# Reasoning Under Uncertainty: Independence and Inference

CPSC 322 – Uncertainty 5

Textbook §6.3.1 (and 6.5.2 for HMMs)

March 25, 2011

#### Lecture Overview

Recap: Bayesian Networks and Markov Chains

- Inference in a Special Type of Bayesian Network
  - Hidden Markov Models (HMMs)
  - Rainbow Robot example
- Inference in General Bayesian Networks
  - Observations and Inference
  - Time-permitting: Entailed independencies
  - Next lecture: Variable Elimination

### **Recap: Conditional Independence**

#### **Definition (Conditional independence)**

Random variable X is (conditionally) independent of random variable Y given random variable Z, written X  $\parallel Y \mid Z$  if, for all  $x \in dom(X)$ ,  $y_j \in dom(Y)$ ,  $y_k \in dom(Y)$  and  $z \in dom(Z)$  the following equation holds:

$$P(X = x | Y = yj, Z = z)$$
  
= 
$$P(X = x | Y = yk, Z = z)$$
  
= 
$$P(X = x | Z = z)$$

• Definition of X  $\parallel Y \mid Z$  in distribution form:  $P(X \mid Y, Z) = P(X \mid Z)$ 

# Recap: Bayesian Networks, Definition

#### **Definition (Bayesian Network)**

A Bayesian network consists of

- A directed acyclic graph (V, E) whose nodes are labeled with random variables
- A domain for each random variable
- A conditional probability distribution for each variable X
  - Specifies *P*(*X*|*Parents*(*X*))
  - *Parents*(X) is the set of variables X' with  $(X', X) \in E$ 
    - For nodes X without predecessors,  $Parents(X) = \{\}$
- Chain rule:  $P(X_1, ..., X_n) = \prod_{i=1}^n P(X_i | X_1, ..., X_{i-1})$
- Bayesian Network semantics:
  - A variable is conditionally independent of its non-descendants given its parents
  - $X_i \perp \{X_1, ..., X_{i-1}\} \setminus Pa(X_i) \mid Pa(V)$
  - $I.e., P(X_i|X_1,...,X_{i-1}) = P(X_i|pa(X_i))$

#### **Recap: Construction of Bayesian Networks**

Encoding the joint over  $\{X_1, ..., X_n\}$  as a Bayesian network:

- Totally order the variables: e.g., X<sub>1</sub>, ..., X<sub>n</sub>
- For every variable  $X_i$ , find the smallest set of parents  $Pa(X_i) \subseteq \{X_1, ..., X_{i-1}\}$  such that  $X_i \coprod \{X_1, ..., X_{i-1}\} \setminus Pa(X_i) | Pa(X_i)$ 
  - X<sub>i</sub> is conditionally independent from its other ancestors given its parents
- For every variable X<sub>i</sub>, construct its conditional probability table
  - $P(X_i | Pa(X_i))$
  - This has to specify a conditional probability distribution
    P(X<sub>i</sub> | Pa(X<sub>i</sub>) = pa(X<sub>i</sub>)) for every instantiation pa(X<sub>i</sub>) of X<sub>i</sub>'s parents
  - If a variable has 3 parents each of which has a domain with 4 values, how many instantiations of its parents are there?

#### **Recap: Construction of Bayesian Networks**

Encoding the joint over  $\{X_1, ..., X_n\}$  as a Bayesian network:

- Totally order the variables: e.g., X<sub>1</sub>, ..., X<sub>n</sub>
- For every variable  $X_i$ , find the smallest set of parents  $Pa(X_i) \subseteq \{X_1, ..., X_{i-1}\}$  such that  $X_i \coprod \{X_1, ..., X_{i-1}\} \setminus Pa(X_i) | Pa(X_i)$ 
  - X<sub>i</sub> is conditionally independent from its other ancestors given its parents
- For every variable X<sub>i</sub>, construct its conditional probability table
  - $P(X_i | Pa(X_i))$
  - This has to specify a conditional probability distribution
    P(X<sub>i</sub> | Pa(X<sub>i</sub>) = pa(X<sub>i</sub>)) for every instantiation pa(X<sub>i</sub>) of X<sub>i</sub>'s parents
  - If a variable has 3 parents each of which has a domain with 4 values, how many instantiations of its parents are there?
    - 4 \* 4 \* 4 = 4<sup>3</sup>
    - For each of these 4<sup>3</sup> values we need one probability distribution defined over the values of X<sub>i</sub>

