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Lecture Overview 
 

• Recap: Bayesian Networks and Markov Chains 
 

• Inference in a Special Type of Bayesian Network 
– Hidden Markov Models (HMMs) 
– Rainbow Robot example 

 

• Inference in General Bayesian Networks 
– Observations and Inference 
– Time-permitting: Entailed independencies 
– Next lecture: Variable Elimination 
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Recap: Conditional Independence 

• Definition of X ╨ Y | Z in distribution form: 𝑃 𝑋|𝑌,𝑍 = 𝑃 𝑋|𝑍  

Definition (Conditional independence) 
Random variable X is (conditionally) independent of random 
variable Y given random variable Z, written X ╨ Y | Z if, for all 
x ∈ dom(X), yj ∈ dom(Y), yk ∈ dom(Y) and z ∈ dom(Z) the 
following equation holds: 
 

       𝑃 𝑋 = 𝑥 𝑌 = 𝑦𝑦,𝑍 = 𝑧  
   = 𝑃 𝑋 = 𝑥 𝑌 = 𝑦𝑦,𝑍 = 𝑧  
   = 𝑃 𝑋 = 𝑥 𝑍 = 𝑧  



Recap: Bayesian Networks, Definition 

4 

Definition (Bayesian Network) 
A Bayesian network consists of 

• A directed acyclic graph V, E  whose nodes are labeled 
with random variables 

• A domain for each random variable 
• A conditional probability distribution for each variable X 

- Specifies 𝑃 𝑋 𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑋  
- 𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑋  is the set of variables X′ with 𝑋′, X ∈ 𝐸 

• For nodes X without predecessors, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑋 = { } 

• Chain rule: P(X1, …, Xn) = ∏  𝑛
𝑖=1 P(Xi|X1,...,Xi-1)  

• Bayesian Network semantics:  
– A variable is conditionally independent of its non-descendants 

given its parents  
– Xi ╨  {X1,...,Xi-1} \ Pa(Xi) | Pa(V) 
– I.e., P(Xi|X1,...,Xi-1)  = P( Xi|pa(Xi) ) 



Recap: Construction of Bayesian Networks 

Encoding the joint over {X1, …, Xn} as a Bayesian network: 
 

– Totally order the variables: e.g., X1, …, Xn   
 

– For every variable Xi, find the smallest set of parents  
Pa(Xi) ⊆ {X1, …, Xi-1} such that Xi ╨ {X1, …, Xi-1} \ Pa(Xi) | Pa(Xi) 
• Xi is conditionally independent from its other ancestors given its parents 

 

– For every variable Xi, construct its conditional probability table 
• P(Xi | Pa(Xi) ) 
• This has to specify a conditional probability distribution  

P(Xi | Pa(Xi) = pa(Xi) ) for every instantiation pa(Xi) of Xi‘s parents 
• If a variable has 3 parents each of which has a domain with 4 values, 

how many instantiations of its parents are there?  
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43  34 3*4 43 -1 



Recap: Construction of Bayesian Networks 

Encoding the joint over {X1, …, Xn} as a Bayesian network: 
 

– Totally order the variables: e.g., X1, …, Xn   
 

– For every variable Xi, find the smallest set of parents  
Pa(Xi) ⊆ {X1, …, Xi-1} such that Xi ╨ {X1, …, Xi-1} \ Pa(Xi) | Pa(Xi) 
• Xi is conditionally independent from its other ancestors given its parents 

 

– For every variable Xi, construct its conditional probability table 
• P(Xi | Pa(Xi) ) 
• This has to specify a conditional probability distribution  

P(Xi | Pa(Xi) = pa(Xi) ) for every instantiation pa(Xi) of Xi‘s parents 
• If a variable has 3 parents each of which has a domain with 4 values, 

how many instantiations of its parents are there?  
– 4 * 4 * 4 = 43 
– For each of these 43 values we need 

one probability distribution defined over the values of Xi 
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Recap of BN construction with a small example 

• Two Boolean variables: Disease and Symptom 
1. The causal ordering: Disease, Symptom 
2. Chain rule:  

P(Disease, Symptom) = P(Disease) × P(Symptom |Disease) 
3. Is Disease ╨ Symptom | {} ? 

• I.e., are they marginally independent (conditioned on nothing)? 

