Reasoning Under Uncertainty: Bayesian networks intro

CPSC 322 - Uncertainty 4

Textbook §6.3-6.3.1
March 23, 2011

Lecture Overview

Recap: marginal and conditional independence

- Bayesian Networks Introduction
- Hidden Markov Models
- Rainbow Robot Example

Marginal Independence

Definition (Marginal independence)

Random variable X is (marginally) independent of random variable Y , written $\mathrm{X} \Perp \mathrm{Y}$, if for all $\mathrm{X} \in \operatorname{dom}(\mathrm{X}), \mathrm{y}_{\mathrm{j}} \in \operatorname{dom}(\mathrm{Y})$ and $\mathrm{y}_{\mathrm{k}} \in \operatorname{dom}(\mathrm{Y})$, the following equation holds:

$$
\begin{aligned}
& P\left(X=x \mid Y=y_{j}\right) \\
= & P\left(X=x \mid Y=y_{k}\right) \\
= & P(X=x)
\end{aligned}
$$

- Intuitively: if $X \Perp Y$, then
- learning that $Y=y$ does not change your belief in X
- and this is true for all values y that Y could take
- For example, weather is marginally independent from the result of a coin toss

Marginal Independence

Definition (Marginal independence)

Random variable X is (marginally) independent of random variable Y , written $\mathrm{X} \Perp \mathrm{Y}$, if for all $\mathrm{X} \in \operatorname{dom}(\mathrm{X}), \mathrm{y}_{\mathrm{j}} \in \operatorname{dom}(\mathrm{Y})$ and $\mathrm{y}_{\mathrm{k}} \in \operatorname{dom}(\mathrm{Y})$, the following equation holds:

$$
\begin{aligned}
& P\left(X=x \mid Y=y_{j}\right) \\
= & P\left(X=x \mid Y=y_{k}\right) \\
= & P(X=x)
\end{aligned}
$$

- Recall the product rule:
- $P(X=x \wedge Y=y)=P(X=x \mid Y=y) \times P(Y=y)$
- If $\mathrm{X} \Perp \mathrm{Y}$, we have:
- $P(X=x \wedge Y=y)=P(X=x) \times P(Y=y)$
- In distribution form: $P(X, Y)=P(X) \times P(Y)$
- If $X_{\mathrm{i}} \Perp X_{j}$ for all $\mathrm{i}, \mathrm{j}: \quad P\left(X_{1}, \ldots, X n\right)=\prod_{i=1}^{n} P(X i)$

Conditional Independence

Definition (Conditional independence)

Random variable X is (conditionally) independent of random variable Y given random variable Z, written $X \Perp Y \mid Z$ if, for all $x \in \operatorname{dom}(X), y_{j} \in \operatorname{dom}(Y), y_{k} \in \operatorname{dom}(Y)$ and $z \in \operatorname{dom}(Z)$ the following equation holds:

$$
\begin{aligned}
& P\left(X=x \mid Y=y_{j}, Z=z\right) \\
= & P\left(X=x \mid Y=y_{k}, Z=z\right) \\
= & P(X=x \mid Z=z)
\end{aligned}
$$

- Intuitively: if $X \Perp Y \mid Z$, then
- learning that $Y=y$ does not change your belief in X when we already know $\mathrm{Z}=\mathrm{z}$
- and this is true for all values y that Y could take and all values z that Z could take
- For example,

ExamGrade \Perp AssignmentGrade | UnderstoodMaterial

Conditional Independence

Definition (Conditional independence)

Random variable X is (conditionally) independent of random variable Y given random variable Z, written $X \Perp Y \mid Z$ if, for all $x \in \operatorname{dom}(X), y_{j} \in \operatorname{dom}(Y), y_{k} \in \operatorname{dom}(Y)$ and $z \in \operatorname{dom}(Z)$ the following equation holds:

$$
\begin{aligned}
& P(X=x \mid Y=y j, Z=z) \\
= & P(X=x \mid Y=y k, Z=z) \\
= & P(X=x \mid Z=z)
\end{aligned}
$$

- Definition of $\mathrm{X} \Perp \mathrm{Y} \mid \mathrm{Z}$ in distribution form: $P(X \mid Y, Z)=P(X \mid Z)$
- Product rule still holds when every term is conditioned on $\mathrm{Z}=\mathrm{Z}$:

$$
\text { - } P(X=x \wedge Y=y \mid Z=z)=P(X=x \mid Y=y, Z=z) \times P(Y=y \mid Z=z)
$$

- Thus, if $\mathrm{X} \Perp \mathrm{Y} \mid \mathrm{Z}$:
- $P(X=x \wedge Y=y \mid Z=z)=P(X=x \mid Z=z) \times P(Y=y \mid Z=z)$
- In distribution form: $P(X, Y \mid Z)=P(X \mid Z) \times P(Y \mid Z)$

Lecture Overview

- Recap: marginal and conditional independence

Bayesian Networks Introduction

- Hidden Markov Models
- Rainbow Robot Example

Bayesian Network Motivation

- We want a representation and reasoning system that is based on conditional (and marginal) independence
- Compact yet expressive representation
- Efficient reasoning procedures
- Bayesian Networks are such a representation
- Named after Thomas Bayes (ca. 1702 -1761)
- Term coined in 1985 by Judea Pearl (1936 -)
- Their invention changed the focus on AI from logic to probability!