- Two Boolean variables: Disease and Symptom
- 1. The causal ordering: Disease, Symptom
- 2. Chain rule:

P(Disease, Symptom) = P(Disease) × P(Symptom |Disease)

- 3. Is Disease \_ Symptom | {} ?
  - I.e., are they marginally independent (conditioned on nothing)?



| Disease D | Symptom S | P(D,S) | Disease D | <i>P(D)</i> | Symptom S | P(S)   |
|-----------|-----------|--------|-----------|-------------|-----------|--------|
| t         | t         | 0.0099 | t         | 0.01        | t         | 0.1089 |
| t         | f         | 0.0001 | f         | 0.99        | f         | 0.8911 |
| f         | t         | 0.0990 |           |             |           |        |
| f         | f         | 0.8910 |           |             |           |        |

- Two Boolean variables: Disease and Symptom
- 1. The causal ordering: Disease, Symptom
- 2. Chain rule:

P(Disease, Symptom) = P(Disease) × P(Symptom |Disease)

- 3. Is Disease \_ Symptom | {} ?
  - I.e., are they marginally independent (conditioned on nothing)?
  - No! That would mean  $P(D,S) = P(D) \times P(S)$ , which is not true
  - We have to put an edge from the parent (Disease) to the child (Symptom)

P(D)

0.01

0.99

Disease -> Symptom

| Disease D | Symptom S | P(D,S) | Disease D |
|-----------|-----------|--------|-----------|
| t         | t         | 0.0099 | t         |
| t         | f         | 0.0001 | f         |
| f         | t         | 0.0990 |           |
| f         | f         | 0.8910 |           |

| Symptom S | P(S)   |  |  |
|-----------|--------|--|--|
| t         | 0.1089 |  |  |
| f         | 0.8911 |  |  |

Which conditional probability tables do we need? 





P(D)

0.01

0.99

|           |           |               | -         |
|-----------|-----------|---------------|-----------|
| Disease D | Symptom S | <i>P(D,S)</i> | Disease D |
| t         | t         | 0.0099        | t         |
| t         | f         | 0.0001        | f         |
| f         | t         | 0.0990        |           |
| f         | f         | 0.8910        |           |

| Symptom S | P(S)   |  |  |
|-----------|--------|--|--|
| t         | 0.1089 |  |  |
| f         | 0.8911 |  |  |

- Which conditional probability tables do we need?
  - P(D) and P(S|D)
  - In general: for each variable X in the network: P(X|Pa(X))



- How about a different ordering? Symptom, Disease
  - We need distributions P(S) and P(D|S)
  - In general: for each variable X in the network: P(X|Pa(X))



# Remark: where do the conditional probabilities come from?

- The joint distribution is not normally the starting point
  - We would have to define exponentially many numbers
- First define the Bayesian network structure
  - Either by domain knowledge
  - Or by machine learning algorithms (see CPSC 540)
    - Typically based on local search
- Then fill in the conditional probability tables
  - Either by domain knowledge
  - Or by machine learning algorithms (see CPSC 340, CPSC 422)
    - Based on statistics over the observed data

### Lecture Overview

• Recap: Bayesian Networks and Markov Chains

Inference in a Special Type of Bayesian Network

- Hidden Markov Models (HMMs)
- Rainbow Robot example
- Inference in General Bayesian Networks
  - Observations and Inference
  - Time-permitting: Entailed independencies
  - Next lecture: Variable Elimination

## Markov Chains

• A Markov chain is a special kind of Bayesian network:



