Reasoning Under Uncertainty: Independence and Inference

CPSC 322 - Uncertainty 5

Textbook §6.3.1 (and 6.5.2 for HMMs)
March 25, 2011

Lecture Overview

Recap: Bayesian Networks and Markov Chains

- Inference in a Special Type of Bayesian Network
- Hidden Markov Models (HMMs)
- Rainbow Robot example
- Inference in General Bayesian Networks
- Observations and Inference
- Time-permitting: Entailed independencies
- Next lecture: Variable Elimination

Recap: Conditional Independence

Definition (Conditional independence)

Random variable X is (conditionally) independent of random variable Y given random variable Z, written $X \Perp Y \mid Z$ if, for all $x \in \operatorname{dom}(X), y_{j} \in \operatorname{dom}(Y), y_{k} \in \operatorname{dom}(Y)$ and $z \in \operatorname{dom}(Z)$ the following equation holds:

$$
\begin{aligned}
& P(X=x \mid Y=y j, Z=z) \\
= & P(X=x \mid Y=y k, Z=z) \\
= & P(X=x \mid Z=z)
\end{aligned}
$$

- Definition of $\mathrm{X} \Perp \mathrm{Y} \mid \mathrm{Z}$ in distribution form: $P(X \mid Y, Z)=P(X \mid Z)$

Recap: Bayesian Networks, Definition

Definition (Bayesian Network)

A Bayesian network consists of

- A directed acyclic graph (V, E) whose nodes are labeled with random variables
- A domain for each random variable
- A conditional probability distribution for each variable X
- Specifies $P(X \mid$ Parents $(X))$
- Parents (X) is the set of variables X^{\prime} with $\left(X^{\prime}, \mathrm{X}\right) \in E$
- For nodes X without predecessors, $\operatorname{Parents}(X)=\{ \}$
- Chain rule: $\mathrm{P}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)=\prod_{i=1}^{n} \mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{i}-1}\right)$
- Bayesian Network semantics:
- A variable is conditionally independent of its non-descendants given its parents
$-X_{i} \Perp\left\{X_{1}, \ldots, X_{i-1}\right\} \backslash \mathrm{Pa}\left(\mathrm{X}_{\mathrm{i}}\right) \mid \mathrm{Pa}(\mathrm{V})$
- I.e., $P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)=P\left(X_{i} \mid p a\left(X_{i}\right)\right)$

Recap: Construction of Bayesian Networks

Encoding the joint over $\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}$ as a Bayesian network:

- Totally order the variables: e.g., X_{1}, \ldots, X_{n}
- For every variable X_{i}, find the smallest set of parents $\mathrm{Pa}\left(\mathrm{X}_{\mathrm{i}}\right) \subseteq\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{i}-1}\right\}$ such that $\mathrm{X}_{\mathrm{i}} \Perp\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{i}-1}\right\} \backslash \mathrm{Pa}\left(\mathrm{X}_{\mathrm{i}}\right) \mid \mathrm{Pa}\left(\mathrm{X}_{\mathrm{i}}\right)$
- X_{i} is conditionally independent from its other ancestors given its parents
- For every variable X_{i}, construct its conditional probability table
- $\quad \mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{Pa}\left(\mathrm{X}_{\mathrm{i}}\right)\right)$
- This has to specify a conditional probability distribution $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{Pa}\left(\mathrm{X}_{\mathrm{i}}\right)=\mathrm{pa}\left(\mathrm{X}_{\mathrm{i}}\right)\right.$) for every instantiation $\mathrm{pa}\left(\mathrm{X}_{\mathrm{i}}\right)$ of $\mathrm{X}_{\mathrm{i}} \mathrm{s}$ parents
- If a variable has 3 parents each of which has a domain with 4 values, how many instantiations of its parents are there?

