Decision Theory: Optimal Policies for Sequential Decisions

CPSC 322 – Decision Theory 3

Textbook §9.3

April 4, 2011

Lecture Overview

Recap: Sequential Decision Problems and Policies

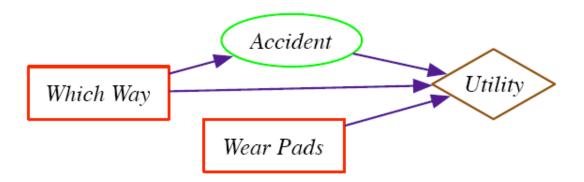
- Expected Utility and Optimality of Policies
- Computing the Optimal Policy by Variable Elimination
- Summary & Perspectives

Recap: Single vs. Sequential Actions

- Single Action (aka One-Off Decisions)
 - One or more primitive decisions that can be treated as a single macro decision to be made before acting
- Sequence of Actions (Sequential Decisions)
 - Repeat:
 - observe
 - act
 - Agent has to take actions not knowing what the future brings

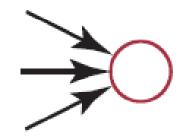
Recap: Optimal single-stage decisions **Definition (optimal single-stage decision)** An optimal single-stage decision is the decision D=d_{max} whose expected value is maximal: $d_{max} \in \underset{d_i \in dom(D)}{\operatorname{argmax}} E[U|D=d_i]$ Conditional Best decision: (wear pads, short way) E[U|D]Utility probability 0.2 accident yw0 35 83 short way 0.8 95 w1 no accident wear pads accident 🦕 w2 0.01 30 long way 74.55 0.99 no accident? • w3 75 0.2 accident 🦕 w4 3 80.6 short way don't no accident w5 0.8 100 wear accident **w**6 0.01 0 pads long way 79.2 0.99 80 no accider

Recap: Single-Stage decision networks

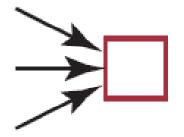


- Compact and explicit representation
 - Compact: each random/decision variable only occurs once
 - Explicit: dependences are made explicit
 - e.g., which variables affect the probability of an accident?
- Extension of Bayesian networks with
 - Decision variables
 - A single utility node

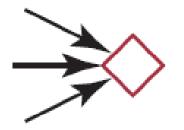
Recap: Types of nodes in decision networks



- A random variable is drawn as an ellipse.
 - Parents pa(X): encode dependence
 Conditional probability p(X | pa(X))
 Random variable X is conditionally independent
 of its non-descendants given its parents
 - Domain: the values it can take at random

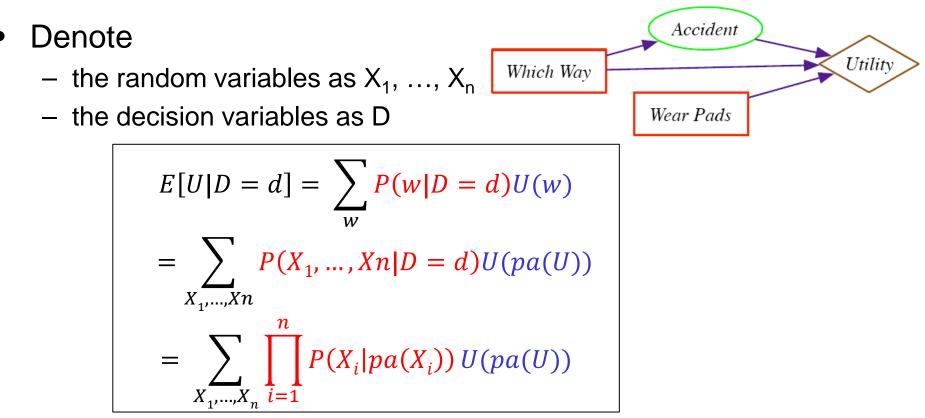


- A decision variable is drawn as an rectangle.
 - Parents pa(D)
 - information available when decision D is made
 - Single-stage: pa(D) only includes decision variables
 - Domain: the values the agents can choose (actions)



- A utility node is drawn as a diamond.
 - Parents pa(U): variables utility directly depends on
 - utility U(pa(U)) for each instantiation of its parents
 - Domain: does not have a domain!