 

Disease D Symptom S P(D,S) 

t t 0.0099 
t f 0.0001 
f t 0.0990 
f f 0.8910 

Disease D P(D) 

t 0.01 
f 0.99 

Symptom S P(S) 

t 0.1089 
f 0.8911 

Yes No 



Recap of BN construction with a small example 

• Two Boolean variables: Disease and Symptom 
1. The causal ordering: Disease, Symptom 
2. Chain rule:  

P(Disease, Symptom) = P(Disease) × P(Symptom |Disease) 
3. Is Disease ╨ Symptom | {} ? 

• I.e., are they marginally independent (conditioned on nothing)? 
• No! That would mean P(D,S) = P(D) × P(S), which is not true 
• We have to put an edge from the parent (Disease) to the child (Symptom) 

 

 
Disease D Symptom S P(D,S) 

t t 0.0099 
t f 0.0001 
f t 0.0990 
f f 0.8910 

Disease Symptom 

Disease D P(D) 

t 0.01 
f 0.99 

Symptom S P(S) 

t 0.1089 
f 0.8911 



Recap of BN construction with a small example 

• Which conditional probability tables do we need? 
 

 

Disease D Symptom S P(D,S) 

t t 0.0099 
t f 0.0001 
f t 0.0990 
f f 0.8910 

Disease Symptom 

Disease D P(D) 

t 0.01 
f 0.99 

Symptom S P(S) 

t 0.1089 
f 0.8911 

P(D|S) P(D) P(S|D) P(D,S) 



Recap of BN construction with a small example 

• Which conditional probability tables do we need? 
– P(D) and P(S|D) 
– In general: for each variable X in the network: P( X|Pa(X) ) 

 
 

 

Disease D Symptom S P(D,S) 

t t 0.0099 
t f 0.0001 
f t 0.0990 
f f 0.8910 

Disease Symptom 

Disease D P(D) 

t 0.01 
f 0.99 

Symptom S P(S) 

t 0.1089 
f 0.8911 

P(D=t) 

0.01 

Disease D P(S=t|D) 

t 0.0099/(0.0099+0.0001)=0.99 
f 0.099/(0.099+0.891)=0.1 



Recap of BN construction with a small example 

Disease D Symptom S P(D,S) 

t t 0.0099 
t f 0.0001 
f t 0.0990 
f f 0.8910 

• How about a different ordering? Symptom, Disease 
– We need distributions P(S) and P(D|S) 
– In general: for each variable X in the network: P( X|Pa(X) ) 

 
 

 

Disease Symptom 

P(S=t) 

0.1089 

Symptom S P(D=t|S) 

t 0.0099/(0.0099+0.099)=0.00909090 
f 0.0001/(0.0001+0.891)=0.00011122 

Disease D P(D) 

t 0.01 
f 0.99 

Symptom S P(S) 

t 0.1089 
f 0.8911 



 
Remark: where do the conditional probabilities 

come from?  
• The joint distribution is not normally the starting point 

– We would have to define exponentially many numbers  

 
• First define the Bayesian network structure 

– Either by domain knowledge  
– Or by machine learning algorithms (see CPSC 540) 

• Typically based on local search 

 
• Then fill in the conditional probability tables 

– Either by domain knowledge  
– Or by machine learning algorithms (see CPSC 340, CPSC 422) 

• Based on statistics over the observed data 
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Lecture Overview 
 

• Recap: Bayesian Networks and Markov Chains 
 

• Inference in a Special Type of Bayesian Network 
– Hidden Markov Models (HMMs) 
– Rainbow Robot example 

 

• Inference in General Bayesian Networks 
– Observations and Inference 
– Time-permitting: Entailed independencies 
– Next lecture: Variable Elimination 
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Markov Chains 
• A Markov chain is a special kind of Bayesian network: 

 
 
– Intuitively Xt conveys all of the information about the history that can 

affect the future states: 
“The past is independent of the future given the present.“ 

• JPD of a Markov Chain: P(X0,…,XT) = P(X0) × ∏  𝑇
𝑡=1 P(Xt|Xt-1) 

 

 
• A Markov chain is stationary iff 

– All state transition probability tables are the same 
– I.e., for all t > 0, t’ > 0: P(Xt|Xt-1) = P(Xt’|Xt’-1) 

• Thus, we only need to specify P(X0) and P(Xt |Xt-1) 

