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Lecture Overview 
 

• Recap 
– Conditioning & Inference by Enumeration 
– Bayes Rule & Chain Rule 

 

• Independence 
– Marginal Independence 
– Conditional Independence 
– Time-permitting: Rainbow Robot example 
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Recap: Conditioning 
 

• Conditioning: revise beliefs based on new observations 
 

• We need to integrate two sources of knowledge 
–  Prior probability distribution P(X): all background knowledge  
–  New evidence e 

 

• Combine the two to form a posterior probability distribution 
–  The conditional probability P(h|e) 
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Recap: Example for conditioning 
• You have a prior for the joint distribution of weather and 

temperature, and the marginal distribution of temperature 
 
 
 
 
 
 
 
 

• Now, you look outside and see that it’s sunny 
– You are certain that you’re in world w1, w2, or w3  
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Possible 
world 

Weather Temperature µ(w) 

w1 sunny hot 0.10 
w2 sunny mild 0.20 
w3 sunny cold 0.10 
w4 cloudy hot 0.05 
w5 cloudy mild 0.35 
w6 cloudy cold 0.20 

T P(T|W=sunny) 
hot ? 
mild ? 
cold ? 



Recap: Example for conditioning 
• You have a prior for the joint distribution of weather and 

temperature, and the marginal distribution of temperature 
 
 
 
 
 
 
 
 

• Now, you look outside and see that it’s sunny 
– You are certain that you’re in world w1, w2, or w3  
– To get the conditional probability, you simply renormalize to sum to 1 
– 0.10+0.20+0.10=0.40 
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Possible 
world 

Weather Temperature µ(w) 

w1 sunny hot 0.10 
w2 sunny mild 0.20 
w3 sunny cold 0.10 
w4 cloudy hot 0.05 
w5 cloudy mild 0.35 
w6 cloudy cold 0.20 

T P(T|W=sunny) 
hot 0.10/0.40=0.25 
mild 0.20/0.40=0.50 
cold 0.10/0.40=0.25 



Recap: Conditional probability 

        E.g. 𝑃 𝑇 = ℎ𝑜𝑜 𝑊 = 𝑠𝑠𝑠𝑠𝑠 =  𝑃(𝑇=ℎ𝑜𝑜 ∧ 𝑊=𝑠𝑠𝑠𝑠𝑠) 
𝑃(𝑊=𝑠𝑠𝑠𝑠𝑠)

 

 

6 

Definition (conditional probability) 
The conditional probability of formula h given evidence e is 
 

𝑃 ℎ 𝑒 =  
𝑃(ℎ ∧  𝑒) 
𝑃(𝑒)

 

Possible 
world 

Weather Temperature µ(w) 

w1 sunny hot 0.10 
w2 sunny mild 0.20 
w3 sunny cold 0.10 
w4 cloudy hot 0.05 
w5 cloudy mild 0.35 
w6 cloudy cold 0.20 

T P(T|W=sunny) 
hot 0.10/0.40=0.25 
mild 0.20/0.40=0.50 
cold 0.10/0.40=0.25 



Recap: Inference by Enumeration 
• Great, we can compute arbitrary probabilities now! 

 

• Given  
– Prior joint probability distribution (JPD) on set of variables X 
– specific values e for the evidence variables E (subset of X) 

 

• We want to compute 
– posterior joint distribution of query variables Y (a subset of X)  

given evidence e 
 

• Step 1: Condition to get distribution P(X|e) 
• Step 2: Marginalize to get distribution P(Y|e) 

 
• Generally applicable, but memory-heavy and slow 
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Recap: Bayes rule and Chain Rule 
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  Theorem (Bayes theorem, or Bayes rule) 
 

𝑃 ℎ|𝑒 =  
𝑃 𝑒 ℎ × 𝑃(ℎ)

𝑃(𝑒)
 

 

                     Theorem (Chain Rule) 

𝑃 𝑓𝑠 ∧ ