Computing Pure Nash Equilibria in Symmetric Action Graph Games

Albert Xin Jiang Kevin Leyton-Brown Department of Computer Science University of British Columbia {jiang;kevinlb}@cs.ubc.ca

July 26, 2007

Pure Nash Equilibria in Symmetric AGGs

Jiang & Leyton-Brown

AGG	Pure Nash Equilibria	Symmetric AGGs	Algorithm	Conclusions & Future Work
Outline				

- Action Graph Games
- 2 Pure Nash Equilibria
- 3 Computing Pure Equilibira in Symmetric AGGs

4 Algorithm

5 Conclusions & Future Work

AGG	Pure Nash Equilibria	Symmetric AGGs	Algorithm	Conclusions & Future Work
Outline				

- Action Graph Games
- 2 Pure Nash Equilibria
- 3 Computing Pure Equilibira in Symmetric AGGs
- 4 Algorithm
- **5** Conclusions & Future Work

AGG	Pure Nash Equilibria	Symmetric AGGs	Algorithm	Conclusions & Future Work
Example	e: Location (Game		

- each of n agents wants to open a business
- actions: choosing locations
- utility: depends on
 - the location chosen
 - number of agents choosing the same location
 - numbers of agents choosing each of the adjacent locations

• This can be modeled as a game played on a directed graph:

- each player has one token to put on one of the nodes;
- utility depends on:
 - the node chosen
 - configuration of tokens over neighboring nodes
- Action Graph Games (Bhat & Leyton-Brown 2004, Jiang & Leyton-Brown 2006)
 - fully expressive, compact representation of games
 - exploits anonymity, context specific independence

AGG	Pure Nash Equilibria	Symmetric AGGs	Algorithm	Conclusions & Future Work
Definit	ions			

Definition (action graph)

An action graph is a tuple (S, E), where S is a set of nodes corresponding to *distinct actions* and E is a set of directed edges.

- Each agent i's set of available actions: $S_i \subseteq S$
- Neighborhood of node $s \text{: } \nu(s) \equiv \{s' \in S | (s',s) \in E\}$

Definition (action graph)

An action graph is a tuple (S, E), where S is a set of nodes corresponding to *distinct actions* and E is a set of directed edges.

- Each agent *i*'s set of available actions: $S_i \subseteq S$
- Neighborhood of node $s: \ \nu(s) \equiv \{s' \in S | (s',s) \in E\}$

Definition (configuration)

A configuration D is an |S|-tuple of integers $(D[s])_{s\in S}$. D[s] is the number of agents who chose the action $s \in S$. For a subset of actions $X \subset S$, let D[X] denote the restriction of D to X. Let $\Delta[X]$ denote the set of restricted configurations over X.

Definition (action graph game)

An action graph game (AGG) is a tuple $\langle N, (S_i)_{i \in N}, G, u \rangle$ where

- N is the set of agents
- S_i is agent i's set of actions
- G=(S,E) is the action graph, where $S=\bigcup_{i\in N}S_i$ is the set of distinct actions

•
$$u = (u^s)_{s \in S}$$
, where $u^s : \Delta[\nu(s)] \mapsto \mathbb{R}$

Definition (action graph game)

An action graph game (AGG) is a tuple $\langle N, (S_i)_{i \in N}, G, u \rangle$ where

- N is the set of agents
- S_i is agent i's set of actions
- G=(S,E) is the action graph, where $S=\bigcup_{i\in N}S_i$ is the set of distinct actions

•
$$u = (u^s)_{s \in S}$$
, where $u^s : \Delta[
u(s)] \mapsto \mathbb{R}$

Definition (symmetric AGG)

An AGG is symmetric if all players have identical action sets, i.e. if $S_i = S$ for all i.

- AGGs are fully expressive
- Symmetric AGGs can represent arbitrary symmetric games
- Representation size $||\Gamma||$ is polynomial if the in-degree ${\mathcal I}$ of G is bounded by a constant
- Any graphical game (Kearns, Littman & Singh 2001) can be encoded as an AGG of the same space complexity.
- AGG can be exponentially smaller than the equivalent graphical game & normal form representations.

- 1 Action Graph Games
- 2 Pure Nash Equilibria
- 3 Computing Pure Equilibira in Symmetric AGGs
- 4 Algorithm
- 5 Conclusions & Future Work

3

< E.