Recap: Construction of Bayesian Networks

Encoding the joint over $\left\{X_{1}, \ldots, X_{n}\right\}$ as a Bayesian network:

- Totally order the variables: e.g., X_{1}, \ldots, X_{n}
- For every variable X_{i}, find the smallest set of parents $\mathrm{Pa}\left(\mathrm{X}_{\mathrm{i}}\right) \subseteq\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{i}-1}\right\}$ such that $\mathrm{X}_{\mathrm{i}} \Perp\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{i}-1}\right\} \backslash \mathrm{Pa}\left(\mathrm{X}_{\mathrm{i}}\right) \mid \mathrm{Pa}\left(\mathrm{X}_{\mathrm{i}}\right)$
- X_{i} is conditionally independent from its other ancestors given its parents
- For every variable X_{i}, construct its conditional probability table
- $\quad \mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{Pa}\left(\mathrm{X}_{\mathrm{i}}\right)\right)$
- This has to specify a conditional probability distribution $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{Pa}\left(\mathrm{X}_{\mathrm{i}}\right)=\mathrm{pa}\left(\mathrm{X}_{\mathrm{i}}\right)\right.$) for every instantiation $\mathrm{pa}\left(\mathrm{X}_{\mathrm{i}}\right)$ of $\mathrm{X}_{\mathrm{i}} \mathrm{s}$ parents
- If a variable has 3 parents each of which has a domain with 4 values, how many instantiations of its parents are there?
- $4 * 4 * 4=4^{3}$
- For each of these 4^{3} values we need
one probability distribution defined over the values of X_{i}

Recap of BN construction with a small example

- Two Boolean variables: Disease and Symptom

1. The causal ordering: Disease, Symptom
2. Chain rule:
$\mathrm{P}($ Disease, Symptom $)=\mathrm{P}($ Disease $) \times \mathrm{P}($ Symptom |Disease $)$
3. Is Disease \Perp Symptom | \{\} ?

- I.e., are they marginally independent (conditioned on nothing)?
Yes No

Disease D	Symptom S	$P(D, S)$
t	t	0.0099
t	f	0.0001
f	t	0.0990
f	f	0.8910

Disease D	$P(D)$
t	0.01
f	0.99

Symptom S	$P(\mathrm{~S})$
t	0.1089
f	0.8911

Recap of BN construction with a small example

- Two Boolean variables: Disease and Symptom

1. The causal ordering: Disease, Symptom
2. Chain rule:
$\mathrm{P}($ Disease, Symptom $)=\mathrm{P}($ Disease $) \times \mathrm{P}($ Symptom |Disease $)$
3. Is Disease \Perp Symptom | $\}\}$?

- I.e., are they marginally independent (conditioned on nothing)?
- No! That would mean $P(D, S)=P(D) \times P(S)$, which is not true
- We have to put an edge from the parent (Disease) to the child (Symptom)

Disease Symptom

Disease D	Symptom S	$P(D, S)$
t	t	0.0099
t	f	0.0001
f	t	0.0990
f	f	0.8910

Disease D	$P(D)$
t	0.01
f	0.99

Symptom S	$P(\mathrm{~S})$
t	0.1089
f	0.8911

Recap of BN construction with a small example

- Which conditional probability tables do we need?

$$
P(D) \quad P(D \mid S) \quad P(S \mid D) \quad P(D, S)
$$

Disease

Disease D	Symptom S	$P(D, S)$
t	t	0.0099
t	f	0.0001
f	t	0.0990
f	f	0.8910

Disease D	$P(D)$
t	0.01
f	0.99

Symptom S	$P(\mathrm{~S})$
t	0.1089
f	0.8911

Recap of BN construction with a small example

- Which conditional probability tables do we need?
- $P(D)$ and $P(S \mid D)$
- In general: for each variable X in the network: $P(X \mid P a(X))$

Recap of BN construction with a small example

- How about a different ordering? Symptom, Disease
- We need distributions $P(S)$ and $P(D \mid S)$
- In general: for each variable X in the network: $P(X \mid P a(X))$

Remark: where do the conditional probabilities come from?