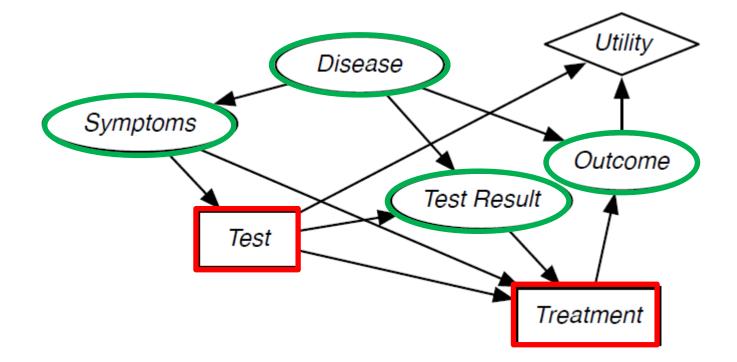
Recap: VE for computing the optimal decision



- To find the optimal decision we can use VE:
 - 1. Create a factor for each conditional probability and for the utility
 - 2. Sum out all random variables, one at a time
 - This creates a factor on D that gives the expected utility for each d_i
 - 3. Choose the d_i with the maximum value in the factor

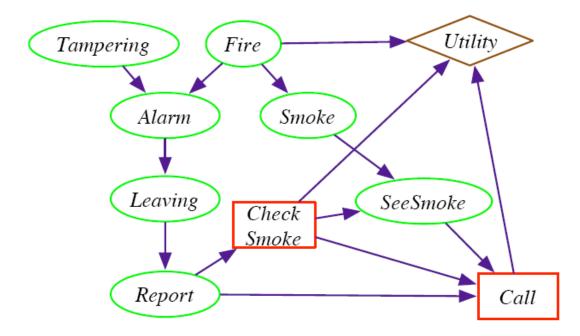
Recap: Sequential Decision Networks

- General Decision networks:
 - Just like single-stage decision networks, with one exception: the parents of decision nodes can include random variables



Recap: Sequential Decision Networks

- General Decision networks:
 - Just like single-stage decision networks, with one exception: the parents of decision nodes can include random variables

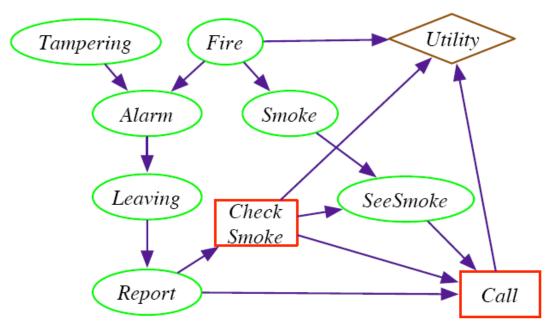


Recap: Policies for Sequential Decision Problems

Definition (Policy)

A policy π is a sequence of $\delta_1, \ldots, \delta_n$ decision functions $\delta_i : \operatorname{dom}(pa(D_i)) \to \operatorname{dom}(D_i)$

I.e., when the agent has observed $o \in \text{dom}(pD_i)$, it will do $\delta_i(o)$

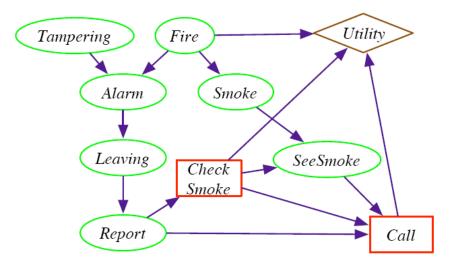


- One example for a policy:
 - Check smoke (i.e. set CheckSmoke=true) if and only if Report=true
 - Call if and only if Report=true, CheckSmoke=true, SeeSmoke=true