14 

X0 X1 X2 

  
… 



Hidden Markov Models (HMMs) 
• A Hidden Markov Model (HMM) is a stationary Markov chain 

plus a noisy observation about the state at each time step: 
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O1 

X0 X1 

O2 

X2 

• Same conditional probability tables at each time step 
– The state transition probability P(Xt|Xt-1) 

• also called the system dynamics 
– The observation probability P(Ot|Xt) 

• also called the sensor model 
 

• JPD of an HMM: P(X0, …, XT, O1, …, OT)  
= P(X0) ×  ∏  𝑇

𝑡=1 P(Xt|Xt-1) × ∏  𝑇
𝑡=1 P(Ot|Xt) 

  
… 



Example HMM: Robot Tracking 
• Robot tracking as an HMM: 
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Sens1 

Pos0 Pos1 

Sens2 

Pos2 

• Robot is moving at random: P(Post|Post-1) 
• Sensor observations of the current state P(Senst|Post) 

 

  
… 



Filtering in Hidden Markov Models (HMMs) 
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O1 

X0 X1 

O2 

X2 

• Filtering problem in HMMs:  
at time step t, we would like to know P(Xt|o1, …, ot) 
 

• We will derive simple update equations for this belief state: 
– We are given P(X0)   (i.e., P(X0 | {}) 
– We can compute P(Xt|O1, …, Ot) if we know P(Xt-1|o1, …, ot-1) 
– A simple example of dynamic programming 

  
… 



HMM Filtering: first time step 
𝑃 𝑋1|𝑂1 = o1  

 

= � 𝑃 𝑋1,𝑋0 = 𝑥|𝑂1 = 𝑜1
𝑥 ∈𝑑𝑑𝑑(𝑋0)

 

 

= �
𝑃 𝑂1 = 𝑜1 𝑋1,𝑋0 = 𝑥 × 𝑃(𝑋1,𝑋0 = 𝑥)

𝑃(𝑂1 = o1)
𝑥 ∈𝑑𝑑𝑑(𝑋0)

 

 
= �

𝑃 𝑂1 = 𝑜1 𝑋1 × 𝑃(𝑋1|𝑋0 = 𝑥) × 𝑃(𝑋0 = 𝑥)
𝑃(𝑂1 = o1)

𝑥 ∈𝑑𝑑𝑑(𝑋0)

 

 
∝ � 𝑃 𝑂1 = 𝑜1 𝑋1 × 𝑃(𝑋1|𝑋0 = 𝑥) × 𝑃(𝑋0 = 𝑥)

𝑥 ∈𝑑𝑑𝑑(𝑋0)

 

O1 

X0 X1 

Direct application  
of Bayes rule 

O1 ╨ X0 | X1 and 
product rule 

By applying 
marginalization over 
X0 “backwards”: 

Normalize to make the probability sum 
to 1.   𝑃(𝑂1 = o1) is just a number. 



HMM Filtering: general time step t 
𝑃 𝑋t|𝑜1, . . . , 𝑜t  

 

= � 𝑃 𝑋t,𝑋t−1 = 𝑥|𝑜1, … , 𝑜t−1, 𝑜t
𝑥 ∈𝑑𝑑𝑑(𝑋t−1)

 

 
= �

𝑃 𝑜𝑃 𝑋t,𝑋t−1 = 𝑥, 𝑜1, . . . , 𝑜t−1 × 𝑃(𝑋t,𝑋t−1 = 𝑥|𝑜1, . . . , 𝑜t−1)
𝑃(𝑜t|𝑜1, . . . , 𝑜t−1)

𝑥 ∈𝑑𝑑𝑑(𝑋t−1)

 

 
 

= �
𝑃 𝑜t 𝑋t × 𝑃(𝑋𝑃|𝑋t−1 = 𝑥) × 𝑃(𝑋t−1 = 𝑥|𝑜1, . . . , ot−1)

𝑃(𝑜𝑃|𝑜1, . . . , 𝑜t−1)
𝑥 ∈𝑑𝑑𝑑(𝑋t−1)

 

 
∝ � 𝑃 𝑜t 𝑋t × 𝑃(𝑋t|𝑋t−1 = 𝑥) × 𝑃(𝑋t−1 = 𝑥|𝑜1, . . . , 𝑜t−1)

𝑥 ∈𝑑𝑑𝑑(𝑋t−1)

 

Direct application  
of Bayes rule 

Ot ╨ {Xt-1, O1,…,Ot-1} | Xt  and Xt ╨ {O1,…,Ot-1} | Xt-1 

By applying 
marginalization over 
Xt-1 “backwards”: 

Normalize to make the probability sum to 1.    
𝑃(ot |𝑜1, . . . , 𝑜t−1) is just a number. 

Ot 

Xt-1 Xt 



HMM Filtering Summary  
• Initialize belief state at time 0: P(X0) 

– In Rainbow Robots, we initialize this for you: P(Post) 
– Belief over where the other robot is: 6x6 matrix summing to one. 

 

• At each time step, update belief state given new observation: 
 
 
 
 

 

• In Rainbow robots, how many probabilities do you have to 
store for the updated belief state 𝑃 𝑋t|𝑜1, . . . , 𝑜t  

at time t? 
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𝑃 𝑋t = 𝑥t|𝑜1, . . . , 𝑜t  

  

∝ � 𝑃 𝑜t 𝑥t × 𝑃(xt|𝑋t−1 = 𝑥) × 𝑃(𝑋t−1 = 𝑥|𝑜1, . . . , 𝑜t−1)
𝑥 ∈𝑑𝑑𝑑(𝑋t−1)

 

Observation probability 

Transition probability 

We already know this  
from the previous step 

36t 36t t36 36 



HMM Filtering Summary  
• Initialize belief state at time 0: P(X0) 

– In Rainbow Robots, we initialize this for you: P(Post) 
– Belief over where the other robot is: 6x6 matrix summing to one. 

 

• At each time step, update belief state given new observation: 
 
 
 
 

 

• In Rainbow robots, how many probabilities do you have to 
store for the updated belief state 𝑃 𝑋t|𝑜1, . . . , 𝑜t  

at time t? 
– It’s just 36.  
– That’s the beauty of HMMs: the belief state does not grow.  
– You simply update the previous belief state by applying the same 

equation every time, with a different observation ot 
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𝑃 𝑋t = 𝑥t|𝑜1, . . . , 𝑜t  

  

∝ � 𝑃 𝑜t 𝑥t × 𝑃(xt|𝑋t−1 = 𝑥) × 𝑃(𝑋t−1 = 𝑥|𝑜1, . . . , 𝑜t−1)
𝑥 ∈𝑑𝑑𝑑(𝑋t−1)

 

Observation probability 

Transition probability 

We already know this  
from the previous step 



HMM Filtering: Rainbow Robot Summary 

 
• You will need to implement the belief state updates 

– Not hard if you understand HMM Filtering 
– About 40 lines of Java Code to compute the  

• transition probability 𝑃 𝑃𝑜𝑃𝑃 = 𝑥t 𝑃𝑜𝑃t−1 = 𝑥  and the 
• observation probability 𝑃 𝑆𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃t 𝑃𝑜𝑃t = 𝑥t  

 

• Then it’s just the equation from the previous slide 
– You have the previous belief state 𝑃(𝑃𝑜𝑃t−1 = 𝑥|𝑃𝑃𝑃𝑃1, . . . , 𝑃enst−1) 

• (6x6 matrix summing to one) 
– Probability for entry 𝑥t of the new belief state is computed as above: 

• Sum 𝑃 𝑃𝑜𝑃𝑃 = 𝑥t 𝑃𝑜𝑃t−1 = 𝑥  × 𝑃(𝑃𝑜𝑃t−1 = 𝑥|𝑃𝑃𝑃𝑃1, . . . , 𝑃enst−1) over all 
values for x 

• Multiply with the observation probability 𝑃 𝑆𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃t 𝑃𝑜𝑃t = 𝑥t  

– Normalize to make the new belief state sum to one 
22 



Lecture Overview 
 

• Recap: Bayesian Networks and Markov Chains 
 

• Inference in a Special Type of Bayesian Network 
– Hidden Markov Models (HMMs) 
– Rainbow Robot example 

 

• Inference in General Bayesian Networks 
– Observations and Inference 
– Time-permitting: Entailed independencies 
– Next lecture: Variable Elimination 
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Bayesian Networks: Incorporating Observations 
 
 

• In the special case of Hidden Markov Models (HMMs): 
– we could easily incorporate observations  
– and do efficient inference (in particular: filtering) 

 
 
 

• Back to general Bayesian Networks 
– We can still incorporate observations 
– And we can still do (fairly) efficient inference 
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Bayesian Networks: Incorporating Observations 
We denote observed variables as shaded. Examples: 
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O1 

X0 X1 

O2 

X2 

Understood
Material 

Assignment 
Grade 

Exam 
Grade 

Alarm 

Smoking At 
Sensor 

Fire 



Bayesian Networks: Types of  Inference 
Diagnostic 

People are  
leaving 

L=t 

P(F|L=t)=? 

