Reasoning Under Uncertainty: Bayesian networks intro

CPSC 322 – Uncertainty 4

Textbook §6.3 - 6.3.1

March 23, 2011

Lecture Overview

Recap: marginal and conditional independence

- Bayesian Networks Introduction
- Hidden Markov Models
 - Rainbow Robot Example

Marginal Independence

Definition (Marginal independence)

Random variable X is (marginally) independent of random variable Y, written X $\parallel Y$, if for all $x \in dom(X)$, $y_j \in dom(Y)$ and $y_k \in dom(Y)$, the following equation holds:

$$P(X = x | Y = y_j)$$

= $P(X = x | Y = y_k)$
= $P(X = x)$

- Intuitively: if X ⊥ Y, then
 - learning that Y=y does not change your belief in X
 - and this is true for all values y that Y could take
- For example, weather is marginally independent from the result of a coin toss

Marginal Independence

Definition (Marginal independence)

Random variable X is (marginally) independent of random variable Y, written X $\parallel Y$, if for all $x \in dom(X)$, $y_j \in dom(Y)$ and $y_k \in dom(Y)$, the following equation holds:

$$P(X = x | Y = y_j)$$

= $P(X = x | Y = y_k)$
= $P(X = x)$

• Recall the product rule:

 $- P(X = x \land Y = y) = P(X = x | Y = y) \times P(Y = y)$

• If X ⊥⊥ Y, we have:

$$- P(X = x \land Y = y) = P(X = x) \times P(Y = y)$$

- In distribution form: $P(X, Y) = P(X) \times P(Y)$

• If $X_i \perp X_j$ for all i, j: $P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i)$

Conditional Independence

Definition (Conditional independence)

Random variable X is (conditionally) independent of random variable Y given random variable Z, written X $\parallel Y \mid Z$ if, for all $x \in dom(X), y_j \in dom(Y), y_k \in dom(Y)$ and $z \in dom(Z)$ the following equation holds:

$$P(X = x | Y = y_j, Z = z)$$

=
$$P(X = x | Y = y_k, Z = z)$$

=
$$P(X = x | Z = z)$$

- Intuitively: if X ⊥⊥ Y | Z, then
 - learning that Y=y does not change your belief in X when we already know Z=z
 - and this is true for all values y that Y could take and all values z that Z could take
- For example,

ExamGrade <u>II</u> AssignmentGrade | UnderstoodMaterial ⁵

Conditional Independence

Definition (Conditional independence)

Random variable X is (conditionally) independent of random variable Y given random variable Z, written X $\parallel Y \mid Z$ if, for all $x \in dom(X), y_j \in dom(Y), y_k \in dom(Y)$ and $z \in dom(Z)$ the following equation holds:

$$P(X = x | Y = yj, Z = z)$$

=
$$P(X = x | Y = yk, Z = z)$$

=
$$P(X = x | Z = z)$$

- Definition of X $\parallel Y \mid Z$ in distribution form: $P(X \mid Y, Z) = P(X \mid Z)$
- Product rule still holds when every term is conditioned on Z=z:

 $- P(X = x \land Y = y | Z = z) = P(X = x | Y = y, Z = z) \times P(Y = y | Z = z)$

• Thus, if X <u>⊥</u> Y | Z :

$$- P(X = x \land Y = y | Z = z) = P(X = x | Z = z) \times P(Y = y | Z = z)$$

- In distribution form: $P(X, Y|Z) = P(X|Z) \times P(Y|Z)$

Lecture Overview

• Recap: marginal and conditional independence

Bayesian Networks Introduction

- Hidden Markov Models
 - Rainbow Robot Example

Bayesian Network Motivation

- We want a representation and reasoning system that is based on conditional (and marginal) independence
 - Compact yet expressive representation
 - Efficient reasoning procedures
- Bayesian Networks are such a representation
 - Named after Thomas Bayes (ca. 1702–1761)
 - Term coined in 1985 by Judea Pearl (1936)
 - Their invention changed the focus on AI from logic to probability!

Thomas Bayes

Judea Pearl

Bayesian Networks: Intuition

- A graphical representation for a joint probability distribution
 - Nodes are random variables
 - Directed edges between nodes reflect dependence
- We already (informally) saw some examples:

Bayesian Networks: Definition

Definition (Bayesian Network)

A Bayesian network consists of

- A directed acyclic graph (V, E) whose nodes are labeled with random variables
- A domain for each random variable
- A conditional probability distribution for each variable V
 - Specifies *P*(*V*|*Parents*(*V*))
 - Parents(V) is the set of variables V' with $(V', V) \in E$
 - For nodes V without predecessors, $Parents(V) = \{\}$
- The parents of variable V are those V directly depends on
- A Bayesian network is a compact representation of the JPD: $P(X_1, ..., X_n) = \prod_{i=1}^n P(X_i | Pa(X_i))$
- Other names for Bayesian networks:
 - Bayes nets, Belief networks, Bayesian Belief networks
 - Common abbreviation: BN

Bayesian Networks: Definition

Definition (Bayesian Network)

A Bayesian network consists of

- A directed acyclic graph (V, E) whose nodes are labeled with random variables
- A domain for each random variable
- A conditional probability distribution for each variable V
 - Specifies *P*(*V*|*Parents*(*V*))
 - Parents(V) is the set of variables V' with $(V', V) \in E$
 - For nodes V without predecessors, $Parents(V) = \{\}$
- Discrete Bayesian networks:
 - Domain of each variable is finite
 - Conditional probability distribution is a conditional probability table
 - We will assume this discrete case
 - But everything we say about independence (marginal & conditional) carries over to the continuous case

Bayesian networks are a compact representation of the joint probability distribution (over all variables in the network) Encoding the joint over $X = \{X_1, ..., X_n\}$ as a Bayesian network:

- 1. Totally order the variables of interest: $X_1, ..., X_n$
- 2. Use chain rule with that ordering: $P(X_1, ..., X_n) = \prod_{i=1}^n P(X_i | X_{i-1}, ..., X_1)$
- 3. For every variable X_i , find the smallest set of parents $Pa(X_i) \subseteq \{X_1, ..., X_{i-1}\}$ such that $X_i \perp \{X_1, ..., X_{i-1}\} \setminus Pa(X_i) | Pa(X_i)$
 - X_i is conditionally independent from its other ancestors given its parents
- 4. Then we can rewrite $P(X_1, ..., X_n) = \prod_{i=1}^n P(X_i | Pa(X_i))$
 - This is a compact representation of the joint probability distribution
- 5. Construct the BN
 - Nodes are variables
 - Directed edges from all variables in $Pa(X_i)$ to X_i
 - Conditional probability table for each variable X_i: P(X_i | Pa(X_i))

You want to diagnose whether there is a fire in a building

- You receive a noisy report about whether everyone is leaving the building
- If everyone is leaving, this may have been caused by a fire alarm
- If there is a fire alarm, it may have been caused by a fire or by tampering
- If there is a fire, there may be smoke

First you choose the variables. In this case, all are Boolean:

- Tampering is true when the alarm has been tampered with
- Fire is true when there is a fire
- Alarm is true when there is an alarm
- Smoke is true when there is smoke
- Leaving is true if there are lots of people leaving the building
- Report is true if the sensor reports that lots of people are leaving the building
- Let's construct the Bayesian network for this (whiteboard)
 - First, you choose a total ordering of the variables, let's say:
 Fire; Tampering; Alarm; Smoke; Leaving; Report.

- Using the total ordering of variables:
 - Let's say Fire; Tampering; Alarm; Smoke; Leaving; Report.
- Now choose the parents for each variable by evaluating conditional independencies
 - Fire is the first variable in the ordering. It does not have parents.
 - Tampering independent of fire (learning that one is true would not change your beliefs about the probability of the other)
 - Alarm depends on both Fire and Tampering: it could be caused by either or both
 - Smoke is caused by Fire, and so is independent of Tampering and Alarm given whether there is a Fire
 - Leaving is caused by Alarm, and thus is independent of the other variables given Alarm
 - Report is caused by Leaving, and thus is independent of the other variables given Leaving

This results in the following Bayesian network

- P(Tampering, Fire, Alarm, Smoke, Leaving, Report)
 = P(Tampering) × P(Fire) × P(Alarm|Tampering,Fire)
 × P(Smoke|Fire) × P(Leaving|Alarm) × P(Report|Leaving)
- Of course, we're not done until we also come up with conditional probability tables for each node in the graph 16

- All variables are Boolean
- How many probabilities do we need to specify for this Bayesian network?
 - This time taking into account that probability tables have to sum to 1