- The joint distribution is not normally the starting point
- We would have to define exponentially many numbers
- First define the Bayesian network structure
- Either by domain knowledge
- Or by machine learning algorithms (see CPSC 540)
- Typically based on local search
- Then fill in the conditional probability tables
- Either by domain knowledge
- Or by machine learning algorithms (see CPSC 340, CPSC 422)
- Based on statistics over the observed data

Lecture Overview

- Recap: Bayesian Networks and Markov Chains

Inference in a Special Type of Bayesian Network

- Hidden Markov Models (HMMs)
- Rainbow Robot example
- Inference in General Bayesian Networks
- Observations and Inference
- Time-permitting: Entailed independencies
- Next lecture: Variable Elimination

Markov Chains

- A Markov chain is a special kind of Bayesian network:

- Intuitively X_{t} conveys all of the information about the history that can affect the future states:
"The past is independent of the future given the present."
- JPD of a Markov Chain: $\mathrm{P}\left(\mathrm{X}_{0}, \ldots, \mathrm{X}_{\mathrm{T}}\right)=\mathrm{P}\left(\mathrm{X}_{0}\right) \times \prod_{t=1}^{T} \mathrm{P}\left(\mathrm{X}_{\mathrm{t}} \mid \mathrm{X}_{\mathrm{t}-1}\right)$
- A Markov chain is stationary iff
- All state transition probability tables are the same
- I.e., for all $t>0$, $t^{\prime}>0: P\left(X_{t} \mid X_{t-1}\right)=P\left(X_{t} \mid X_{t^{\prime}-1}\right)$
- Thus, we only need to specify $P\left(X_{0}\right)$ and $P\left(X_{t} \mid X_{t-1}\right)$

Hidden Markov Models (HMMs)

- A Hidden Markov Model (HMM) is a stationary Markov chain plus a noisy observation about the state at each time step:

- Same conditional probability tables at each time step
- The state transition probability $P\left(X_{t} \mid X_{t-1}\right)$
- also called the system dynamics
- The observation probability $\mathrm{P}\left(\mathrm{O}_{\mathrm{t}} \mid \mathrm{X}_{\mathrm{t}}\right)$
- also called the sensor model
- JPD of an HMM: $P\left(X_{0}, \ldots, X_{T}, O_{1}, \ldots, O_{T}\right)$
$=\mathrm{P}\left(\mathrm{X}_{0}\right) \times \prod_{t=1}^{T} \mathrm{P}\left(\mathrm{X}_{\mathrm{t}} \mid \mathrm{X}_{\mathrm{t}-1}\right) \times \prod_{t=1}^{T} \mathrm{P}\left(\mathrm{O}_{\mathrm{t}} \mid \mathrm{X}_{\mathrm{t}}\right)$

Example HMM: Robot Tracking

- Robot tracking as an HMM:

- Robot is moving at random: $\mathrm{P}\left(\mathrm{Pos}_{\mathrm{t}} \mid \mathrm{Pos}_{\mathrm{t}-1}\right)$
- Sensor observations of the current state $P\left(\right.$ Sens $_{t} \mid$ Pos $\left._{t}\right)$

Filtering in Hidden Markov Models (HMMs)

- Filtering problem in HMMs: at time step t , we would like to know $\mathrm{P}\left(\mathrm{X}_{\mathrm{t}} \mid \mathrm{o}_{1}, \ldots, \mathrm{o}_{\mathrm{t}}\right)$
- We will derive simple update equations for this belief state:
- We are given $P\left(X_{0}\right)$ (i.e., $P\left(X_{0} \mid\{ \}\right)$
- We can compute $P\left(X_{t} \mid O_{1}, \ldots, O_{t}\right)$ if we know $P\left(X_{t-1} \mid O_{1}, \ldots, o_{t-1}\right)$
- A simple example of dynamic programming

HMM Filtering: first time step

HMM Filtering: general time step t

HMM Filtering Summary

- Initialize belief state at time 0: $\mathrm{P}\left(\mathrm{X}_{0}\right)$
- In Rainbow Robots, we initialize this for you: $\mathrm{P}\left(\mathrm{Pos}_{\mathrm{t}}\right)$
- Belief over where the other robot is: 6×6 matrix summing to one.
- At each time step, update belief state given new observation:

- In Rainbow robots, how many probabilities do you have to store for the updated belief state $P\left(X_{\mathrm{t}} \mid o_{1}, \ldots, o_{\mathrm{t}}\right)$ at time t?

