; = [0,1]. We assume the payoffs R; are
bounded and piecewise-continuous?. In other words, the set of discontinuities

2This does not guarantee the existence of Nash equilibrium in the normal form game. See
Section 5.1.3.

is of measure zero. This is generally a realistic assumption. We control an
agent, in an environment of other agents. What we can observe depends on the
particular problem. We should at least be able to observe all actions and our
own payoff after each stage game.

The goal of the learning problem is to maximize our agent’s payoff. Most
previous approaches to multi-agent reinforcement learning also require the algo-
rithm to converge to Nash equilibrium in self-play. We agree with [SPGO03] that
convergence to Nash equilibrium is not important in the multiagent learning
problem on SGs. Although Nash equilibrium is a central concept in game the-
ory, in the learning problem we do not assume agents to be perfectly rational.
The other agents may be learning, or may be just playing some unknown mixed
strategy. Our goal is to try to play the best response to other agents’ mixed
strategies.

A successful learning algorithm should achieve the following;:

e It should be able to adapt to the other agents’ changing strategies.
e It should be able to play a mixed strategy.

o If the other agents converge to a stationary policy p_;, our agent’s strat-
egy should converge to the best response to p—;. This is called Hannan
consistency in game theory literature.

4.2 Overall Approach

A (stationary) mixed strategy is a probability distribution, which is a function
on [0,1]. This can be viewed as a vector of infinite dimensions. To make the stor-
age and computation of mixed strategies possible, we have to model the space
of probability distributions on [0, 1] using a parameterized function pu;(a;|6;),
where 6; is a vector of finite dimension. We observe that 6; is similar to the
mixed strategy probabilities in finite-action games: both are finite-dimensional
vectors that determines a player’s mixed strategy. This means that we can try to
adapt existing RL algorithms for finite-action SGs that explicitly model mixed
strategies, and use them to use ; instead. Some examples of such algorithms
are Minimax@Q [Lit94], PHC [BV01], IGA [SKMO00] and HyperQ [Tes03].

4.3 Modelling Mixed Strategies

Mixed strategies are used in at least two aspects of an RL algorithm:

1. The RL algorithm may explicitly model other agents’ mixed strategies,
based on observations of their actions. An adequate mixed strategy model
in this context has to support efficient incremental updates based on new
data.

2. In each iteration of the normal form game, the RL algorithm has to com-
pute our agent’s mixed strategy, and choose an action by sampling from

this distribution. Thus our model of mixed strategy should be computa-
tionally easy to sample from.

Following are some possible ways to model mixed strategies. The best model
may depend on the payoff function and the RL algorithm used.

1. Rectangles.
This is a direct partitioning of domain [0,1] into intervals. Within each
interval, the probability density is constant. The probability density func-
tion is shaped like combinations of rectangles. This essentially discretizes
the continuous-action normal form game into a finite-action game. Sam-
pling from the distributions is straightforward.

There are several ways of partitioning [0, 1]. The simplest way is to parti-
tion it into k£ equal-sized intervals. 8; would be a k-dimensional vector of
probability densities in each interval. This is very easy to implement, and
then most RL algorithms can be applied directly without any change.

However, this partition scheme is very inefficient: this gives all parts of the
action space equal resolution, while actually some parts of action space
may require more resolution that others. We want the dimension of 6; as
small as possible, because higher dimensional vectors make the computa-
tion in the RL algorithms much more difficult. Therefore, we really want
a partition that can have variable resolution.

A possible solution is to maintain the partitions as leaves of a kd-tree.
When we require more resolution at an interval, we bisect the interval
and make the new intervals its left and right child. When we want less
resolution in some areas, we can merge some intervals to their parents.
This is similar to the approach used in Moore’s Parti-Game algorithm
[Mo094] for partitioning state space in a single-agent environment.