- All variables are Boolean
- How many probabilities do we need to specify for this network?
 - This time taking into account that probability tables have to sum to 1
 - P(Tampering): 1 probability
 - P(Alarm|Tampering, Fire): 4
 1 probability for each of the 4 instantiations of the parents
 - In total: 1+1+4+2+2+2 = 12

Each row of this table is a conditional probability distribution

Each column of this table is a conditional probability distribution

	P(T	amperin	ng=t)	Tampering Fire	F	P(Fire=t))
	0.02			Tumpering		0.01	
Tamperin	g T	Fire F	P(Alarm=t T,F)	Alarm Smoke	/	Fire F	P(Smoke=t F)
t		t	0.5			t	0.9
t		f	0.85	(Laguing)		f	0.01
f		t	0.99	Leaving			
f		f	0.0001		A	larm	P(Leaving=t A)
				Report		t	0.88
	Le	eaving	P(Report=t A)			f	0.001
		t	0.75				
		f	0.01				

P(Tampering=t, Fire=f, Alarm=t, Smoke=f, Leaving=t, Report=t)

Γ	P(Tamperi	ng=t)	Tampering Fire	F	P(Fire=t)
	0.02		Tumpering Fire		0.01	
Tampering	g T Fire F	P(Alarm=t T,F)	Alarm Smoke		Fire F	P(Smoke=t F)
t	t	0.5			t	0.9
t	f	0.85	(Lauring)		f	0.01
f	t	0.99	Leaving		i	
f	f	0.0001			larm	P(Leaving=t A)
			Report		t	0.88
	Leaving	P(Report=t A)			f	0.001
	t	0.75				
	f	0.01				

P(Tampering=t, Fire=f, Alarm=t, Smoke=f, Leaving=t, Report=t)

- = P(Tampering=t) × P(Fire=f) × P(Alarm=t|Tampering=t,Fire=f) × P(Smoke=f|Fire=f) × P(Leaving=t|Alarm=t)
 - × P(Report=t|Leaving=t)

 $= 0.02 \times (1-0.01) \times 0.85 \times (1-0.01) \times 0.88 \times 0.75$

What if we use a different ordering?

- Important for assignment 4, question 2:
- Say, we use the following order:
 - Leaving; Tampering; Report; Smoke; Alarm; Fire.

- We end up with a completely different network structure!
- Which of the two structures is better (think computationally)?

What if we use a different ordering?

- Important for assignment 4, question 2:
- Say, we use the following order:
 - Leaving; Tampering; Report; Smoke; Alarm; Fire.

- We end up with a completely different network structure!
- Which of the two structures is better (think computationally)?
 - In the last network, we had to specify 12 probabilities
 - Here? 1 + 2 + 2 + 2 + 8 + 8 = 23
 - The causal structure typically leads to the most compact network
 - Compactness typically enables more efficient reasoning

Are there wrong network structures?

- Important for assignment 4, question 2
- Some variable orderings yield more compact, some less compact structures
 - Compact ones are better
 - But all representations resulting from this process are correct
 - One extreme: the fully connected network is always correct but rarely the best choice
- How can a network structure be wrong?
 - If it misses directed edges that are required
 - E.g. an edge is missing below: Fire X Alarm | {Tampering, Smoke}

Lecture Overview

- Recap: marginal and conditional independence
- Bayesian Networks Introduction

Hidden Markov Models

Rainbow Robot Example

Markov Chains

• A Markov chain is a special kind of belief network:

- X_t represents a state at time t.
- Its dependence structure yields: $P(X_t|X_1, ..., X_{t-1}) = P(X_t|X_{t-1})$
 - This conditional probability distribution is called the state transition probability
 - Intuitively X_t conveys all of the information about the history that can affect the future states:
 "The past is independent of the future given the present "

"The past is independent of the future given the present."