- Intuitively X<sub>t</sub> conveys all of the information about the history that can affect the future states:
  "The past is independent of the future given the present."
- JPD of a Markov Chain:  $P(X_0, ..., X_T) = P(X_0) \times \prod_{t=1}^T P(X_t | X_{t-1})$
- A Markov chain is stationary iff
  - All state transition probability tables are the same
  - I.e., for all t > 0, t' > 0:  $P(X_t | X_{t-1}) = P(X_{t'} | X_{t'-1})$ 
    - Thus, we only need to specify  $P(X_0)$  and  $P(X_t | X_{t-1})$

# Hidden Markov Models (HMMs)

• A Hidden Markov Model (HMM) is a stationary Markov chain plus a noisy observation about the state at each time step:



- Same conditional probability tables at each time step
  - The state transition probability  $P(X_t|X_{t-1})$ 
    - also called the system dynamics
  - The observation probability  $P(O_t|X_t)$ 
    - also called the sensor model
- JPD of an HMM:  $P(X_0, ..., X_T, O_1, ..., O_T)$ =  $P(X_0) \times \prod_{t=1}^T P(X_t | X_{t-1}) \times \prod_{t=1}^T P(O_t | X_t)$

# **Example HMM: Robot Tracking**

Robot tracking as an HMM:



- Robot is moving at random: P(Pos<sub>t</sub>|Pos<sub>t-1</sub>)
- Sensor observations of the current state P(Sens<sub>t</sub>|Pos<sub>t</sub>)

#### Filtering in Hidden Markov Models (HMMs)



- Filtering problem in HMMs: at time step t, we would like to know P(Xt|o1, ..., ot)
- We will derive simple update equations for this belief state:
  - We are given  $P(X_0)$  (i.e.,  $P(X_0 | \{\})$
  - We can compute  $P(X_t|O_1, ..., O_t)$  if we know  $P(X_{t-1}|O_1, ..., O_{t-1})$
  - A simple example of dynamic programming

#### HMM Filtering: first time step By applying $X_0$ $X_1$ $P(X_1 | O_1 = O_1)$ marginalization over X<sub>0</sub> "backwards": $O_1$ $P(X_1, X_0 = x | O_1 = O_1)$ Direct application $x \in dom(X_{0})$ of Bayes rule $\frac{P(O_1 = o_1 | X_1, X_0 = x) \times P(X_1, X_0 = x)}{P(O_1 = o_1)}$ $x \in dom(X_0)$ $O_1 \perp X_0 \mid X_1$ and product rule $\frac{P(O_1 = o_1 | X_1) \times P(X_1 | X_0 = x) \times P(X_0 = x)}{P(O_1 = o_1)}$ $x \in dom(X_0)$ Normalize to make the probability sum to 1. $P(O_1 = o_1)$ is just a number. $P(O_1 = o_1 | X_1) \times P(X_1 | X_0 = x) \times P(X_0 = x)$ $\propto$ $x \in dom(X_{o})$

#### HMM Filtering: general time step t By applying X<sub>t-1</sub> X<sub>t</sub> $P(X_t|o_1,\ldots,o_t)$ marginalization over X<sub>t-1</sub> "backwards": $\sum P(X_{t}, X_{t-1} = x | o_{1}, \dots, o_{t-1}, o_{t})$ $O_t$ $x \in dom(X_{t-1})$ **Direct application** of Bayes rule $\sum_{\substack{P(o_t | X_t, X_{t-1} = x, o_1, \dots, o_{t-1}) \times P(X_t, X_{t-1} = x | o_1, \dots, o_{t-1}) \\ P(o_t | o_1, \dots, o_{t-1})}$ $x \in dom(X_{t-1})$ $O_{t} \perp \{X_{t-1}, O_{1}, \dots, O_{t-1}\} \mid X_{t} \text{ and } X_{t} \perp \{O_{1}, \dots, O_{t-1}\} \mid X_{t-1}$ $\frac{P(o_t|X_t) \times P(X_t|X_{t-1} = x) \times P(X_{t-1} = x|o_1, \dots, o_{t-1})}{P(o_t|o_1, \dots, o_{t-1})}$ $x \in dom(X_{t-1})$ Normalize to make the probability sum to 1. $P(o_t | o_1, \dots, o_{t-1})$ is just a number. $P(o_t|X_t) \times P(X_t|X_{t-1} = x) \times P(X_{t-1} = x|o_1, \dots, o_{t-1})$ $\propto$ $x \in dom(X_{t-1})$