2. Mixture of Gaussians.
If the payoff function is smooth, it makes sense to have mixed strategies
that are smooth. Let N (u, o) represent a Normal distribution with mean u
and standard deviation 0. We can represent a mixed strategy as a mixture
of Gaussians: »__b:.N (uc,0.). It is not easy to normalize the distribution
in [0, 1], but we can sample from it without normalization. The locations
and widths (i.e. u. and o.) of the Gaussians specify a soft partition of
the domain. 6; corresponds to the vector of coefficients b.. When we want
more resolution in a certain area, we can add a Gaussian to the mixture.

4.4 Adapting Reinforcement Learning Algorithms: Gen-
eral Issues

If we are using kd-trees or mixture of Gaussians to model mixed strategies, we
will have to modify the existing RL algorithms to deal with these data structures.

Our RL algorithm also need to carry out an additional task: to decide which
parts of the action space need more resolution. If we are modelling our op-
ponents’ strategy, an simple approach would be: increase the resolution at an

interval when the observed frequency distribution of actions within this interval
is significantly non-uniform. If we are trying to compute our own mixed strat-
egy, the criteria for increasing / decreasing resolution may depend on the details
of the particular RL algorithm. A general heuristic could be: if by increasing
the resolution, our computed best strategy is going to be significantly different
from our strategy at current resolution, we should then increase the resolution.
Similar heuristics can be built for deciding when and where to decrease reso-
lution: if decreasing resolution is unlikely to change our best strategy and our
expected payoff, then it is safe to do so.

We took two simple multi-agent RL algorithms, PHC and MinimaxQ, and
modified them to use variable-resolution partitioning of action space with kd-
trees. Sections 4.5 and 4.6 describes our modified algorithms.

4.5 Variable Resolution PHC

Policy Hill-Climbing (PHC) [BV01] is a simple algorithm based on single-agent
Q-learning. Single-agent Q-learning learns a Q function Q(s,a), which is the
discounted future reward of playing action a at state s, then playing optimally
afterwards.

Suppose our agent is at state s. We should choose action a that maximizes
Q(s,a). After we have played the action a, if we observe reward r and next
state ', the Q function is updated as follows:

Q(s;a) — (1 = a)Q(s,a) + a(r + ymax Q(s', a')) (2)

where a € (0,1] is a learning rate, and « is the discount factor.

PHC is a simple extension of Q-learning to play mixed strategies. In addition
to storing the Q values, the algorithm also maintains the current mixed strategy.
After each Q function update as in Equation 2, the mixed strategy is improved
by increasing the probability that it selects the action with the highest Q value.
For finite-action SGs, PHC is guaranteed to converge to the best response if
the other players are playing stationary strategies, given a suitable exploration
policy.

Now we modify this algorithm to use the variable-resolution partitioning
described in Section 4.3. In the 1-dimensional domain [0,1], a kd-tree is a
binary tree whose leaves are non-overlapping intervals of [0,1]. The leaves of
the binary tree specify a partitioning of [0,1]. See Figure 1(a). We can thus
specify a mixed strategy by specifying the probability mass of each leaf.

In a repeated game, there is only one state, so Q(s, a) becomes Q(a). Since
our action space is continuous, we define the Q values to be the expected future
payoffs on intervals of the action space, rather than on particular actions. The
Q values can be conveniently stored at the leaves of the binary tree.

Now we need to specify when to split an interval and when to merge two
intervals. Recalling our heuristic from Section 4.4, and observing that in PHC
our next mixed strategy is determined by the action that has the maximal Q
value, we specify the following rule for splitting an interval: if by splitting an

0.5, 0.75] [0.75, 1

(a) Top: a partition- (b) The right half of (c) After splitting the

ing of the action space. the right interval has a interval
Bottom: the corre- higher Q value than the
sponding tree. current maximum