Thomas Bayes

Judea Pearl

Bayesian Networks: Intuition

- A graphical representation for a joint probability distribution
- Nodes are random variables
- Directed edges between nodes reflect dependence
- We already (informally) saw some examples:

Smoking At Sensor

Bayesian Networks: Definition

Definition (Bayesian Network)

A Bayesian network consists of

- A directed acyclic graph (V, E) whose nodes are labeled with random variables
- A domain for each random variable
- A conditional probability distribution for each variable V
- Specifies $P(V \mid$ Parents $(V))$
- Parents (V) is the set of variables V^{\prime} with $\left(\mathrm{V}^{\prime}, \mathrm{V}\right) \in E$
- For nodes V without predecessors, Parents $(V)=\{ \}$
- The parents of variable \vee are those \vee directly depends on
- A Bayesian network is a compact representation of the JPD: $\mathrm{P}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)=\prod_{i=1}^{n} \mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{Pa}\left(\mathrm{X}_{\mathrm{i}}\right)\right)$
- Other names for Bayesian networks:
- Bayes nets, Belief networks, Bayesian Belief networks
- Common abbreviation: BN

Bayesian Networks: Definition

Definition (Bayesian Network)

A Bayesian network consists of

- A directed acyclic graph (V, E) whose nodes are labeled with random variables
- A domain for each random variable
- A conditional probability distribution for each variable V
- Specifies $P(V \mid$ Parents $(V))$
- Parents (V) is the set of variables V^{\prime} with $\left(\mathrm{V}^{\prime}, \mathrm{V}\right) \in E$
- For nodes V without predecessors, Parents $(V)=\{ \}$
- Discrete Bayesian networks:
- Domain of each variable is finite
- Conditional probability distribution is a conditional probability table
- We will assume this discrete case
- But everything we say about independence (marginal \& conditional) carries over to the continuous case

Example for BN construction: Fire Diagnosis

Bayesian networks are a compact representation of the joint probability distribution (over all variables in the network)
Encoding the joint over $\mathcal{X}=\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}$ as a Bayesian network:

1. Totally order the variables of interest: X_{1}, \ldots, X_{n}
2. Use chain rule with that ordering: $\mathrm{P}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)=\prod_{i=1}^{n} \mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i}-1}, \ldots, \mathrm{X}_{1}\right)$
3. For every variable X_{i}, find the smallest set of parents $\mathrm{Pa}\left(\mathrm{X}_{\mathrm{i}}\right) \subseteq\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{i}-1}\right\}$ such that $\mathrm{X}_{\mathrm{i}} \Perp\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{i}-1}\right\} \backslash \mathrm{Pa}\left(\mathrm{X}_{\mathrm{i}}\right) \mid \mathrm{Pa}\left(\mathrm{X}_{\mathrm{i}}\right)$

- X_{i} is conditionally independent from its other ancestors given its parents

4. Then we can rewrite $\mathrm{P}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)=\prod_{i=1}^{n} \mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{Pa}\left(\mathrm{X}_{\mathrm{i}}\right)\right)$

- This is a compact representation of the joint probability distribution

5. Construct the BN

- Nodes are variables
- Directed edges from all variables in $\mathrm{Pa}\left(\mathrm{X}_{\mathrm{i}}\right)$ to X_{i}
- Conditional probability table for each variable $\mathrm{X}_{\mathrm{i}}: \mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{Pa}\left(\mathrm{X}_{\mathrm{i}}\right)\right)$

Example for BN construction: Fire Diagnosis

You want to diagnose whether there is a fire in a building

- You receive a noisy report about whether everyone is leaving the building
- If everyone is leaving, this may have been caused by a fire alarm
- If there is a fire alarm, it may have been caused by a fire or by tampering
- If there is a fire, there may be smoke

Example for BN construction: Fire Diagnosis

First you choose the variables. In this case, all are Boolean:

- Tampering is true when the alarm has been tampered with
- Fire is true when there is a fire
- Alarm is true when there is an alarm
- Smoke is true when there is smoke
- Leaving is true if there are lots of people leaving the building
- Report is true if the sensor reports that lots of people are leaving the building
- Let's construct the Bayesian network for this (whiteboard)
- First, you choose a total ordering of the variables, let's say: Fire; Tampering; Alarm; Smoke; Leaving; Report.

