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Lecture Overview 
 

• Recap: marginal and conditional independence 
 

• Bayesian Networks Introduction 
 

• Hidden Markov Models 
– Rainbow Robot Example 
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Marginal Independence 

• Intuitively: if X ╨ Y, then 
– learning that Y=y does not change your belief in X 
– and this is true for all values y that Y could take 

 

• For example, weather is marginally independent  
from the result of a coin toss 
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Definition (Marginal independence) 
Random variable X is (marginally) independent of random 
variable Y, written X ╨ Y, if for all x ∈ dom(X), yj ∈ dom(Y) and 
yk ∈ dom(Y), the following equation holds: 
 

       𝑃 𝑋 = 𝑥 𝑌 = 𝑦𝑗  
   = 𝑃 𝑋 = 𝑥 𝑌 = 𝑦𝑘  
   = 𝑃(𝑋 = 𝑥) 



Marginal Independence 

• Recall the product rule: 
–  𝑃 𝑋 = 𝑥 ∧ 𝑌 = 𝑦 = 𝑃 𝑋 = 𝑥|𝑌 = 𝑦 × 𝑃(𝑌 = 𝑦) 

• If X ╨ Y, we have: 
–  𝑃 𝑋 = 𝑥 ∧ 𝑌 = 𝑦 = 𝑃 𝑋 = 𝑥 × 𝑃 𝑌 = 𝑦  
–  In distribution form: 𝑃 𝑋,𝑌 = 𝑃 𝑋 × 𝑃 𝑌  

 

• If 𝑋i ╨ 𝑋𝑗 for all i, j: 
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Definition (Marginal independence) 
Random variable X is (marginally) independent of random 
variable Y, written X ╨ Y, if for all x ∈ dom(X), yj ∈ dom(Y) and 
yk ∈ dom(Y), the following equation holds: 
 

       𝑃 𝑋 = 𝑥 𝑌 = 𝑦𝑗  
   = 𝑃 𝑋 = 𝑥 𝑌 = 𝑦𝑘  
   = 𝑃(𝑋 = 𝑥) 

𝑃 𝑋1 , … ,𝑋𝑋 = � 𝑃(𝑋𝑋)
𝑛

𝑖=1
 



Conditional Independence 
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Definition (Conditional independence) 
Random variable X is (conditionally) independent of random 
variable Y given random variable Z, written X ╨ Y | Z if, for all 
x ∈ dom(X), yj ∈ dom(Y), yk ∈ dom(Y) and z ∈ dom(Z) the 
following equation holds: 
 

       𝑃 𝑋 = 𝑥 𝑌 = 𝑦𝑗,𝑍 = 𝑧  
   = 𝑃 𝑋 = 𝑥 𝑌 = 𝑦𝑘,𝑍 = 𝑧  
   = 𝑃 𝑋 = 𝑥 𝑍 = 𝑧  

• Intuitively: if X ╨ Y | Z, then 
– learning that Y=y does not change your belief in X  

when we already know Z=z 
– and this is true for all values y that Y could take  

and all values z that Z could take 

• For example,  
ExamGrade ╨ AssignmentGrade | UnderstoodMaterial 



Conditional Independence 

• Definition of X ╨ Y | Z in distribution form: 𝑃 𝑋|𝑌,𝑍 = 𝑃 𝑋|𝑍  
• Product rule still holds when every term is conditioned on Z=z: 

–  𝑃 𝑋 = 𝑥 ∧ 𝑌 = 𝑦|𝑍 = 𝑧 = 𝑃 𝑋 = 𝑥|𝑌 = 𝑦,𝑍 = 𝑧 × 𝑃(𝑌 = 𝑦|𝑍 = 𝑧) 

• Thus, if X ╨ Y | Z : 
–  𝑃 𝑋 = 𝑥 ∧ 𝑌 = 𝑦|𝑍 = 𝑧 = 𝑃 𝑋 = 𝑥|𝑍 = 𝑧 × 𝑃 𝑌 = 𝑦|𝑍 = 𝑧  
–  In distribution form: 𝑃 𝑋,𝑌|𝑍 = 𝑃 𝑋|𝑍 × 𝑃 𝑌|𝑍  

Definition (Conditional independence) 
Random variable X is (conditionally) independent of random 
variable Y given random variable Z, written X ╨ Y | Z if, for all 
x ∈ dom(X), yj ∈ dom(Y), yk ∈ dom(Y) and z ∈ dom(Z) the 
following equation holds: 
 

       𝑃 𝑋 = 𝑥 𝑌 = 𝑦𝑗,𝑍 = 𝑧  
   = 𝑃 𝑋 = 𝑥 𝑌 = 𝑦𝑘,𝑍 = 𝑧  
   = 𝑃 𝑋 = 𝑥 𝑍 = 𝑧  



Lecture Overview 
 

• Recap: marginal and conditional independence 
 

• Bayesian Networks Introduction 
 

• Hidden Markov Models 
– Rainbow Robot Example 
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Bayesian Network Motivation 
• We want a representation and reasoning system that is 

based on conditional (and marginal) independence 
– Compact yet expressive representation 
– Efficient reasoning procedures 

• Bayesian Networks are such a representation 
– Named after Thomas Bayes (ca. 1702 –1761) 
– Term coined in 1985 by Judea Pearl (1936 –  ) 
– Their invention changed the focus on AI from logic to probability! 

 
 

 
 
 
 
 

             Thomas Bayes                               Judea Pearl 8 



Bayesian Networks: Intuition 
 

• A graphical representation for a joint probability distribution 
– Nodes are random variables 
– Directed edges between nodes reflect dependence 

 

• We already (informally) saw some examples: 
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Understood
Material 

Assignment 
Grade 

Exam 
Grade Alarm 

Smoking At 
Sensor 

Fire 

Pos0 Pos1 Pos2 



Bayesian Networks: Definition 
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Definition (Bayesian Network) 
A Bayesian network consists of 

• A directed acyclic graph V, E  whose nodes are labeled 
with random variables 

• A domain for each random variable 
• A conditional probability distribution for each variable V 

- Specifies 𝑃 𝑉 𝑃𝑃𝑃𝑃𝑋𝑃𝑃 𝑉  
- 𝑃𝑃𝑃𝑃𝑋𝑃𝑃 𝑉  is the set of variables V′ with V′, V ∈ 𝐸 

• For nodes V without predecessors, 𝑃𝑃𝑃𝑃𝑋𝑃𝑃 𝑉 = { } 

• The parents of variable V are those V directly depends on 
• A Bayesian network is a compact representation of the 

JPD: P(X1, …, Xn) = ∏  𝑛
𝑖=1 P( Xi|Pa(Xi) ) 

• Other names for Bayesian networks:  
– Bayes nets, Belief networks, Bayesian Belief networks 
– Common abbreviation: BN 

 



Bayesian Networks: Definition 
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Definition (Bayesian Network) 
A Bayesian network consists of 

• A directed acyclic graph V, E  whose nodes are labeled 
with random variables 

• A domain for each random variable 
• A conditional probability distribution for each variable V 

- Specifies 𝑃 𝑉 𝑃𝑃𝑃𝑃𝑋𝑃𝑃 𝑉  
- 𝑃𝑃𝑃𝑃𝑋𝑃𝑃 𝑉  is the set of variables V′ with V′, V ∈ 𝐸 

• For nodes V without predecessors, 𝑃𝑃𝑃𝑃𝑋𝑃𝑃 𝑉 = { } 

• Discrete Bayesian networks: 
– Domain of each variable is finite 
– Conditional probability distribution is a conditional probability table  
– We will assume this discrete case 

• But everything we say about independence (marginal & conditional) 
carries over to the continuous case 

 



Example for BN construction: Fire Diagnosis 

Bayesian networks are a compact representation of the  
joint probability distribution (over all variables in the network) 
Encoding the joint over X = {X1, …, Xn} as a Bayesian network: 

 

1. Totally order the variables of interest: X1, …, Xn   
 

2. Use chain rule with that ordering: P(X1, …, Xn) = ∏  𝑛
𝑖=1 P(Xi|Xi-1,...,X1)  

 

3. For every variable Xi, find the smallest set of parents  
Pa(Xi) ⊆ {X1, …, Xi-1} such that Xi ╨ {X1, …, Xi-1} \ Pa(Xi) | Pa(Xi) 
• Xi is conditionally independent from its other ancestors given its parents 

 

4. Then we can rewrite P(X1, …, Xn) = ∏  𝑛
𝑖=1 P( Xi|Pa(Xi) ) 

• This is a compact representation of the joint probability distribution 
 

5. Construct the BN 
• Nodes are variables 
• Directed edges from all variables in Pa(Xi) to Xi   
• Conditional probability table for each variable Xi : P(Xi | Pa(Xi) ) 
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Example for BN construction: Fire Diagnosis 

 
You want to diagnose whether there is a fire in a building 
• You receive a noisy report about whether everyone is 

leaving the building 
• If everyone is leaving, this may have been caused by a fire 

alarm 
• If there is a fire alarm, it may have been caused by a fire or 

by tampering  
• If there is a fire, there may be smoke 
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Example for BN construction: Fire Diagnosis 