Predictive Intercausal Mixed 

Fire happens 
F=t 

P(L|F=t)=? 
Alarm goes off 

P(a) = 1.0 

P(F|A=t,T=t)=? 

People are  
leaving 

L=t 

There is no fire 
F=f 

P(A|F=f,L=t)=? 

Person smokes  
next to sensor 

S=t 
Fire 

Alarm 

Leaving 

Fire 

Alarm 

Leaving 

Fire 

Alarm 

Leaving 

Fire 

Alarm 

Smoking 
at Sensor 

We will use the same reasoning procedure for all of these types 



Lecture Overview 
 

• Recap: Bayesian Networks and Markov Chains 
 

• Inference in a Special Type of Bayesian Network 
– Hidden Markov Models (HMMs) 
– Rainbow Robot example 

 

• Inference in General Bayesian Networks 
– Observations and Inference 
– Time-permitting: Entailed independencies 
– Next lecture: Variable Elimination 
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Inference in Bayesian Networks 
 

Given  
– A Bayesian Network BN, and 
– Observations of a subset of its variables E: E=e 
– A subset of its variables Y that is queried 

 

Compute the conditional probability P(Y|E=e) 
 
• Step 1: Drop all variables X of the Bayesian network that 

are conditionally independent of Y given E=e 
– By definition of Y ╨  X | E=e, we know P(Y|E=e)  =  P(Y|X=x,E=e) 
– We can thus drop X 

• Step 2: run variable elimination algorithm (next lecture) 
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Information flow in Bayesian Networks 
 

• A Bayesian network structure implies a number of 
conditional independencies and dependencies 
– We can determine these directly from the graph structure 

• I.e., we don’t need to look at the conditional probability tables 
• Conditional independencies we derive for a graph structure  

will hold for all possible conditional probability tables 

 
• Information we acquire about one variable flows through 

the network and changes our beliefs about other variables 
– This is also called probability propagation 
– But information does not flow everywhere: 

Some nodes block information 
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Information flow through chain structure 
• Unobserved node in a chain lets information pass 

– E.g. learning the value of Fire will change your belief about Alarm 
– Which will in turn change your belief about Leaving 

 

 
 
 

• Observed node in a chain blocks information 
– If you know the value of Alarm to start with: 

learning the value of Fire yields no extra information about Leaving 

30 

Fire Alarm Leaving 

Fire Alarm Leaving 



Information flow through chain structure 
• Information flow is symmetric (X ╨ Y | Z and Y ╨ X | Z are identical) 

– Unobserved node in a chain lets information pass (both ways) 
• E.g. learning the value of Leaving will change your belief about Alarm 
• Which will in turn change your belief about Fire 

 
 
 
 
 
 

– Observed node in a chain blocks information (both ways) 
• If you know the value of Alarm to start with: 

learning the value of Leaving yields no extra information about Fire 
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Fire Alarm Leaving 

Fire Alarm Leaving 



Information flow through common parent 
• Unobserved common parent lets information pass 

– E.g. learning the value of AssignmentGrade changes your belief about 
UnderstoodMaterial 

– Which will in turn change your belief about ExamGrade 

 
 
 
 

• Observed common parent blocks information 
– If you know the value of UnderstoodMaterial to start with 

• Learning AssignmentGrade yields no extra information about ExamGrade 

32 

Understood
Material 

Assignment 
Grade 

Exam 
Grade 

Understood
Material 

Assignment 
Grade 

Exam 
Grade 



Information flow through common child 
• Unobserved common child blocks information 

– E.g. learning the value of Fire will not change your belief about Smoking: 
the two are marginally independent 
 
 
 
 
 

• Observed common child lets information pass: explaining away 
– E.g., when you know the alarm is going: 

• then learning that a person smoked next to the fire sensor  
“explains away the evidence” and thereby changes your beliefs about fire. 
 