Figure 1: Variable Resolution PHC

interval, one of the newly created sub-intervals would have a higher Q value
than the current maximum @Q value, we should then split that interval. We
implement this using the following trick: instead of storing one Q value per leaf
of the tree, we maintain two Q values, one for the left half of the interval and
the other for the right half. Since we sample evenly within each interval when
playing an action, the two halves of an interval would get played with roughly
the same frequency. If the action falls in the left half, we update the Q value for
the left half using Equation 2, and vice versa. We define an interval’s Q value
to be the average of the QQ values from its left and right halves. This way, when
one of the halves have a Q value higher than the current maximum, we split
the interval by creating two child nodes under this node. A similar rule is set
for merging two sibling leaf nodes: if both nodes have Q) values that are at least
a constant T from the maximum Q value, we merge the two nodes into their
parent. Figure 1(b) and 1(c) show an example of splitting.

4.6 Variable Resolution MinimaxQ

Minimax@Q [Lit94] is an extension of Q-learning into two-person zero-sum games.
It learns a Q function that depends on our agent’s action a as well as our
opponent’s action b. The update rule for Q function is given by

Q(&a, b) — (1 —a)Q(s,a,b) —l—a(r—i—'yV(s')) (3)

V(s) < max mbin Z P(a)Q(s,a,b) (4)

where P is our mixed strategy and P(a) is the probability of playing action a.
The algorithm then plays the mixed strategy P that achieves the max in the
above equation. V(s) and P can be computed using linear programming.

OPPTREE

MYTREE

Figure 2: An Example of Data Structure for Variable Resolution MinimaxQ

When playing repeated games, Minimax(Q does not attempt to play a best
response to its opponent’s strategy, instead it plays the Nash equilibrium strat-
egy of the normal form game defined by using the current Q function as the
payoff function. It eventually converges to the stationary Nash equilibrium
strategy of the repeated game. Thus Minimax(Q itself isn’t a very satisfying
learning algorithm according to our goal of maximizing payoffs, but we think it
is a good stepping stone toward applying variable-resolution techniques to more
sophisticated algorithms.

As before, we use binary trees to represent partitions of action spaces. We
need one tree (MYTREE) for the partitioning of our action space and another
tree (OPPTREE) for our opponent’s action space. The Q function depends on
both actions, so the Q values need to be stored in an 2-dimensional table. The
leaves of MYTREE and OPPTREE store vertical and horizontal coordinates of
the Q table, respectively. Figure 2 shows an example of MYTREE, OPPTREE
and Q table.

We split a leaf node of MYTREE if after splitting, our new mixed strategy
(which is the Nash equilibrium strategy for the game defined by Q) would be
significantly different. Similarly, we split a leaf node of OPPTREE if our oppo-
nent’s equilibrium strategy would be significantly different after splitting. We
implement this by actually storing four Q values for each entry in the Q table:
one for the top-left quarter, one for top-right, one for bottom-left and one for
bottom-right. The actual splitting involves creating 2 children of the node in
MYTREE (or OPPTREE) and adding a row (or column) to the Q table. Anal-
ogously we can set rules for when and where to merge two intervals in action
space.

5 Experiments

To test our algorithms, we implemented a simple repeated game environment
using C++. Section 5.1 describes the games whose rules we have implemented.
Section 5.2 describes the types of players we have implemented. Section 5.3
gives some preliminary experimental results on our algorithms’ performance.

5.1 Games

In this section we look at several games that we have included in our system. We
think these games can serve as interesting testbeds for our learning algorithms.
For all games in this section, A; = [0, 1] for all i.

5.1.1 Matching Pennies

This is a simple extension to the classical two-person zero-sum matching pennies
game. The payoff U;(a1,az) to agent 1 is given by>:

1 if (a1 < 0.5 and ag < 0.5) or (a1 > 0.5 and ag > 0.5)
Ui(ar,a2) =4 0 if ag = 0.5 or ax = 0.5
—1 otherwise
(5)
Figure 3(a) gives a 2-D representation of U;. This normal form game has
infinite number of Nash equilibria: as long as the probabilities of choosing a <
0.5 and a > 0.5 are equal, it’s a Nash equilibrium strategy profile.

