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Lecture Overview 
 

• Recap: Sequential Decision Problems and Policies 
 

• Expected Utility and Optimality of Policies 
 

• Computing the Optimal Policy by Variable Elimination 
 

• Summary & Perspectives 
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Recap: Single vs. Sequential Actions 
•  Single Action (aka One-Off Decisions) 

– One or more primitive decisions that can be treated as a single macro 
decision to be made before acting 

 
•  Sequence of Actions (Sequential Decisions) 

–  Repeat: 
• observe 
• act 

–  Agent has to take actions not knowing what the future brings 
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Recap: Optimal single-stage decisions 
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Definition (optimal single-stage decision) 
An optimal single-stage decision is the decision D=dmax 
whose expected value is maximal: 

dmax ∈ argmax
𝑑i 
∈ 𝑑𝑑𝑑(𝐷)

𝐸 𝑈|D=di  

Best decision: (wear pads, short way) 



Recap: Single-Stage decision networks 

• Compact and explicit representation 
– Compact: each random/decision variable only occurs once 
– Explicit: dependences are made explicit 

• e.g., which variables affect the probability of an accident? 

 
• Extension of Bayesian networks with 

– Decision variables 
– A single utility node 
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Recap: Types of nodes in decision networks 
• A random variable is drawn as an ellipse. 

– Parents pa(X): encode dependence 
Conditional probability p( X | pa(X) ) 
Random variable X is conditionally independent  
of its non-descendants given its parents 

– Domain: the values it can take at random 
 

• A decision variable is drawn as an rectangle.  
– Parents pa(D) 

information available when decision D is made 
• Single-stage: pa(D) only includes decision variables 

– Domain: the values the agents can choose (actions) 
 

• A utility node is drawn as a diamond. 
– Parents pa(U): variables utility directly depends on 

• utility U( pa(U) ) for each instantiation of its parents 
– Domain: does not have a domain! 
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Recap: VE for computing the optimal decision  
• Denote 

– the random variables as X1, …, Xn  
– the decision variables as D 

 
 
 
 
 
 

• To find the optimal decision we can use VE: 
1. Create a factor for each conditional probability and for the utility 
2. Sum out all random variables, one at a time 

• This creates a factor on D that gives the expected utility for each di  

3. Choose the di with the maximum value in the factor 
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𝐸 𝑈|𝐷 = 𝑑 =  �𝑃 𝑤|𝐷 = 𝑑 𝑈(𝑤)
𝑤

 

   = � 𝑃 𝑋1, … ,𝑋𝑋|𝐷 = 𝑑 𝑈(𝑝𝑝(𝑈))
𝑋1,…,𝑋𝑋

 
 

=  � �𝑃 𝑋𝑖 𝑝𝑝 𝑋𝑖

𝑋

𝑖=1

𝑈(𝑝𝑝(𝑈))
𝑋1,…,𝑋𝑋

 



Recap: Sequential Decision Networks 
•  General Decision networks: 

– Just like single-stage decision networks, with one exception: 
the parents of decision nodes can include random variables 
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Recap: Sequential Decision Networks 
•  General Decision networks: 

– Just like single-stage decision networks, with one exception: 
the parents of decision nodes can include random variables 
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Recap: Policies for Sequential Decision Problems 

10 

I.e., when the agent has observed o ∈ dom(pDi ) , it will do δi(o) 

Definition (Policy) 
A policy π is a sequence of  δ1 ,….., δn decision functions 
    δi : dom(pa(Di )) → dom(Di)  

• One example for a policy: 
– Check smoke (i.e. set CheckSmoke=true) if and only if Report=true 
– Call if and only if Report=true, CheckSmoke=true, SeeSmoke=true 



R=t R=f 
δcs1(R)  T T 
δcs2(R) T F 
δcs3(R) F T 
δcs4(R) F F 

Recap: Policies for Sequential Decision Problems 
Definition (Policy) 
A policy π is a sequence of  δ1 ,….., δn decision functions 
    δi : dom(pa(Di )) → dom(Di)  

There are 22=4 possible decision 
functions δcs for Check Smoke: 
• Each decision function needs to specify 

a value for each instantiation of parents 

I.e., when the agent has observed o ∈ dom(pDi ) , it will do δi(o) 

R=t R=f 
δcs1(R)  T T 
δcs2(R) T F 
δcs3(R) F T 
δcs4(R) F F 
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δcall1(R)  T T T T T T T T 
δcall2(R) T T T T T T T F 
δcall3(R) T T T T T T F T 
δcall4(R) T T T T T T F F 
δcall5(R) T T T T T F T T 

… … … … … … … … … 
δcall256(R) F F F F F F F F 
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δcall2(R) T T T T T T T F 
δcall3(R) T T T T T T F T 
δcall4(R) T T T T T T F F 
δcall5(R) T T T T T F T T 

… … … … … … … … … 
δcall256(R) F F F F F F F F 
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δcall1(R)  T T T T T T T T 
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δcall3(R) T T T T T T F T 
δcall4(R) T T T T T T F F 
δcall5(R) T T T T T F T T 

… … … … … … … … … 
δcall256(R) F F F F F F F F 
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R=t, 
CS=f, 
SS=f 

R=f, 
CS=t, 
SS=t 

R=f, 
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δcall1(R)  T T T T T T T T 
δcall2(R) T T T T T T T F 
δcall3(R) T T T T T T F T 
δcall4(R) T T T T T T F F 
δcall5(R) T T T T T F T T 

… … … … … … … … … 
δcall256(R) F F F F F F F F 

Recap: Policies for Sequential Decision Problems 
Definition (Policy) 
A policy π is a sequence of  δ1 ,….., δn decision functions 
    δi : dom(pa(Di )) → dom(Di)  

There are 28=256 possible decision functions δcs for Call: 

I.e., when the agent has observed o ∈ dom(pDi ) , it will do δi(o) 
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Recap: How many policies are there? 
• If a decision D has k binary parents, how many 

assignments of values to the parents are there?  
– 2k 

 
• If there are b possible value for a decision variable, how 

many different decision functions are there for it if it has k 
binary parents?  
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Recap: How many policies are there? 
• If a decision D has k binary parents, how many 

assignments of values to the parents are there?  
– 2k 

 
• If there are b possible value for a decision variable, how 

many different decision functions are there for it if it has k 
binary parents?  
– b2k, because there are 2k possible instantiations for the parents and 

for every instantiation of those parents, the decision function could 
pick any of b values 

 

• If there are d decision variables, each with k  binary parents 
and b possible actions, how many policies are there? 
 

14 
d(b2k) dbk bdk (b2k)d 



Recap: How many policies are there? 
• If a decision D has k binary parents, how many  

assignments of values to the parents are there?  
– 2k 

 
• If there are b possible value for a decision variable, how 

many different decision functions are there for it if it has k 
binary parents?  
– b2k, because there are 2k possible instantiations for the parents and 

for every instantiation of those parents, the decision function could 
pick any of b values 

 

• If there are d decision variables, each with k  binary parents 
and b possible actions, how many policies are there? 
– (b2k)d, because there are b2k possible decision functions for each 

decision, and a policy is a combination of d such decision functions 

 

 

 



Lecture Overview 
 

• Recap: Sequential Decision Problems and Policies 
 

• Expected Utility and Optimality of Policies 
 

• Computing the Optimal Policy by Variable Elimination 
 

• Summary & Perspectives 
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Possible worlds satisfying a policy 
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Definition (Satisfaction of a policy) 
A possible world w satisfies a policy π, written w ⊧ π, if the 
value of each decision variable in w is the value selected 
by its decision function in policy π (when applied to w) 

• Consider our previous example policy: 
– Check smoke (i.e. set CheckSmoke=true) if and only if Report=true 
– Call if and only if Report=true, CheckSmoke=true, SeeSmoke=true 

 

• Does the following possible world satisfy this policy? 
¬tampering, fire, alarm, leaving, report, smoke, checkSmoke, seeSmoke, call 

No Yes 



Possible worlds satisfying a policy 
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Definition (Satisfaction of a policy) 
A possible world w satisfies a policy π, written w ⊧ π, if the 
value of each decision variable in w is the value selected 
by its decision function in policy π (when applied to w) 

• Consider our previous example policy: 
– Check smoke (i.e. set CheckSmoke=true) if and only if Report=true 
– Call if and only if Report=true, CheckSmoke=true, SeeSmoke=true 