HMM Filtering Summary

- Initialize belief state at time 0: $\mathrm{P}\left(\mathrm{X}_{0}\right)$
- In Rainbow Robots, we initialize this for you: $\mathrm{P}\left(\mathrm{Pos}_{\mathrm{t}}\right)$
- Belief over where the other robot is: 6×6 matrix summing to one.
- At each time step, update belief state given new observation:

- In Rainbow robots, how many probabilities do you have to store for the updated belief state $P\left(X_{\mathrm{t}} \mid o_{1}, \ldots, o_{\mathrm{t}}\right)$ at time t ?
- It's just 36.
- That's the beauty of HMMs: the belief state does not grow.
- You simply update the previous belief state by applying the same equation every time, with a different observation o_{t}

HMM Filtering: Rainbow Robot Summary

- You will need to implement the belief state updates
- Not hard if you understand HMM Filtering
- About 40 lines of Java Code to compute the
- transition probability $P\left(\right.$ Pos $\left._{t}=x_{\mathrm{t}} \mid P o s_{\mathrm{t}-1}=x\right)$ and the
- observation probability $P\left(\right.$ Sens $_{t}=\operatorname{sens}_{\mathrm{t}} \mid$ Pos $\left._{\mathrm{t}}=x_{\mathrm{t}}\right)$
- Then it's just the equation from the previous slide
- You have the previous belief state $P\left(\right.$ Pos $_{\mathrm{t}-1}=x \mid \operatorname{sens}_{1}, \ldots$, sens $\left._{\mathrm{t}-1}\right)$
- (6x6 matrix summing to one)
- Probability for entry x_{t} of the new belief state is computed as above:
- Sum $P\left(\right.$ Pos $_{t}=x_{\mathrm{t}} \mid$ Pos $\left._{\mathrm{t}-1}=x\right) \times P\left(\right.$ Pos $_{\mathrm{t}-1}=x \mid \operatorname{sens}_{1}, \ldots$, sens $\left._{\mathrm{t}-1}\right)$ over all values for x
- Multiply with the observation probability $P\left(\right.$ Sens $\left._{t}=\operatorname{sens}_{\mathrm{t}} \mid \operatorname{Pos}_{\mathrm{t}}=x_{\mathrm{t}}\right)$
- Normalize to make the new belief state sum to one

Lecture Overview

- Recap: Bayesian Networks and Markov Chains
- Inference in a Special Type of Bayesian Network
- Hidden Markov Models (HMMs)
- Rainbow Robot example

Inference in General Bayesian Networks

- Observations and Inference
- Time-permitting: Entailed independencies
- Next lecture: Variable Elimination

Bayesian Networks: Incorporating Observations

- In the special case of Hidden Markov Models (HMMs):
- we could easily incorporate observations
- and do efficient inference (in particular: filtering)
- Back to general Bayesian Networks
- We can still incorporate observations
- And we can still do (fairly) efficient inference

Bayesian Networks: Incorporating Observations

We denote observed variables as shaded. Examples:

Bayesian Networks: Types of Inference

We will use the same reasoning procedure for all of these types

Lecture Overview

- Recap: Bayesian Networks and Markov Chains
- Inference in a Special Type of Bayesian Network
- Hidden Markov Models (HMMs)
- Rainbow Robot example
- Inference in General Bayesian Networks
- Observations and Inference
- Time-permitting: Entailed independencies
- Next lecture: Variable Elimination

Inference in Bayesian Networks

Given

- A Bayesian Network BN, and
- Observations of a subset of its variables E: E=e
- A subset of its variables Y that is queried

Compute the conditional probability $\mathrm{P}(\mathrm{Y} \mid \mathrm{E}=\mathrm{e})$

- Step 1: Drop all variables X of the Bayesian network that are conditionally independent of Y given $\mathrm{E}=\mathrm{e}$
- By definition of $Y \Perp X \mid E=e$, we know $P(Y \mid E=e)=P(Y \mid X=x, E=e)$
- We can thus drop X
- Step 2: run variable elimination algorithm (next lecture)