5.1.2 Product Game

This is also an extension to the classical matching pennies game, but here the
payoff function is smooth:

U1 (al, ag) = (a1 — 0.5)((12 — 05) (6)

5.1.3 Sion and Wolfe’s Game with Diagonal Discontinuities

A famous example from [SW57]: Consider a two-person zero-sum game with
payoff
-1 ifa; <as<ayr+0.5
Ui(ai,a2) =<4 0 ifa; =asg or azg =a; +0.5 (7)
+1 otherwise

Figure 3(b) gives a 2-D representation of the payoff U;. This normal form
game does not have a Nash equilibrium. This would be a very interesting test
bed for reinforcement learning in repeated games.

3Since the game is zero-sum, Us (a1,a2) = —=Ui(a1,a2).

(a) Matching Pennies (b) Sion and Wolfe’s game

Figure 3: 2-D representation of Payoff functions. Player 1 chooses the horizontal
coordinate, Player 2 chooses the vertical coordinate.

5.1.4 Location Game

This game has been studied in [Hot29], [DM86] and [Sim87]. Our version of the
game on [0, 1] is as follows: Customers are evenly distributed over [0,1]. Firms
choose locations from [0,1]. Each customer purchases from the nearest firm.
Assume there is no price competition. The players in this game are the firms,
and they try to choose the location that maximize their market share. If more
than one players choose the exact same location, the market for that location
is evenly divided among the players that have chosen it.

For example, if there are two firms, and Firm 1 chooses 0.1 while Firm 2
chooses 0.5, then Firm 1’s market share is from 0 to 0.3, and Firm 2’s market
share is from 0.3 to 1. Firm 1’s payoff is then 0.3 and Firm 2’s payoff is 0.7.
Unlike the other three games, this game is not limited to two players. For our
version of the game, mixed strategy Nash equilibria always exist.

5.2 Players

We have implemented our variable resolution versions of PHC and MinimaxQ
as described in Sections 4.5 and 4.6. For comparison, we also implemented
PHC and MinimaxQ with equal-interval partitions. The Ip_solve library? is
used to do linear programming computation in Minimax(Q. For these learning
algorithms, the discount factor ~ is set to 0.9, and learning rate « is set to 0.1.
To make sure the Minimax(Q algorithms sufficiently explore the actions, we set
their exploration probability to 0.1, i.e. 10% of the time they would play a
random move from [0, 1] instead of their computed mixed strategy.
We also implemented several non-learning players:

4 Available at http://groups.yahoo.com/group/lp_solve/.

10

Pure Strategy player just plays a stationary pure strategy.

Random Player plays a uniform distribution in [0, 1].

Stationary Mixed Player plays a certain stationary mixed strategy given
by the user. The user enters the mixed strategy by specifying the partition
and probability densities within each partition.

Periodic Player plays a sequence of actions periodically.

5.3 Results

We run several simulations of repeated games with our algorithms and some
non-learning players. Following are some preliminary results.

5.3.1 PHC

The variable resolution and fixed resolution PHC algorithms did converge fairly
quickly to best response against stationary players. The variable resolution PHC
algorithm generally only need around 20 intervals. Figure 4 shows one simula-
tion of the Product Game, with a pure strategy player that always plays action
0.4 as Player 1 and variable resolution PHC as player 2. Variable resolution
PHC quickly converges to the action 1.0, which is the best response to the pure
strategy 0.4. Variable resolution PHC performs equally well against stationary
mixed strategy players.

Compared with fixed resolution PHC, variable resolution PHC can often get
higher payoff against stationary players, while using fewer number of intervals.
This is because the variable resolution algorithm tends to get finer and finer res-
olution near the best response, so the strategy it converges to is more “focused”
than the strategy of the fixed resolution algorithm.