Action profile: $\mathbf{s} = (s_1, \ldots, s_n)$

Definition (pure Nash equilibrium)

An action profile s is a *pure Nash equilibrium* of the game Γ if for all $i \in N$, s_i is a best response to s_{-i} (i.e. for all $s'_i \in S_i$, $u_i(s_i, s_{-i}) \ge u_i(s'_i, s_{-i})$).

- not guaranteed to exist
- often more interesting than mixed Nash equilibria

Checking every action profile:

- linear time in normal form size
- worst-case exponential time in AGG size

Complexity of Finding Pure Equilibria

Checking every action profile:

- linear time in normal form size
- worst-case exponential time in AGG size

We focus on symmetric AGGs

• only need to consider configurations

Theorem (Conitzer, personal communication)

The problem of determining whether a pure Nash equilibrium exists in a symmetric AGG is NP-complete, even when the in-degree of the action graph is at most 3.

Complexity of Finding Pure Equilibria

Checking every action profile:

- linear time in normal form size
- worst-case exponential time in AGG size

We focus on symmetric AGGs

• only need to consider configurations

Theorem (Conitzer, personal communication)

The problem of determining whether a pure Nash equilibrium exists in a symmetric AGG is NP-complete, even when the in-degree of the action graph is at most 3.

For symmetric AGGs with bounded |S|:

- number of configurations is polynomial
- pure equilibria can be found in poly time by enumerating configurations

AGG	Pure Nash Equilibria	Symmetric AGGs	Algorithm	Conclusions & Future Work
Main F	Results			

Our dynamic programming approach:

- partition action graph into subgraphs (using tree decomposition)
- construct equilibria of the game from equilibria of games played on subgraphs

Tractable class: symmetric, bounded treewidth and in-degree¹.

• our approach can be extended beyond symmetric AGGs

AGG	Pure Nash Equilibria	Symmetric AGGs	Algorithm	Conclusions & Future Work
Main	Results			

Our dynamic programming approach:

- partition action graph into subgraphs (using tree decomposition)
- construct equilibria of the game from equilibria of games played on subgraphs

Tractable class: symmetric, bounded treewidth and in-degree¹.

- our approach can be extended beyond symmetric AGGs Related Work:
 - (Gottlob, Greco, & Scarcello 2003) and (Daskalakis & Papadimitriou 2006)
 - finding pure equilibria in graphical games
 - (leong, McGrew, Nudelman, Shoham, & Sun 2005)
 - finding pure equilibria in singleton congestion games
 - can be represented as AGGs with only self edges

¹different from published version of paper

Pure Nash Equilibria in Symmetric AGGs

AGG	Pure Nash Equilibria	Symmetric AGGs	Algorithm	Conclusions & Future Work
Outline				

- Action Graph Games
- 2 Pure Nash Equilibria

3 Computing Pure Equilibira in Symmetric AGGs

4 Algorithm

5 Conclusions & Future Work

AGG	Pure Nash Equilibria	Symmetric AGGs	Algorithm	Conclusions & Future Work
Restric	ted Game			

- \bullet game played by a subset of players: $n' \leq n$
- \bullet actions restricted to $R \subset S$
- utility functions same as in original AGG
 - ${\ensuremath{\, \bullet }}$ need to specify configuration of neighboring nodes not in R

• restricted game $\Gamma(n', R, D[\nu(R)])$

AGG	Pure Nash Equilibria	Symmetric AGGs	Algorithm	Conclusions & Future Work
Partial	Solution			

- want to use equilibria of restricted games as building blocks
- also need $D[\nu(X)]$ to specify the restricted game

Definition (partial solution)

A partial solution on $X \subseteq S$ is a configuration $D[X \cup \nu(X)]$ such that D[X] is a pure equilibrium of the restricted game $\Gamma(\#D[X], X, D[\nu(X)]).$

A partial solution describes a restricted game as well as a pure equilibrium of it.