Information flow in Bayesian Networks

- A Bayesian network structure implies a number of conditional independencies and dependencies
- We can determine these directly from the graph structure
- I.e., we don't need to look at the conditional probability tables
- Conditional independencies we derive for a graph structure will hold for all possible conditional probability tables
- Information we acquire about one variable flows through the network and changes our beliefs about other variables
- This is also called probability propagation
- But information does not flow everywhere: Some nodes block information

Information flow through chain structure

- Unobserved node in a chain lets information pass
- E.g. learning the value of Fire will change your belief about Alarm
- Which will in turn change your belief about Leaving

- Observed node in a chain blocks information
- If you know the value of Alarm to start with:
learning the value of Fire yields no extra information about Leaving

Information flow through chain structure

- Information flow is symmetric $(X \Perp Y \mid Z$ and $Y \Perp X \mid Z$ are identical)
- Unobserved node in a chain lets information pass (both ways)
- E.g. learning the value of Leaving will change your belief about Alarm
- Which will in turn change your belief about Fire

- Observed node in a chain blocks information (both ways)
- If you know the value of Alarm to start with: learning the value of Leaving yields no extra information about Fire

Information flow through common parent

- Unobserved common parent lets information pass
- E.g. learning the value of AssignmentGrade changes your belief about UnderstoodMaterial
- Which will in turn change your belief about ExamGrade

- Observed common parent blocks information
- If you know the value of UnderstoodMaterial to start with
- Learning AssignmentGrade yields no extra information about ExamGrade

Information flow through common child

- Unobserved common child blocks information
- E.g. learning the value of Fire will not change your belief about Smoking: the two are marginally independent

- Observed common child lets information pass: explaining away
- E.g., when you know the alarm is going:
- then learning that a person smoked next to the fire sensor "explains away the evidence" and thereby changes your beliefs about fire.

Information flow through common child

- Exception: unobserved common child lets information pass if one of its descendants is observed
- This is just as if the child itself was observed
- E.g., Leaving could be a deterministic function of Alarm, so observing Leaving means you know Alarm as well
- Thus, a person smoking next to the fire alarm can still "explain away" the evidence of people leaving the building

Summary: (Conditional) Dependencies

- In these cases, X and Y are (conditionally) dependent

- In 3, X and Y become dependent as soon as there is evidence on Z or on any of its descendants.

Summary: (Conditional) Independencies

- Blocking paths for probability propagation. Three ways in which a path between Y to X (or vice versa) can be blocked, given evidence E

Training your understanding of conditional independencies in Alspace

- These concepts take practice to get used to

- Use the Alspace applet for Belief and Decision networks (http://aispace.org/bayes/)
- Load the "conditional independence quiz" network (or any other one)
- Go in "Solve" mode and select "Independence Quiz"
- You can take an unbounded number of quizzes:
- It generates questions, you answer, and then get the right answer
- It also allows you to ask arbitrary queries

Conditional Independencies in a BN

Is H conditionally independent of E given I?
I.e., $H \Perp E \mid I ?$

Yes No

Conditional Independencies in a BN

Is H conditionally independent of E given I?
I.e., $H \Perp E \mid I ?$

Conditional Independencies in a BN

Is A conditionally independent of II given F?
l.e., $A \Perp \|$ F ?

Yes No

Conditional Independencies in a BN

Is A conditionally independent of II given F?
l.e., $A \Perp \| \mid F ?$

No. Information can pass through

Learning Goals For Today’s Class

- Build a Bayesian Network for a given domain
- Classify the types of inference:
- Diagnostic, Predictive, Mixed, Intercausal
- Identify implied (in)dependencies in the network
- Assignment 4 available on WebCT
- Due Monday, April 4
- Can only use 2 late days
- So we can give out solutions to study for the final exam
- You should now be able to solve questions 1, 2, and 5
- Questions 3 \& 4: mechanical once you know the method
- Method for Question 3: next Monday
- Method for Question 4: next Wednesday/Friday
- Final exam: Monday, April 11
- Less than 3 weeks from now