Recap: Policies for Sequential Decision Problems

Definition (Policy) A policy π is a sequence of $\delta_1, \ldots, \delta_n$ decision functions $\delta_i : \operatorname{dom}(pa(D_i)) \to \operatorname{dom}(D_i)$

I.e., when the agent has observed $o \in \text{dom}(pD_i)$, it will do $\delta_i(o)$



There are $2^2=4$ possible decision functions δ_{cs} for Check Smoke:

 Each decision function needs to specify a value for each instantiation of parents

	R=t	R=f
δ_{cs} 1(R)	Т	Т
δ_{cs} 2(R)	Т	F
δ_{cs} 3(R)	F	Т
δ_{cs} 4(R)	F	F

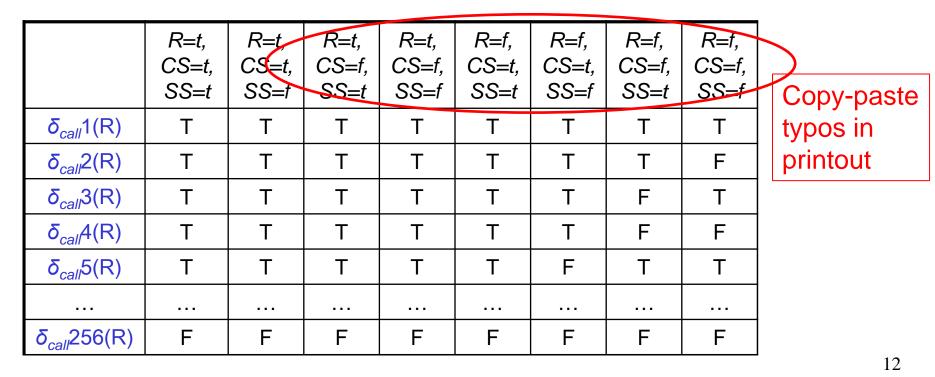
Recap: Policies for Sequential Decision Problems

Definition (Policy)

A policy π is a sequence of $\delta_1, \ldots, \delta_n$ decision functions $\delta_i : \operatorname{dom}(pa(D_i)) \to \operatorname{dom}(D_i)$

I.e., when the agent has observed $o \in \text{dom}(pD_i)$, it will do $\delta_i(o)$

There are 2^8 =256 possible decision functions δ_{cs} for Call:



Recap: How many policies are there?

- If a decision D has k binary parents, how many assignments of values to the parents are there?
 - 2^k
- If there are b possible value for a decision variable, how many different decision functions are there for it if it has k binary parents?

$$2^{kp} b^{*}2^{k} b^{2^{k}} 2^{k^{b}}$$

Recap: How many policies are there?

- If a decision D has k binary parents, how many assignments of values to the parents are there?
 - 2^k
- If there are b possible value for a decision variable, how many different decision functions are there for it if it has k binary parents?
 - b^{2^k}, because there are 2^k possible instantiations for the parents and for every instantiation of those parents, the decision function could pick any of b values
- If there are *d* decision variables, each with *k* binary parents and *b* possible actions, how many policies are there?

Recap: How many policies are there?

- If a decision D has k binary parents, how many assignments of values to the parents are there?
 - 2^k
- If there are b possible value for a decision variable, how many different decision functions are there for it if it has k binary parents?
 - b^{2^k}, because there are 2^k possible instantiations for the parents and for every instantiation of those parents, the decision function could pick any of b values
- If there are *d* decision variables, each with *k* binary parents and *b* possible actions, how many policies are there?
 - (b^{2^k})^d, because there are b^{2^k} possible decision functions for each decision, and a policy is a combination of d such decision functions

Lecture Overview

• Recap: Sequential Decision Problems and Policies

Expected Utility and Optimality of Policies

- Computing the Optimal Policy by Variable Elimination
- Summary & Perspectives

Possible worlds satisfying a policy

Definition (Satisfaction of a policy)

A possible world w satisfies a policy π , written w $\models \pi$, if the value of each decision variable in w is the value selected by its decision function in policy π (when applied to w)

