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Example: Location Game

each of n agents wants to open a business

actions: choosing locations

utility: depends on

the location chosen
number of agents choosing the same location
numbers of agents choosing each of the adjacent locations
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Game on a graph
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This can be modeled as a game played on a directed graph:

each player has one token to put on one of the nodes;
utility depends on:

the node chosen
configuration of tokens over neighboring nodes

Action Graph Games (Bhat & Leyton-Brown 2004, Jiang &
Leyton-Brown 2006)

fully expressive, compact representation of games
exploits anonymity, context specific independence
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Definitions

Definition (action graph)

An action graph is a tuple (S, E), where S is a set of nodes
corresponding to distinct actions and E is a set of directed edges.

Each agent i’s set of available actions: Si ⊆ S

Neighborhood of node s: ν(s) ≡ {s′ ∈ S|(s′, s) ∈ E}

Definition (configuration)

A configuration D is an |S|-tuple of integers (D[s])s∈S . D[s] is the
number of agents who chose the action s ∈ S. For a subset of
actions X ⊂ S, let D[X] denote the restriction of D to X. Let
∆[X] denote the set of restricted configurations over X.
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Action Graph Games

Definition (action graph game)

An action graph game (AGG) is a tuple 〈N, (Si)i∈N , G, u〉 where

N is the set of agents

Si is agent i’s set of actions

G = (S, E) is the action graph, where S =
⋃

i∈N Si is the set
of distinct actions

u = (us)s∈S , where us : ∆[ν(s)] 7→ R

Definition (symmetric AGG)

An AGG is symmetric if all players have identical action sets,
i.e. if Si = S for all i.
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AGG Properties

AGGs are fully expressive

Symmetric AGGs can represent arbitrary symmetric games

Representation size ||Γ|| is polynomial if the in-degree I of G
is bounded by a constant

Any graphical game (Kearns, Littman & Singh 2001) can be
encoded as an AGG of the same space complexity.

AGG can be exponentially smaller than the equivalent
graphical game & normal form representations.
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Pure Nash Equilibria

Action profile: s = (s1, . . . , sn)

Definition (pure Nash equilibrium)

An action profile s is a pure Nash equilibrium of the game Γ if for
all i ∈ N , si is a best response to s−i (i.e. for all s′i ∈ Si,
ui(si, s−i) ≥ ui(s′i, s−i)).

not guaranteed to exist

often more interesting than mixed Nash equilibria
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Complexity of Finding Pure Equilibria

Checking every action profile:

linear time in normal form size

worst-case exponential time in AGG size

We focus on symmetric AGGs

only need to consider configurations

Theorem (Conitzer, personal communication)

The problem of determining whether a pure Nash equilibrium exists
in a symmetric AGG is NP-complete, even when the in-degree of
the action graph is at most 3.

For symmetric AGGs with bounded |S|:
number of configurations is polynomial

pure equilibria can be found in poly time by enumerating
configurations
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Main Results

Our dynamic programming approach:

partition action graph into subgraphs (using tree
decomposition)

construct equilibria of the game from equilibria of games
played on subgraphs

Tractable class: symmetric, bounded treewidth and in-degree1.

our approach can be extended beyond symmetric AGGs

Related Work:

(Gottlob, Greco, & Scarcello 2003) and (Daskalakis &
Papadimitriou 2006)

finding pure equilibria in graphical games

(Ieong, McGrew, Nudelman, Shoham, & Sun 2005)

finding pure equilibria in singleton congestion games
can be represented as AGGs with only self edges

1different from published version of paper
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Restricted Game

game played by a subset of players: n′ ≤ n

actions restricted to R ⊂ S

utility functions same as in original AGG

need to specify configuration of neighboring nodes not in R
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restricted game Γ(n′, R, D[ν(R)])
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Partial Solution

want to use equilibria of restricted games as building blocks
also need D[ν(X)] to specify the restricted game
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Definition (partial solution)

A partial solution on X ⊆ S is a configuration D[X ∪ ν(X)] such
that D[X] is a pure equilibrium of the restricted game
Γ(#D[X], X,D[ν(X)]).

A partial solution describes a restricted game as well as a pure
equilibrium of it.
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Extending partial solutions

Problem: combining two partial solutions on two
non-overlapping restricted games does not necessarily produce
an equilibrium of the combined game

configurations may be inconsistent, or
player might profitably deviate from playing in one restricted
game to another

keeping all partial solutions: impractical as sizes of restricted
games grow

we would like sufficient statistics that summarize partial
solutions
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Sufficient statistic
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Sufficient Statistic: a tuple consisting of
1 configuration over

outside neighbours: ν(X)
inside nodes that are neighbors of outside nodes: ν(X)

2 # of agents playing in X

3 utility of the worst-off player in X.
4 best utility an outside player can get by playing in X.

different cases for deviation from ν(X)
Number of distinct tuples:

polynomial for action graphs of bounded treewidth and
in-degree2

2different from published version of paper
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Example: an action graph and its primal graph

action graph:
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primal graph: make each neighborhood a clique
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Example: tree decomposition

X1={A,B,C}

X3={C,D,E} X2={B,C,D,F} X4={C,F,G}

This corresponds to the following partition:
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Example: combining restricted games

combine restricted games in bottom-up order: from leaves to root

X1={A,B,C}

X3={C,D,E} X2={B,C,D,F} X4={C,F,G}

partition after combining {C} and {F,G}:
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Summary of Algorithm

given a symmetric AGG with treewidth w:
construct tree decomposition of width w

poly time if w bounded by a constant

construct tree decomposition of primal graph with width at
most (w + 1)I − 1
combine restricted games in bottom-up order: from leaves to
the root

Theorem

For symmetric AGGs with bounded treewidth and in-degreea, our
algorithm determines the existence of pure Nash equilibria in
polynomial time.

adifferent from published version of paper

then a top-down pass computes the equilibria

Pure Nash Equilibria in Symmetric AGGs Jiang & Leyton-Brown
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Conclusions & Future Work

dynamic programming approach for computing pure equilibria
in AGGs

poly-time algorithm for symmetric AGGs with bounded
treewidth and in-degree

our approach can be extended to general AGGs

different set of sufficient statistics
related algorithms for graphical games (Daskalakis &
Papadimitriou 2006) and singleton congestion games (Ieong et
al 2005) become special cases of our approach
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