5.3.2 MinimaxQ

The MinimaxQ algorithm is not designed to play best response to other player’s
strategies, so we weren’t surprised that our versions of the algorithm did not
play the best responses to stationary opponents. The variable resolution and
fixed resolution Minimax(Q algorithms generally converge to a Nash equilibrium
of the zero-sum game. Variable resolution Minimax(@Q generally only require less
than 10 intervals per player.

6 Future Work and Conclusions

PHC and Minimax(Q are fairly simple algorithms that do not directly model op-
ponents’ mixed strategies. We would like to apply the variable resolution tech-
nique to stronger learning algorithms that explicitly model opponents’ mixed
strategies. It would also be interesting to explore the possibilities of using mix-
tures of Gaussians to model mixed strategies.

11

Variable Resolution PHC against Pure Player with pure strategy 0.4 in the Product Game

0.9

PATIE
LRI o

0.8

o
=

0.6

TS]

on

05F 4

Action chosen

0.4

0.2f]

0.1f b

0 hd | | | | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000

Number of games

Figure 4: Simulation result of variable resolution PHC against pure strategy 0.4

12

We would also like to generalize our algorithms to general stochastic games.
Current multi-agent RL algorithms like PHC and MinimaxQ can deal with
stochastic games with finite number of states. But in many domains with con-
tinuous action space, the state space is also continuous. There has been some
research in single-agent RL (surveyed in [KLM96]) that try to solve continu-
ous state-space MDPs using variable resolution techniques. One example is the
variable-resolution partitioning method Parti-Game [Moo094].

In this paper we investigated the problem of reinforcement learning in re-
peated games with continuous action spaces. This is an interesting unexplored
area of research. We highlighted the issues in designing a learning algorithm for
this problem. We then took two simple multi-agent RL algorithms and modified
them to use variable-resolution partitioning of action spaces. Our experiments
show that the variable-resolution technique is successful at identifying impor-
tant regions of the action space, while keeping the total number of partitions
low. We hope to apply this technique to more sophisticated problems.

References

[BV0O1] M. Bowling and M. Veloso. Rational and convergent learning in
stochastic games. In IJCAI 01, 2001.

[DM86] P. Dasgupta and E. Maskin. The existence of equilibrium in discon-
tinuous economic games, i: Theory. The Review of Economic Studies,
53(1):1-26, 1986.

[Gli52] LL. Glicksberg. A further generalization of the kakutani fixed point
theorem with application to nash equilibrium points. In Proceedings
of the American Mathematical Society, 1952.

[Hot29] H. Hotelling. The stability of competition. Economic Journal, 39:41—
57, 1929.

[KLM96] L.P. Kaelbling, M.L. Littman, and A.-W. Moore. Reinforcement learn-
ing: A survey. Journal of Artificial Intelligence Research 4, 1996.

[Lit94] M. L. Littman. Markov games as a framework for multi-agent rein-
forcement learning. In Proceedings of the 11th International Confer-
ence on Machine Learning, pages 157-163, 1994.

[Moo94] A. W. Moore. The parti-game algorithm for variable resolution rein-
forcement learning in multidimensional state-spaces. In Advances in
Neural Information Processing Systems 6, pages 711-718, 1994.

[Nas50] J.F. Nash. Equilibrium points in n-person games. In Proceedings of
the National Academy of Sciences, U.S.A., 1950.

[Sim87] L. Simon. Games with discontinuous payoffs. The Review of Economic
Studies, 54(4):569-597, 1987.

13

[SKMO0] S. Singh, M. Kearns, and Y. Mansour. Nash convergence of gradient

[SPGO3]

[SW57]

[Tes03]

dynamics in general-sum games. In UAT 00, 2000.

Y. Shoham, R. Powers, and T. Grenager. Multi-agent re-
inforcement learning: a critical survey. Unpublished survey.
http://robotics.stanford.edu/~shoham/, 2003.

M. Sion and P. Wolfe. On a game without a value. Contributions to
the Theory of Games, 111, 1957.

G. Tesauro. Extending g-learning to general adaptive multiagent sys-
tems. In NIPS 03, 2003.

14