First you choose the variables. In this case, all are Boolean: 
• Tampering is true when the alarm has been tampered with 
• Fire is true when there is a fire 
• Alarm is true when there is an alarm 
• Smoke is true when there is smoke 
• Leaving is true if there are lots of people leaving the 

building 
• Report is true if the sensor reports that lots of people are 

leaving the building 
 

• Let’s construct the Bayesian network for this (whiteboard) 
– First, you choose a total ordering of the variables, let’s say:  

Fire; Tampering; Alarm; Smoke; Leaving; Report. 
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Example for BN construction: Fire Diagnosis 
• Using the total ordering of variables:  

– Let’s say Fire; Tampering; Alarm; Smoke; Leaving; Report. 
 

• Now choose the parents for each variable by evaluating 
conditional independencies 
– Fire is the first variable in the ordering. It does not have parents. 
– Tampering independent of fire (learning that one is true would not 

change your beliefs about the probability of the other) 
– Alarm depends on both Fire and Tampering: it could be caused by 

either or both 
– Smoke is caused by Fire, and so is independent of Tampering and 

Alarm given whether there is a Fire 
– Leaving is caused by Alarm, and thus is independent of the other 

variables given Alarm 
– Report is caused by Leaving, and thus is independent of the other 

variables given Leaving 
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Example for BN construction: Fire Diagnosis 
• This results in the following Bayesian network 

 
 
 
 
 
 
 
 

• P(Tampering, Fire, Alarm, Smoke, Leaving, Report) 
= P(Tampering) × P(Fire) × P(Alarm|Tampering,Fire) 
   × P(Smoke|Fire) × P(Leaving|Alarm) × P(Report|Leaving) 

• Of course, we're not done until we also come up with 
conditional probability tables for each node in the graph 16 



Example for BN construction: Fire Diagnosis 
 
 
 
 
 
 
 
 

• All variables are Boolean 
• How many probabilities do we need to specify for this 

Bayesian network? 
– This time taking into account that probability tables have to sum to 1 

17 

12 6 20 26-1 



Example for BN construction: Fire Diagnosis 
 
 
 
 
 
 
 
 

• All variables are Boolean 
• How many probabilities do we need to specify for this 

network? 
– This time taking into account that probability tables have to sum to 1 

• P(Tampering): 1 probability 
• P(Alarm|Tampering, Fire): 4 

1 probability for each of the 4 instantiations of the parents 
• In total: 1+1+4+2+2+2 = 12 
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P(Tampering=t) P(Tampering=f) 

0.02 0.98 

Example for BN construction: Fire Diagnosis 

We don’t need to  
store P(Tampering=f)  
since probabilities sum to 1 
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P(Tampering=t) 

0.02 



Tampering T Fire F P(Alarm=t|T,F) P(Alarm=f|T,F) 

t t 0.5 0.5 
t f 0.85 0.15 
f t 0.99 0.01 
f f 0.0001 0.9999 

Example for BN construction: Fire Diagnosis 
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P(Tampering=t) 

0.02 

P(Fire=t) 

0.01 

We don’t need to store 
P(Alarm=f|T,F) since 
probabilities sum to 1 

Each row of this table is a conditional probability distribution 

Each column of this table is a conditional probability distribution 



Example for BN construction: Fire Diagnosis 
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Tampering T Fire F P(Alarm=t|T,F) 

t t 0.5 
t f 0.85 
f t 0.99 
f f 0.0001 

P(Tampering=t) 

0.02 

P(Fire=t) 

0.01 

We don’t need to store 
P(Alarm=f|T,F) since 
probabilities sum to 1 
Each row of this table is a 
conditional probability 
distribution 



Example for BN construction: Fire Diagnosis 

P(Tampering=t, Fire=f, Alarm=t, Smoke=f, Leaving=t, Report=t) 
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Tampering T Fire F P(Alarm=t|T,F) 

t t 0.5 
t f 0.85 
f t 0.99 
f f 0.0001 

P(Tampering=t) 

0.02 

P(Fire=t) 

0.01 

Fire F P(Smoke=t |F) 

t 0.9 
f 0.01 

Alarm P(Leaving=t|A) 

t 0.88 
f 0.001 Leaving P(Report=t|A) 

t 0.75 
f 0.01 



Example for BN construction: Fire Diagnosis 

P(Tampering=t, Fire=f, Alarm=t, Smoke=f, Leaving=t, Report=t) 
= P(Tampering=t) × P(Fire=f) × P(Alarm=t|Tampering=t,Fire=f) 
    × P(Smoke=f|Fire=f) × P(Leaving=t|Alarm=t) 
    × P(Report=t|Leaving=t) 
= 0.02 × (1-0.01) × 0.85 × (1-0.01) × 0.88 × 0.75 
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Tampering T Fire F P(Alarm=t|T,F) 

t t 0.5 
t f 0.85 
f t 0.99 
f f 0.0001 

P(Tampering=t) 