 

• Do the following possible worlds satisfy this policy? 
¬tampering, fire, alarm, leaving, report, smoke, checkSmoke, seeSmoke, call 

• Yes! Conditions are satisfied for each of the policy’s decision functions 
 

¬tampering, fire, alarm, leaving, report, smoke, checkSmoke, seeSmoke, ¬call 
No Yes 



Possible worlds satisfying a policy 
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Definition (Satisfaction of a policy) 
A possible world w satisfies a policy π, written w ⊧ π, if the 
value of each decision variable in w is the value selected 
by its decision function in policy π (when applied to w) 

• Consider our previous example policy: 
– Check smoke (i.e. set CheckSmoke=true) if and only if Report=true 
– Call if and only if Report=true, CheckSmoke=true, SeeSmoke=true 

 

• Do the following possible worlds satisfy this policy? 
¬tampering, fire, alarm, leaving, report, smoke, checkSmoke, seeSmoke, call 

• Yes! Conditions are satisfied for each of the policy’s decision functions 
 

¬tampering, fire, alarm, leaving, report, smoke, checkSmoke, seeSmoke, ¬call 
• No! The policy says to call if Report and CheckSmoke and SeeSmoke all true 

 

¬tampering,fire,alarm,leaving,¬report,¬smoke,¬checkSmoke,¬seeSmoke,¬call 
• Yes! Policy says to neither check smoke nor call when there is no report 

 
No Yes 



Expected utility of a policy 
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Definition (expected utility of a policy) 
The expected utility E[π] of a policy π is:  

E π = � P w  U(w)
w⊧ π

 

E π = � P w  U(w)
w⊧ π

 

 

=  � �𝑃 𝑋𝑖 𝑝𝑝 𝑋𝑖

𝑋

𝑖=1

�  (δj(𝑝𝑝(𝐷j)) =𝐷j)
𝑑

𝑗=1

 𝑈(𝑝𝑝(𝑈))
𝑋1,…,𝑋𝑋,𝐷1...,𝐷𝑑

 

This term is zero if Dj’s value  
does not agree with what the 
policy dictates given Dj’s parents. 



Optimality of a policy 
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Definition (optimal policy) 
An optimal policy πmax is a policy whose expected utility 
is maximal among all possible policies ∏: 
 

πmax ∈ argmax
π

 
∈∏

𝐸 π  

Definition (expected utility of a policy) 
The expected utility E[π] of a policy π is:  

E π = � P w  U(w)
w⊧ π

 



Lecture Overview 
 

• Recap: Sequential Decision Problems and Policies 
 

• Expected Utility and Optimality of Policies 
 

• Computing the Optimal Policy by Variable Elimination 
 

• Summary & Perspectives 
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One last operation on factors: maxing out a variable 

• Maxing out a variable is similar to marginalization 
– But instead of taking the sum of some values, we take the max 

 

 

B A C f3(A,B,C) 
t t t 0.03 
t t f 0.07 
f t t 0.54 
f t f 0.36 
t f t 0.06 
t f f 0.14 
f f t 0.48 
f f f 0.32 

A C f4(A,C) 

t t 0.54 

t f 0.36 

f t ? 

f f 

maxB f3(A,B,C) = f4(A,C)  

( )( ) ),,,(max,,max 21)(2 11 jXdomxjX XXxXfXX  == ∈

0.48 0.32 0.06 0.14 
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One last operation on factors: maxing out a variable 

• Maxing out a variable is similar to marginalization 
– But instead of taking the sum of some values, we take the max 

 

 

B A C f3(A,B,C) 
t t t 0.03 
t t f 0.07 
f t t 0.54 
f t f 0.36 
t f t 0.06 
t f f 0.14 
f f t 0.48 
f f f 0.32 

A C f4(A,C) 

t t 0.54 

t f 0.36 

f t 0.48 

f f 0.32 

maxB f3(A,B,C) = f4(A,C)  

( )( ) ),,,(max,,max 21)(2 11 jXdomxjX XXxXfXX  == ∈
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The no-forgetting property 
 

• A decision network has the no-forgetting property if 
– Decision variables are totally ordered: D1, …, Dm  
– If a decision Di comes before Dj ,then  