- Consider our previous example policy:
 - Check smoke (i.e. set CheckSmoke=true) if and only if Report=true
 - Call if and only if Report=true, CheckSmoke=true, SeeSmoke=true
- Does the following possible world satisfy this policy?

 tampering, fire, alarm, leaving, report, smoke, checkSmoke, seeSmoke, call

Possible worlds satisfying a policy

Definition (Satisfaction of a policy)

A possible world w satisfies a policy π , written w $\models \pi$, if the value of each decision variable in w is the value selected by its decision function in policy π (when applied to w)

- Consider our previous example policy:
 - Check smoke (i.e. set CheckSmoke=true) if and only if Report=true
 - Call if and only if Report=true, CheckSmoke=true, SeeSmoke=true
- Do the following possible worlds satisfy this policy?

 tampering, fire, alarm, leaving, report, smoke, checkSmoke, seeSmoke, call
 - Yes! Conditions are satisfied for each of the policy's decision functions

-tampering, fire, alarm, leaving, report, smoke, checkSmoke, seeSmoke, -call

Possible worlds satisfying a policy

Definition (Satisfaction of a policy)

A possible world w satisfies a policy π , written w $\models \pi$, if the value of each decision variable in w is the value selected by its decision function in policy π (when applied to w)

• Consider our previous example policy:

Yes

- Check smoke (i.e. set CheckSmoke=true) if and only if Report=true
- Call if and only if Report=true, CheckSmoke=true, SeeSmoke=true
- Do the following possible worlds satisfy this policy?

 tampering, fire, alarm, leaving, report, smoke, checkSmoke, seeSmoke, call
 - Yes! Conditions are satisfied for each of the policy's decision functions

-tampering, fire, alarm, leaving, report, smoke, checkSmoke, seeSmoke, -call

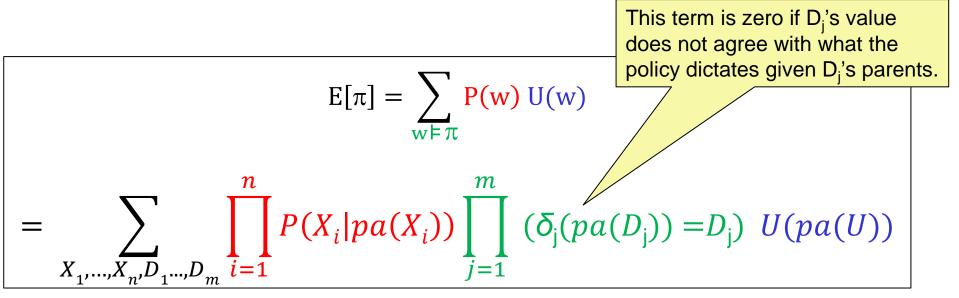
• No! The policy says to call if Report and CheckSmoke and SeeSmoke all true

-tampering,fire,alarm,leaving,-report,-smoke,-checkSmoke,-seeSmoke,-call

No • Yes! Policy says to neither check smoke nor call when there is no report

Expected utility of a policy

Definition (expected utility of a policy) The expected utility $E[\pi]$ of a policy π is: $E[\pi] = \sum_{w \models \pi} P(w) U(w)$



Optimality of a policy

Definition (expected utility of a policy) The expected utility $E[\pi]$ of a policy π is: $E[\pi] = \sum_{w \models \pi} P(w) U(w)$

Definition (optimal policy) An optimal policy π_{max} is a policy whose expected utility is maximal among all possible policies \prod : $\pi_{max} \in \underset{\pi \in \prod}{\pi \in \prod}$

Lecture Overview

- Recap: Sequential Decision Problems and Policies
- Expected Utility and Optimality of Policies