0.02 

P(Fire=t) 

0.01 

Fire F P(Smoke=t |F) 

t 0.9 
f 0.01 

Alarm P(Leaving=t|A) 

t 0.88 
f 0.001 Leaving P(Report=t|A) 

t 0.75 
f 0.01 



What if we use a different ordering? 
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Leaving 

Report 

Tampering 

Smoke 

Alarm 

• We end up with a completely different network structure! 
• Which of the two structures is better (think computationally)? 

Fire 

The previous structure 

This structure 

• Important for assignment 4, question 2: 
• Say, we use the following order: 

– Leaving; Tampering; Report; Smoke; Alarm; Fire. 

 



What if we use a different ordering? 
• Important for assignment 4, question 2: 
• Say, we use the following order: 

– Leaving; Tampering; Report; Smoke; Alarm; Fire. 

 

25 

Leaving 

Report 

Tampering 

Smoke 

Alarm 

• We end up with a completely different network structure! 
• Which of the two structures is better (think computationally)? 

– In the last network, we had to specify 12 probabilities 
– Here? 1 + 2 + 2 + 2 + 8 + 8 = 23 
– The causal structure typically leads to the most compact network 

• Compactness typically enables more efficient reasoning 

Fire 



Are there wrong network structures? 
• Important for assignment 4, question 2 
• Some variable orderings yield more compact, some less 

compact structures 
– Compact ones are better 
– But all representations resulting from this process are correct 
– One extreme: the fully connected network is always correct but 

rarely the best choice 

• How can a network structure be wrong? 
– If it misses directed edges that are required 
– E.g. an edge is missing below: Fire ╨ Alarm | {Tampering, Smoke} 
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Leaving 

Report 

Tampering 

Smoke 

Alarm 

Fire 



Lecture Overview 
 

• Recap: marginal and conditional independence 
 

• Bayesian Networks Introduction 
 

• Hidden Markov Models 
– Rainbow Robot Example 
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Markov Chains 
• A Markov chain is a special kind of belief network: 

 
 
 

• Xt represents a state at time t.  
• Its dependence structure yields: P(Xt|X1, …, Xt-1) = P(Xt|Xt-1) 

– This conditional probability distribution is called the 
state transition probability 

– Intuitively Xt conveys all of the information about the history that can 
affect the future states: 
“The past is independent of the future given the present.“ 

 
• JPD of a Markov Chain: P(X0,…,XT) = P(X0) ×  ∏  𝑇

𝑡=1 P(Xt|Xt-1) 
 28 

X0 X1 X2 

  
… 



Stationary Markov Chains 
 
 
 
 

• A stationary Markov chain is when  
– All state transition probability tables are the same 
– I.e., for all t > 0, t’ > 0: P(Xt|Xt-1) = P(Xt’|Xt’-1) 

 
• We only need to specify P(X0) and P(Xt |Xt-1). 

– Simple model, easy to specify 
– Often the natural model 
– The network can extend indefinitely 

29 

X0 X1 X2 

  
… 



Hidden Markov Models (HMMs) 
• A Hidden Markov Model (HMM) is a Markov chain plus a 

noisy observation about the state at each time step: 
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O1 

X0 X1 

O2 

X2 

• Same conditional probability tables at each time step 
– The state transition probability P(Xt|Xt-1) 

• also called the system dynamics 
– The observation probability P(Ot|Xt) 

• also called the sensor model 
 

• JPD of an HMM: P(X0, …, XT, O1, …, OT)  
= P(X0) ×  ∏  𝑇

𝑡=1 P(Xt|Xt-1) × ∏  𝑇
𝑡=1 P(Ot|Xt-1) 

  
… 



Example HMM: Robot Tracking 
• Robot tracking as an HMM: 

31 

Sens1 

Pos0 Pos1 

Sens2 

Pos2 

• Robot is moving at random: P(Post|Post-1) 
• Sensor observations of the current state P(Senst|Post) 

 

  
… 



Filtering in Hidden Markov Models (HMMs) 

32 

O1 

X0 X1 

O2 

X2 

• Filtering problem in HMMs:  
at time step t, we would like to know P(Xt|O1, …, Ot) 
 

• We will derive simple update equations: 
– Compute P(Xt|O1, …, Ot) if we already know P(Xt-1|O1, …, Ot-1) 