33 Alarm 

Smoking At 
Sensor 

Fire 

Alarm 

Smoking At 
Sensor 

Fire 



Information flow through common child 
• Exception: unobserved common child lets information pass if 

one of its descendants is observed 
– This is just as if the child itself was observed 

• E.g., Leaving could be a deterministic function of Alarm, so observing 
Leaving means you know Alarm as well 

• Thus, a person smoking next to the fire alarm can still “explain away” the 
evidence of people leaving the building 
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Leaving 

Alarm 

Smoking At 
Sensor 

Fire 



• In these cases, X and Y are (conditionally) dependent  
 

Z 

Z 

Z 

X Y 

E 

1 

2 

3 

• In 3, X and Y become dependent as soon as there is evidence on Z or on any 
of its descendants.  

Summary: (Conditional) Dependencies 



• Blocking paths for probability propagation. Three ways in which a path 
between Y to X (or vice versa) can be blocked, given evidence E  
 

Z 

Z 

Z 

X Y E 
1 

2 

3 

Summary: (Conditional) Independencies 



 
Training your understanding of 

conditional independencies in AIspace  
 

• These concepts take practice to get used to 
 

 

• Use the AIspace applet for Belief and Decision networks 
(http://aispace.org/bayes/) 
– Load the “conditional independence quiz” network (or any other one) 
– Go in “Solve” mode and select “Independence Quiz” 

 

• You can take an unbounded number of quizzes: 
– It generates questions, you answer, and then get the right answer 
– It also allows you to ask arbitrary queries 
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http://aispace.org/bayes/


Conditional Independencies in a BN 
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Is H conditionally  
independent  
of E given I?  
 
I.e., H ╨ E | I ? 

No Yes 



Conditional Independencies in a BN 
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Is H conditionally  
independent  
of E given I?  
 
I.e., H ╨ E | I ? 
 
Yes! Information flow is blocked 
by the unobserved common child F 



Conditional Independencies in a BN 
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Is A conditionally  
independent  
of I given F?  
 
I.e., A ╨ I | F ? 

No Yes 



Conditional Independencies in a BN 
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Is A conditionally  
independent  
of I given F?  
 
I.e., A ╨ I | F ? 
 
No. Information can pass through  
(all it takes is one possible path) 
 



• Build a Bayesian Network for a given domain 
• Classify the types of inference: 

– Diagnostic, Predictive, Mixed, Intercausal 

• Identify implied (in)dependencies in the network 
 

• Assignment 4 available on WebCT 
– Due Monday, April 4 

• Can only use 2 late days 
• So we can give out solutions to study for the final exam 

– You should now be able to solve questions 1, 2, and 5 
– Questions 3 & 4: mechanical once you know the method 

• Method for Question 3: next Monday 
• Method for Question 4: next Wednesday/Friday 

 

• Final exam: Monday, April 11 
– Less than 3 weeks from now 
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Learning Goals For Today’s Class 


	Slide Number 1
	Lecture Overview
	Recap: Conditional Independence
	Recap: Bayesian Networks, Definition
	Recap: Construction of Bayesian Networks
	Recap: Construction of Bayesian Networks
	Recap of BN construction with a small example
	Recap of BN construction with a small example
	Recap of BN construction with a small example
	Recap of BN construction with a small example
	Recap of BN construction with a small example
	�Remark: where do the conditional probabilities come from?
	Lecture Overview
	Markov Chains
	Hidden Markov Models (HMMs)
	Example HMM: Robot Tracking
	Filtering in Hidden Markov Models (HMMs)
	HMM Filtering: first time step
	HMM Filtering: general time step t
	HMM Filtering Summary
	HMM Filtering Summary
	HMM Filtering: Rainbow Robot Summary
	Lecture Overview
	Bayesian Networks: Incorporating Observations
	Bayesian Networks: Incorporating Observations
	Bayesian Networks: Types of  Inference
	Lecture Overview
	Inference in Bayesian Networks
	Information flow in Bayesian Networks
	Information flow through chain structure
	Information flow through chain structure
	Information flow through common parent
	Information flow through common child
	Information flow through common child
	Summary: (Conditional) Dependencies
	Summary: (Conditional) Independencies
	�Training your understanding of conditional independencies in AIspace
	Conditional Independencies in a BN
	Conditional Independencies in a BN
	Conditional Independencies in a BN
	Conditional Independencies in a BN
	Learning Goals For Today’s Class