Computing the Optimal Policy by Variable Elimination

• Summary & Perspectives

One last operation on factors: maxing out a variable

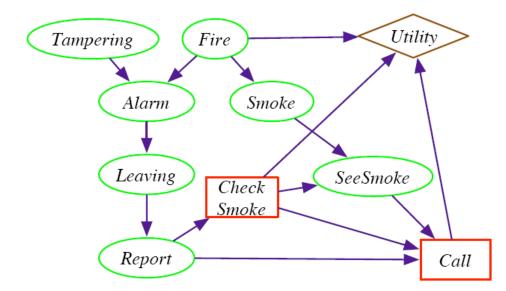
- Maxing out a variable is similar to marginalization
 - But instead of taking the sum of some values, we take the max

One last operation on factors: maxing out a variable

- Maxing out a variable is similar to marginalization
 - But instead of taking the sum of some values, we take the max

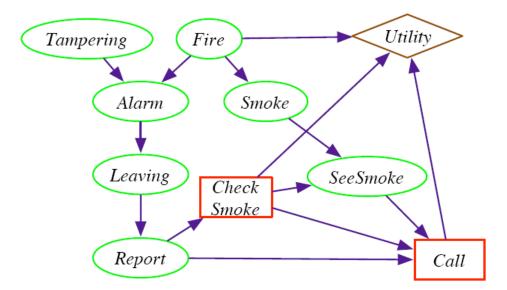
The no-forgetting property

- A decision network has the no-forgetting property if
 - Decision variables are totally ordered: D₁, ..., D_m
 - If a decision D_i comes before D_i , then
 - D_i is a parent of D_j
 - any parent of D_i is a parent of D_j



Idea for finding optimal policies with VE

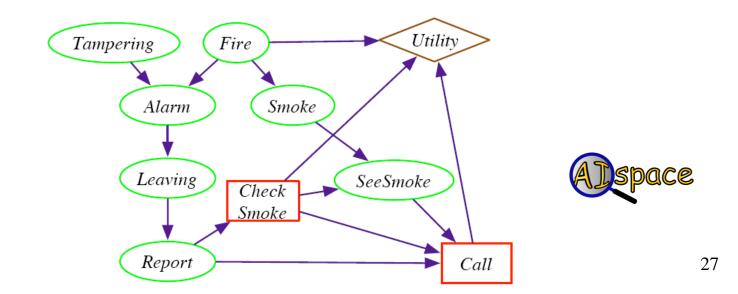
- Idea for finding optimal policies with variable elimination (VE): Dynamic programming: precompute optimal future decisions
 - Consider the last decision D to be made
 - Find optimal decision D=d for each instantiation of D's parents
 - For each instantiation of D's parents, this is just a single-stage decision problem
 - Create a factor of these maximum values: max out D
 - I.e., for each instantiation of the parents, what is the best utility I can achieve by making this last decision optimally?
 - Recurse to find optimal policy for reduced network (now one less decision)



Finding optimal policies with VE

- 1. Create a factor for each CPT and a factor for the utility
- 2. While there are still decision variables
 - 2a: Sum out random variables that are not parents of a decision node.
 - E.g Tampering, Fire, Alarm, Smoke, Leaving
 - 2b: Max out last decision variable D in the total ordering
 - Keep track of decision function
- 3. Sum out any remaining variable:

this is the expected utility of the optimal policy.



Computational complexity of VE for finding optimal policies

• We saw:

For *d* decision variables (each with *k* binary parents and *b* possible actions), there are $(b^{2^k})^d$ policies