 

  
… 



HMM Filtering: first time step 
𝑃 𝑋1|𝑂1 = o1  

 

= � 𝑃 𝑋1,𝑋0 = 𝑥|𝑂1 = 𝑜1
𝑥 ∈𝑑𝑑𝑑(𝑋0)

 

 

= �
𝑃 𝑂1 = 𝑜1 𝑋1,𝑋0 = 𝑥 × 𝑃(𝑋1,𝑋0 = 𝑥)

𝑃(𝑂1 = o1)
𝑥 ∈𝑑𝑑𝑑(𝑋0)

 

 

= �
𝑃 𝑂1 = 𝑜1 𝑋1 × 𝑃(𝑋1|𝑋0 = 𝑥) × 𝑃(𝑋0 = 𝑥)

𝑃(𝑂1 = o1)
𝑥 ∈𝑑𝑑𝑑(𝑋0)

 

 

∝ � 𝑃 𝑂1 = 𝑜1 𝑋1 × 𝑃(𝑋1|𝑋0 = 𝑥) × 𝑃(𝑋0 = 𝑥)
𝑥 ∈𝑑𝑑𝑑(𝑋0)

 

O1 

X0 X1 

Direct application  
of Bayes rule 

O1 ╨ X0 | X1 and 
product rule 

By applying 
marginalization over 
X0 “backwards”: 

Normalize to make the probability to sum to 1. 



HMM Filtering: general time step t 
𝑃 𝑋t|𝑜1, . . . , 𝑜t  

 

= � 𝑃 𝑋t,𝑋t−1 = 𝑥|𝑜1, . . . , 𝑜𝑃
𝑥 ∈𝑑𝑑𝑑(𝑋t−1)

 

 
= �

𝑃 𝑜𝑃 𝑋t,𝑋t−1 = 𝑥, 𝑜1, . . . , 𝑜t−1 × 𝑃(𝑋t,𝑋t−1 = 𝑥|𝑜1, . . . , 𝑜t−1)
𝑃(𝑜t)𝑥 ∈𝑑𝑑𝑑(𝑋t−1)

 

 
 

= �
𝑃 𝑜t 𝑋t × 𝑃(𝑋𝑃|𝑋t−1 = 𝑥) × 𝑃(𝑋t−1 = 𝑥|𝑜1, . . . , ot−1)

𝑃(𝑜𝑃)𝑥 ∈𝑑𝑑𝑑(𝑋t−1)

 

 
∝ � 𝑃 𝑜t 𝑋t × 𝑃(𝑋t|𝑋t−1 = 𝑥) × 𝑃(𝑋t−1 = 𝑥|𝑜1, . . . , 𝑜t−1)

𝑥 ∈𝑑𝑑𝑑(𝑋t−1)

 

Direct application  
of Bayes rule 

Ot ╨ {Xt-1, O1,…,Ot-1} | Xt  and Xt ╨ {O1,…,Ot-1} | Xt-1 

By applying 
marginalization over 
Xt-1 “backwards”: 

Normalize to make the probability to sum to 1. 

Ot 

Xt-1 Xt 



HMM Filtering Summary  
• Initialize belief state at time 0: P(X0) 

– In Rainbow Robots, we initialize this for you: P(Post) 
 

• At each time step, update belief state given new 
observation: 
 
 
 
 
 

• Rainbow Robot example 
– take the last belief state,  
– multiply it with the transition probability 𝑃 𝑃𝑜𝑃𝑃 𝑃𝑜𝑃t−1  
– multiply it with the observation probability 𝑃 𝑆𝑃𝑋𝑃𝑃 𝑃𝑜𝑃t  

– and normalize 
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𝑃 𝑋t|𝑜1, . . . , 𝑜t  

  

∝ � 𝑃 𝑜t 𝑋t × 𝑃(𝑋t|𝑋t−1 = 𝑥) × 𝑃(𝑋t−1 = 𝑥|𝑜1, . . . , 𝑜t−1)
𝑥 ∈𝑑𝑑𝑑(𝑋t−1)

 

Observation probability 

Transition probability 

We already know this  
from the previous step 



• Build a Bayesian Network for a given domain 
• Compute the representational savings in terms of number 

of probabilities required 
 

 

• Assignment 4 available on WebCT 
– Due Monday, April 4 

• Can only use 2 late days 
• So we can give out solutions to study for the final exam 

– Final exam: Monday, April 11 
• Less than 3 weeks from now 

 

– You should now be able to solve questions 1, 2, and 5 
• Material for Question 3: Friday, and wrap-up on Monday 
• Material for Question 4: next week 
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Learning Goals For Today’s Class 
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