# **HMM Filtering Summary**

- Initialize belief state at time 0:  $P(X_0)$ 
  - In Rainbow Robots, we initialize this for you:  $P(Pos_t)$
  - Belief over where the other robot is: 6x6 matrix summing to one.
- At each time step, update belief state given new observation:



• In Rainbow robots, how many probabilities do you have to store for the updated belief state  $P(X_t | o_1, ..., o_t)$  at time t?



# HMM Filtering Summary

- Initialize belief state at time 0:  $P(X_0)$ 
  - In Rainbow Robots, we initialize this for you:  $P(Pos_t)$
  - Belief over where the other robot is: 6x6 matrix summing to one.
- At each time step, update belief state given new observation:



- In Rainbow robots, how many probabilities do you have to store for the updated belief state  $P(X_t | o_1, ..., o_t)$  at time t?
  - It's just 36.
  - That's the beauty of HMMs: the belief state does not grow.
  - You simply update the previous belief state by applying the same equation every time, with a different observation o<sub>t</sub>

21

#### HMM Filtering: Rainbow Robot Summary

- You will need to implement the belief state updates
  - Not hard if you understand HMM Filtering
  - About 40 lines of Java Code to compute the
    - transition probability  $P(Pos_t = x_t | Pos_{t-1} = x)$  and the
    - observation probability  $P(Sens_t = sens_t | Pos_t = x_t)$
- Then it's just the equation from the previous slide
  - You have the previous belief state  $P(Pos_{t-1} = x | sens_1, ..., sens_{t-1})$ 
    - (6x6 matrix summing to one)
  - Probability for entry  $x_t$  of the new belief state is computed as above:
    - Sum  $P(Pos_t = x_t | Pos_{t-1} = x) \times P(Pos_{t-1} = x | sens_1, \dots, sens_{t-1})$  over all values for x
    - Multiply with the observation probability  $P(Sens_t = sens_t | Pos_t = x_t)$
  - Normalize to make the new belief state sum to one

### Lecture Overview

- Recap: Bayesian Networks and Markov Chains
- Inference in a Special Type of Bayesian Network
  - Hidden Markov Models (HMMs)
  - Rainbow Robot example

Inference in General Bayesian Networks

- Observations and Inference
- Time-permitting: Entailed independencies
- Next lecture: Variable Elimination

#### **Bayesian Networks: Incorporating Observations**

- In the special case of Hidden Markov Models (HMMs):
  - we could easily incorporate observations
  - and do efficient inference (in particular: filtering)

- Back to general Bayesian Networks
  - We can still incorporate observations
  - And we can still do (fairly) efficient inference

#### **Bayesian Networks: Incorporating Observations**

We denote observed variables as shaded. Examples:



#### **Bayesian Networks: Types of Inference**



We will use the same reasoning procedure for all of these types

### Lecture Overview

- Recap: Bayesian Networks and Markov Chains
- Inference in a Special Type of Bayesian Network
  - Hidden Markov Models (HMMs)
  - Rainbow Robot example
- Inference in General Bayesian Networks
  - Observations and Inference
  - Time-permitting: Entailed independencies
  - Next lecture: Variable Elimination

# **Inference in Bayesian Networks**

#### Given

- A Bayesian Network BN, and
- Observations of a subset of its variables E: E=e
- A subset of its variables Y that is queried

Compute the conditional probability P(Y|E=e)

• Step 1: Drop all variables X of the Bayesian network that are conditionally independent of Y given E=e