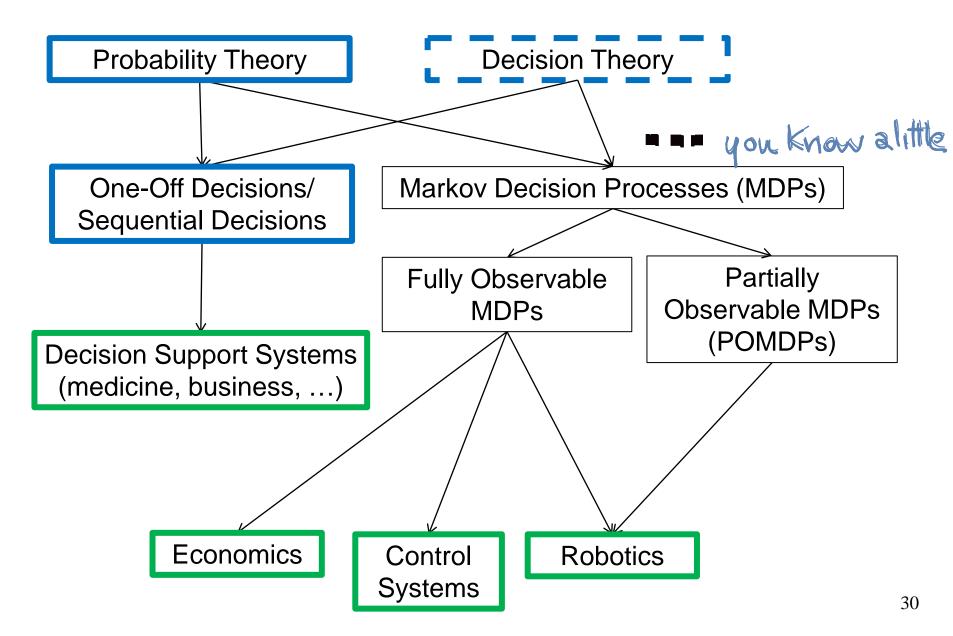
- All combinations of (b^{2^k}) decision functions per decision
- Variable elimination saves the final exponent:
 - Dynamic programming: consider each decision functions only once
 - Resulting complexity: O(d * b^{2^k})
 - Much faster than enumerating policies (or search in policy space), but still doubly exponential
 - CS422: approximation algorithms for finding optimal policies

Lecture Overview

- Recap: Sequential Decision Problems and Policies
- Expected Utility and Optimality of Policies
- Computing the Optimal Policy by Variable Elimination

Summary & Perspectives

Big Picture: Planning under Uncertainty



Decision Theory: Decision Support Systems

- E.g., Computational Sustainability
- New interdisciplinary field, AI is a key component
 - Models and methods for decision making concerning the management and allocation of resources
 - to solve most challenging problems related to sustainability
- Often constraint optimization problems. E.g.
 - Energy: when are where to produce green energy most economically?
 - Which parcels of land to purchase to protect endangered species?
 - Urban planning: how to use budget for best development in 30 years?

Source: http://www.computational-sustainability.org/ 31

Planning Under Uncertainty

- Learning and Using POMDP models of Patient-Caregiver Interactions During Activities of Daily Living
- Goal: Help older adults living with cognitive disabilities (such as Alzheimer's) when they:
 - forget the proper sequence of tasks that need to be completed
 - lose track of the steps that they have already completed

Source: Jesse Hoey UofT 2007

Planning Under Uncertainty

Helicopter control: MDP, reinforcement learning (states: all possible positions, orientations, velocities and angular velocities)

Source: Andrew Ng, 2004

Planning Under Uncertainty

Autonomous driving: DARPA Grand Challenge

Dr. Sebastian Thrun Stanford Racing Team Leader & Director Stanford Artificial Intelligence Lab

> Source: Sebastian Thrun

Learning Goals For Today's Class

- Sequential decision networks
 - Represent sequential decision problems as decision networks
 - Explain the non forgetting property
- Policies
 - Verify whether a possible world satisfies a policy
 - Define the expected utility of a policy
 - Compute the number of policies for a decision problem
 - Compute the optimal policy by Variable Elimination

Announcements

- Final exam is next Monday, April 11. DMP 310, 3:30-6pm
 - The list of short questions is online ... please use it!
 - Also use the practice exercises (online on course website)
- Office hours this week
 - Simona: Tuesday, 1pm-3pm (change from 10-12am)
 - Mike: Wednesday 1-2pm, Friday 10-12am
 - Vasanth: Thursday, 3-5pm
 - Frank:
 - X530: Tue 5-6pm, Thu 11-12am
 - DMP 110: 1 hour after each lecture
- Optional Rainbow Robot tournament: this Friday
 - Hopefully in normal classroom (DMP 110)
 - Vasanth will run the tournament,
 I'll do office hours in the same room (this is 3 days before the final)