• JPD of a Markov Chain: $P(X_0, ..., X_T) = P(X_0) \times \prod_{t=1}^T P(X_t | X_{t-1})$

Stationary Markov Chains

- A stationary Markov chain is when
 - All state transition probability tables are the same
 - I.e., for all t > 0, t' > 0: $P(X_t|X_{t-1}) = P(X_{t'}|X_{t'-1})$
- We only need to specify $P(X_0)$ and $P(X_t | X_{t-1})$.
 - Simple model, easy to specify
 - Often the natural model
 - The network can extend indefinitely

Hidden Markov Models (HMMs)

• A Hidden Markov Model (HMM) is a Markov chain plus a noisy observation about the state at each time step:

- Same conditional probability tables at each time step
 - The state transition probability $P(X_t|X_{t-1})$
 - also called the system dynamics
 - The observation probability $P(O_t|X_t)$
 - also called the sensor model
- JPD of an HMM: $P(X_0, ..., X_T, O_1, ..., O_T)$ = $P(X_0) \times \prod_{t=1}^{T} P(X_t | X_{t-1}) \times \prod_{t=1}^{T} P(O_t | X_{t-1})$

Example HMM: Robot Tracking

Robot tracking as an HMM:

- Robot is moving at random: P(Pos_t|Pos_{t-1})
- Sensor observations of the current state P(Sens_t|Pos_t)

Filtering in Hidden Markov Models (HMMs)

- Filtering problem in HMMs: at time step t, we would like to know P(Xt|O1, ..., Ot)
- We will derive simple update equations:
 - Compute $P(X_t|O_1, ..., O_t)$ if we already know $P(X_{t-1}|O_1, ..., O_{t-1})$

HMM Filtering: first time step By applying X_0 X_1 $P(X_1 | O_1 = O_1)$ marginalization over X₀ "backwards": $\sum P(X_1, X_0 = x | O_1 = O_1)$ O_1 $x \in dom(X_{o})$ **Direct** application of Bayes rule $\frac{P(O_1 = o_1 | X_1, X_0 = x) \times P(X_1, X_0 = x)}{P(O_1 = o_1)}$ $x \in dom(X_0)$ $O_1 \perp X_0 \mid X_1$ and product rule $\underline{P(O_1 = o_1 | X_1)} \times P(X_1 | X_0 = x) \times P(X_0 = x)$ $P(O_{1} = O_{1})$ $x \in dom(X_0)$ Normalize to make the probability to sum to 1. $P(O_1 = o_1 | X_1) \times P(X_1 | X_0 = x) \times P(X_0 = x)$ \propto $x \in dom(X_0)$

HMM Filtering: general time step t By applying ____ X_{t-1} X_t $P(X_t | o_1, \ldots, o_t)$ marginalization over X_{t-1} "backwards": $= \sum_{x_{t-1} \in X_{t-1}} P(X_t, X_{t-1} = x | o_1, \dots, o_t)$ O_t $x \in dom(X_{t-1})$ **Direct application** of Bayes rule $\sum \frac{P(o_t | X_t, X_{t-1} = x, o_1, \dots, o_{t-1}) \times P(X_t, X_{t-1} = x | o_1, \dots, o_{t-1})}{P(o_t)}$ $x \in dom(X_{t-1})$ $O_t \perp \{X_{t-1}, O_1, \dots, O_{t-1}\} \mid X_t \text{ and } X_t \perp \{O_1, \dots, O_{t-1}\} \mid X_{t-1}$ $\sum_{(W_{t}) \in V} \frac{P(o_{t}|X_{t}) \times P(X_{t}|X_{t-1} = x) \times P(X_{t-1} = x|o_{1}, \dots, o_{t-1})}{P(o_{t})}$ $x \in dom(X_{t-1})$ Normalize to make the probability to sum to 1. $\sum_{t=1}^{t} P(o_t|X_t) \times P(X_t|X_{t-1} = x) \times P(X_{t-1} = x|o_1, \dots, o_{t-1})$ \propto $x \in dom(X_{t-1})$

HMM Filtering Summary

- Initialize belief state at time 0: $P(X_0)$
 - In Rainbow Robots, we initialize this for you: P(Pos_t)
- At each time step, update belief state given new observation:

- Rainbow Robot example
 - take the last belief state,
 - multiply it with the transition probability $P(Pos_t|Pos_{t-1})$
 - multiply it with the observation probability $P(Sens_t | Pos_t)$
 - and normalize

Learning Goals For Today's Class

- Build a Bayesian Network for a given domain
- Compute the representational savings in terms of number of probabilities required

- Assignment 4 available on WebCT
 - Due Monday, April 4
 - Can only use 2 late days
 - So we can give out solutions to study for the final exam
 - Final exam: Monday, April 11
 - Less than 3 weeks from now
 - You should now be able to solve questions 1, 2, and 5
 - Material for Question 3: Friday, and wrap-up on Monday
 - Material for Question 4: next week