Example for BN construction: Fire Diagnosis

- Using the total ordering of variables:
- Let's say Fire; Tampering; Alarm; Smoke; Leaving; Report.
- Now choose the parents for each variable by evaluating conditional independencies
- Fire is the first variable in the ordering. It does not have parents.
- Tampering independent of fire (learning that one is true would not change your beliefs about the probability of the other)
- Alarm depends on both Fire and Tampering: it could be caused by either or both
- Smoke is caused by Fire, and so is independent of Tampering and Alarm given whether there is a Fire
- Leaving is caused by Alarm, and thus is independent of the other variables given Alarm
- Report is caused by Leaving, and thus is independent of the other variables given Leaving

Example for BN construction: Fire Diagnosis

- This results in the following Bayesian network

- P(Tampering, Fire, Alarm, Smoke, Leaving, Report) $=\mathrm{P}($ Tampering $) \times \mathrm{P}($ Fire $) \times \mathrm{P}$ (Alarm \mid Tampering, Fire $)$ $\times P($ Smoke \mid Fire $) \times P($ Leaving \mid Alarm $) \times P($ Report|Leaving $)$
- Of course, we're not done until we also come up with conditional probability tables for each node in the graph

Example for BN construction: Fire Diagnosis

- All variables are Boolean
- How many probabilities do we need to specify for this Bayesian network?
- This time taking into account that probability tables have to sum to 1

6	12	20	$2^{6}-1$

Example for BN construction: Fire Diagnosis

- All variables are Boolean
- How many probabilities do we need to specify for this network?
- This time taking into account that probability tables have to sum to 1
- P (Tampering): 1 probability
- P(Alarm|Tampering, Fire): 4

1 probability for each of the 4 instantiations of the parents

- In total: $1+1+4+2+2+2=12$

Example for BN construction: Fire Diagnosis

Example for BN construction: Fire Diagnosis

Tampering T	Fire F	$P($ Alarm $=t \mid T, F)$	$P($ Alarm $=f \mid T, F)$
t	t	0.5	0.5
t	f	0.85	0.15
f	t	0.99	0.01
f	f	0.0001	0.9999

We don't need to store P(Alarm=f|T,F) since probabilities sum to 1

Each row of this table is a conditional probability distribution

Example for BN construction: Fire Diagnosis

Tampering T	Fire F	$P($ Alarm $=t \mid T, F)$
t	t	0.5
t	f	0.85
f	t	0.99
f	f	0.0001

We don't need to store P(Alarm=f|T,F) since probabilities sum to 1 Each row of this table is a conditional probability distribution

Example for BN construction: Fire Diagnosis

Example for BN construction: Fire Diagnosis

What if we use a different ordering?

- Important for assignment 4, question 2:
- Say, we use the following order:
- Leaving; Tampering; Report; Smoke; Alarm; Fire.

- We end up with a completely different network structure!
- Which of the two structures is better (think computationally)?

The previous structure

This structure

What if we use a different ordering?

- Important for assignment 4, question 2:
- Say, we use the following order:
- Leaving; Tampering; Report; Smoke; Alarm; Fire.

- We end up with a completely different network structure!
- Which of the two structures is better (think computationally)?
- In the last network, we had to specify 12 probabilities
- Here? $1+2+2+2+8+8=23$
- The causal structure typically leads to the most compact network
- Compactness typically enables more efficient reasoning

Are there wrong network structures?

- Important for assignment 4, question 2
- Some variable orderings yield more compact, some less compact structures
- Compact ones are better
- But all representations resulting from this process are correct
- One extreme: the fully connected network is always correct but rarely the best choice
- How can a network structure be wrong?
- If it misses directed edges that are required
- E.g. an edge is missing below: Fire $\not \subset$ Alarm | \{Tampering, Smoke $\}$

Lecture Overview

- Recap: marginal and conditional independence
- Bayesian Networks Introduction

Hidden Markov Models

- Rainbow Robot Example

Markov Chains

- A Markov chain is a special kind of belief network:

- X_{t} represents a state at time t.
- Its dependence structure yields: $P\left(X_{t} \mid X_{1}, \ldots, X_{t-1}\right)=P\left(X_{t} \mid X_{t-1}\right)$
- This conditional probability distribution is called the state transition probability
- Intuitively X_{t} conveys all of the information about the history that can affect the future states:
"The past is independent of the future given the present."
- JPD of a Markov Chain: $\mathrm{P}\left(\mathrm{X}_{0}, \ldots, \mathrm{X}_{\mathrm{T}}\right)=\mathrm{P}\left(\mathrm{X}_{0}\right) \times \prod_{t=1}^{T} \mathrm{P}\left(\mathrm{X}_{\mathrm{t}} \mid \mathrm{X}_{\mathrm{t}-1}\right)$