- By definition of  $Y \perp X \mid E=e$ , we know P(Y|E=e) = P(Y|X=x,E=e)

- We can thus drop X
- Step 2: run variable elimination algorithm (next lecture)

#### Information flow in Bayesian Networks

- A Bayesian network structure implies a number of conditional independencies and dependencies
  - We can determine these directly from the graph structure
    - I.e., we don't need to look at the conditional probability tables
    - Conditional independencies we derive for a graph structure will hold for all possible conditional probability tables
- Information we acquire about one variable flows through the network and changes our beliefs about other variables
  - This is also called probability propagation
  - But information does not flow everywhere:
    Some nodes block information

#### Information flow through chain structure

- Unobserved node in a chain lets information pass
  - E.g. learning the value of Fire will change your belief about Alarm
  - Which will in turn change your belief about Leaving



- Observed node in a chain blocks information
  - If you know the value of Alarm to start with: learning the value of Fire yields no extra information about Leaving



#### Information flow through chain structure

- Information flow is symmetric (X II Y | Z and Y II X | Z are identical)
  - Unobserved node in a chain lets information pass (both ways)
    - E.g. learning the value of Leaving will change your belief about Alarm
    - Which will in turn change your belief about Fire



- Observed node in a chain blocks information (both ways)
  - If you know the value of Alarm to start with: learning the value of Leaving yields no extra information about Fire



#### Information flow through common parent

- Unobserved common parent lets information pass
  - E.g. learning the value of AssignmentGrade changes your belief about UnderstoodMaterial
  - Which will in turn change your belief about ExamGrade



- Observed common parent blocks information
  - If you know the value of UnderstoodMaterial to start with
    - Learning AssignmentGrade yields no extra information about ExamGrade



#### Information flow through common child

- Unobserved common child blocks information
  - E.g. learning the value of Fire will not change your belief about Smoking: the two are marginally independent



- Observed common child lets information pass: explaining away
  - E.g., when you know the alarm is going:
    - then learning that a person smoked next to the fire sensor "explains away the evidence" and thereby changes your beliefs about fire.



#### Information flow through common child

- Exception: unobserved common child lets information pass if one of its descendants is observed
  - This is just as if the child itself was observed
    - E.g., Leaving could be a deterministic function of Alarm, so observing Leaving means you know Alarm as well
    - Thus, a person smoking next to the fire alarm can still "explain away" the evidence of people leaving the building



#### Summary: (Conditional) Dependencies

• In these cases, X and Y are (conditionally) dependent



• In 3, X and Y become dependent as soon as there is evidence on Z or on *any* of its descendants.

#### Summary: (Conditional) Independencies

 Blocking paths for probability propagation. Three ways in which a path between Y to X (or vice versa) can be blocked, given evidence E



# Training your understanding of conditional independencies in Alspace

• These concepts take practice to get used to



- Use the Alspace applet for Belief and Decision networks (<u>http://aispace.org/bayes/</u>)
  - Load the "conditional independence quiz" network (or any other one)
  - Go in "Solve" mode and select "Independence Quiz"
- You can take an unbounded number of quizzes:
  - It generates questions, you answer, and then get the right answer
  - It also allows you to ask arbitrary queries





Is H conditionally independent of E given I?

I.e., H ⊥⊥ E | I ? Yes No











Is A conditionally independent of I given F?

I.e., **A ⊥** I | **F** ?







# Learning Goals For Today's Class

- Build a Bayesian Network for a given domain
- Classify the types of inference:
  - Diagnostic, Predictive, Mixed, Intercausal
- Identify implied (in)dependencies in the network
- Assignment 4 available on WebCT
  - Due Monday, April 4
    - Can only use 2 late days
    - So we can give out solutions to study for the final exam
  - You should now be able to solve questions 1, 2, and 5
  - Questions 3 & 4: mechanical once you know the method
    - Method for Question 3: next Monday
    - Method for Question 4: next Wednesday/Friday
- Final exam: Monday, April 11
  - Less than 3 weeks from now