Pure Nash Equilibria in Symmetric AGGs

- Problem: combining two partial solutions on two non-overlapping restricted games does not necessarily produce an equilibrium of the combined game
 - configurations may be inconsistent, or
 - player might profitably deviate from playing in one restricted game to another
- keeping all partial solutions: impractical as sizes of restricted games grow
- we would like sufficient statistics that summarize partial solutions

Sufficient Statistic: a tuple consisting of

- 1 configuration over
 - $\bullet\,$ outside neighbours: $\nu(X)$
 - \bullet inside nodes that are neighbors of outside nodes: $\nu(\overline{X})$
- 2 # of agents playing in X
- 3 utility of the worst-off player in X.
- 4 best utility an outside player can get by playing in X.
 - different cases for deviation from $\nu(X)$

Number of distinct tuples:

 polynomial for action graphs of bounded treewidth and in-degree²

²different from published version of paper

Pure Nash Equilibria in Symmetric AGGs

- Action Graph Games
- 2 Pure Nash Equilibria
- 3 Computing Pure Equilibira in Symmetric AGGs

4 Algorithm

5 Conclusions & Future Work

3

< E.

• action graph:

• primal graph: make each neighborhood a clique

AGG Pure Nash Equilibria Symmetric AGGs Algorithm Conclusions & Future Work
Example: tree decomposition

This corresponds to the following partition:

 AGG
 Pure Nash Equilibria
 Symmetric AGGs
 Algorithm
 Conclusions & Future Work

 Example:
 combining restricted games

combine restricted games in bottom-up order: from leaves to root

$$\begin{array}{c} X_{1} = \{A, B, C\} \\ \\ \hline \\ X_{3} = \{C, D, E\} \\ \hline \\ X_{2} = \{B, C, D, F\} \\ \hline \\ X_{4} = \{C, F, G\} \\ \hline \end{array}$$

partition after combining $\{C\}$ and $\{F,G\}$:

 AGG
 Pure Nash Equilibria
 Symmetric AGGs
 Algorithm
 Conclusions & Future Work

 Example:
 combining restricted games

combine restricted games in bottom-up order: from leaves to root

$$\begin{array}{c} X_{1} = \{A, B, C\} \\ \\ \hline \\ X_{3} = \{C, D, E\} \\ \hline \\ X_{2} = \{B, C, D, F\} \\ \hline \\ X_{4} = \{C, F, G\} \\ \end{array}$$

partition after combining $\{D,E\}$ and $\{C,F,G\}$:

 AGG
 Pure Nash Equilibria
 Symmetric AGGs
 Algorithm
 Conclusions & Future Work

 Example:
 combining restricted games

combine restricted games in bottom-up order: from leaves to root

$$\begin{array}{c} X_{1} = \{A, B, C\} \\ \\ \hline \\ X_{3} = \{C, D, E\} \\ \hline \\ X_{2} = \{B, C, D, F\} \\ \hline \\ X_{4} = \{C, F, G\} \\ \end{array}$$

partition after combining $\{A,B\}$ and $\{C,D,E,F,G\}$:

 AGG
 Pure Nash Equilibria
 Symmetric AGGs
 Algorithm
 Conclusions & Future Work

 Summary of Algorithm
 Summary of Algorithm
 Summary of Algorithm
 Summary of Algorithm
 Summary of Algorithm

- given a symmetric AGG with treewidth w:
 - ${\ensuremath{\, \bullet }}$ construct tree decomposition of width w
 - $\bullet\,$ poly time if w bounded by a constant
 - construct tree decomposition of primal graph with width at most $(w+1)\mathcal{I}-1$
 - combine restricted games in **bottom-up** order: from leaves to the root

AGG Pure Nash Equilibria Symmetric AGGs Algorithm Conclusions & Future Work
Summary of Algorithm

- given a symmetric AGG with treewidth w:
 - ${\ensuremath{\, \bullet }}$ construct tree decomposition of width w
 - poly time if w bounded by a constant
 - construct tree decomposition of primal graph with width at most $(w+1)\mathcal{I}-1$
 - combine restricted games in **bottom-up** order: from leaves to the root

Theorem

For symmetric AGGs with bounded treewidth and in-degree^a, our algorithm determines the existence of pure Nash equilibria in polynomial time.

^adifferent from published version of paper

• then a top-down pass computes the equilibria

- Action Graph Games
- 2 Pure Nash Equilibria
- 3 Computing Pure Equilibira in Symmetric AGGs

4 Algorithm

3

< E.

Conclusions & Future Work

- dynamic programming approach for computing pure equilibria in AGGs
- poly-time algorithm for symmetric AGGs with bounded treewidth and in-degree
- our approach can be extended to general AGGs
 - different set of sufficient statistics
 - related algorithms for graphical games (Daskalakis & Papadimitriou 2006) and singleton congestion games (leong et al 2005) become special cases of our approach