• Di is a parent of Dj   
• any parent of Di is a parent of Dj  
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Idea for finding optimal policies with VE 
• Idea for finding optimal policies with variable elimination (VE): 

Dynamic programming: precompute optimal future decisions 
– Consider the last decision D to be made 

• Find optimal decision D=d for each instantiation of D’s parents  
– For each instantiation of D’s parents, this is just a single-stage decision problem 

• Create a factor of these maximum values: max out D 
– I.e., for each instantiation of the parents, what is the best utility I can achieve by 

making this last decision optimally? 
• Recurse to find optimal policy for reduced network (now one less decision) 
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Finding optimal policies with VE 
1. Create a factor for each CPT and a factor for the utility 
2. While there are still decision variables 

– 2a:  Sum out random variables that are not parents of a decision node. 
• E.g Tampering, Fire, Alarm, Smoke, Leaving 

– 2b: Max out last decision variable D in the total ordering 
• Keep track of decision function 

3. Sum out any remaining variable:  
this is the expected utility of the optimal policy. 
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Computational complexity of VE for 

finding optimal policies 

• We saw: 
For d decision variables (each with k binary parents and  
b possible actions), there are (b2k)d policies 
– All combinations of (b2k) decision functions per decision 

 

• Variable elimination saves the final exponent: 
– Dynamic programming: consider each decision functions only once 
– Resulting complexity: O(d * b2k) 

– Much faster than enumerating policies (or search in policy space), 
but still doubly exponential 

– CS422: approximation algorithms for finding optimal policies 
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Markov Decision Processes (MDPs) 

Big Picture: Planning under Uncertainty 

Fully Observable 
MDPs 

Partially  
Observable MDPs 

(POMDPs)  

One-Off Decisions/ 
Sequential Decisions 

Probability Theory Decision Theory 

Decision Support Systems 
(medicine, business, …) 

Economics Control 
Systems 

Robotics 
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Decision Theory: Decision Support Systems 

E.g., Computational Sustainability 
• New interdisciplinary field, AI is a key component 

– Models and methods for decision making concerning the management 
and allocation of resources 

– to solve most challenging problems related to sustainability 

• Often constraint optimization problems. E.g. 
– Energy: when are where to produce green energy most economically? 
– Which parcels of land to purchase to protect endangered species? 
– Urban planning: how to use budget for best development in 30 years? 

31 Source: http://www.computational-sustainability.org/ 



Planning Under Uncertainty 
• Learning and Using  

POMDP models of  
Patient-Caregiver Interactions 
During Activities of Daily Living  
 

• Goal: Help older adults living 
with cognitive disabilities (such 
as Alzheimer's) when they:  
– forget the proper sequence of 

tasks that need to be completed 
– lose track of the steps that they 

have already completed 
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Source:  Jesse Hoey UofT 
2007 



Planning Under Uncertainty 
Helicopter control: MDP, reinforcement learning 

(states: all possible positions, orientations, velocities and angular velocities) 

Source:  
Andrew Ng, 

2004 



Planning Under Uncertainty 
Autonomous driving: DARPA Grand Challenge 

Source:  
Sebastian  

Thrun 



• Sequential decision networks 
– Represent sequential decision problems as decision networks 
– Explain the non forgetting property  

• Policies 
– Verify whether a possible world satisfies a policy 
– Define the expected utility of a policy  
– Compute the number of policies for  a decision problem 
– Compute the optimal policy by Variable Elimination 
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Learning Goals For Today’s Class 



Announcements 
• Final exam is next Monday, April 11. DMP 310, 3:30-6pm 

– The list of short questions is online … please use it! 
– Also use the practice exercises (online on course website) 

• Office hours this week 
– Simona: Tuesday, 1pm-3pm  (change from 10-12am) 
– Mike: Wednesday 1-2pm, Friday 10-12am 
– Vasanth: Thursday, 3-5pm 
– Frank:  

• X530: Tue 5-6pm, Thu 11-12am  
• DMP 110: 1 hour after each lecture 

 

• Optional Rainbow Robot tournament: this Friday 
– Hopefully in normal classroom (DMP 110) 
– Vasanth will run the tournament,  

I’ll do office hours in the same room (this is 3 days before the final) 
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