Stationary Markov Chains

Hidden Markov Models (HMMs)

- A Hidden Markov Model (HMM) is a Markov chain plus a noisy observation about the state at each time step:

- Same conditional probability tables at each time step
- The state transition probability $\mathrm{P}\left(\mathrm{X}_{\mathrm{t}} \mid \mathrm{X}_{\mathrm{t}-1}\right)$
- also called the system dynamics
- The observation probability $\mathrm{P}\left(\mathrm{O}_{\mathrm{t}} \mid \mathrm{X}_{\mathrm{t}}\right)$
- also called the sensor model
- JPD of an HMM: $\mathrm{P}\left(\mathrm{X}_{0}, \ldots, \mathrm{X}_{\mathrm{T}}, \mathrm{O}_{1}, \ldots, \mathrm{O}_{\mathrm{T}}\right)$

$$
=\mathrm{P}\left(\mathrm{X}_{0}\right) \times \prod_{t=1}^{T} \mathrm{P}\left(\mathrm{X}_{\mathrm{t}} \mid \mathrm{X}_{\mathrm{t}-1}\right) \times \prod_{t=1}^{T} \mathrm{P}\left(\mathrm{O}_{\mathrm{t}} \mid \mathrm{X}_{\mathrm{t}-1}\right)
$$

Example HMM: Robot Tracking

- Robot tracking as an HMM:

- Robot is moving at random: $\mathrm{P}\left(\mathrm{Pos}_{\mathrm{t}} \mid \mathrm{Pos}_{\mathrm{t}-1}\right)$
- Sensor observations of the current state $P\left(\right.$ Sens $_{t} \mid$ Pos $\left._{t}\right)$

Filtering in Hidden Markov Models (HMMs)

- Filtering problem in HMMs: at time step t , we would like to know $\mathrm{P}\left(\mathrm{X}_{\mathrm{t}} \mid \mathrm{O}_{1}, \ldots, \mathrm{O}_{\mathrm{t}}\right)$
- We will derive simple update equations:
- Compute $\mathrm{P}\left(\mathrm{X}_{\mathrm{t}} \mid \mathrm{O}_{1}, \ldots, \mathrm{O}_{\mathrm{t}}\right)$ if we already know $\mathrm{P}\left(\mathrm{X}_{\mathrm{t}-1} \mid \mathrm{O}_{1}, \ldots, \mathrm{O}_{\mathrm{t}-1}\right)$

HMM Filtering: first time step

By applying marginalization over X_{0} "backwards":	
Direct application of Bayes rule	$P\left(X_{1} \mid O_{1}=0_{1}\right)$
$x \in \operatorname{dom}\left(X_{0}\right)$	

$$
=\sum_{x \in \operatorname{dom}\left(X_{0}\right)} \frac{P\left(O_{1}=o_{1} \mid X_{1}, X_{0}=x\right) \times P\left(X_{1}, X_{0}=x\right)}{P\left(O_{1}=o_{1}\right)}
$$

$$
\frac{P\left(O_{1}=o_{1} \mid X_{1}\right) \times P\left(X_{1} \mid X_{0}=x\right) \times P\left(X_{0}=x\right)}{P\left(O_{1}=o_{1}\right)}
$$

Normalize to make the probability to sum to 1.

HMM Filtering: general time step t

HMM Filtering Summary

- Initialize belief state at time 0: $\mathrm{P}\left(\mathrm{X}_{0}\right)$
- In Rainbow Robots, we initialize this for you: $\mathrm{P}\left(\mathrm{Pos}_{\mathrm{t}}\right)$
- At each time step, update belief state given new observation:

- Rainbow Robot example
- take the last belief state,
- multiply it with the transition probability $P\left(\right.$ Pos $\left._{t} \mid \operatorname{Pos}_{t-1}\right)$
- multiply it with the observation probability $P\left(\right.$ Sens $_{t} \mid$ Pos $\left._{t}\right)$
- and normalize

Learning Goals For Today’s Class

- Build a Bayesian Network for a given domain
- Compute the representational savings in terms of number of probabilities required
- Assignment 4 available on WebCT
- Due Monday, April 4
- Can only use 2 late days
- So we can give out solutions to study for the final exam
- Final exam: Monday, April 11
- Less than 3 weeks from now
- You should now be able to solve questions 1, 2, and 5
- Material for Question 3: Friday, and wrap-up on Monday
- Material for Question 4: next week

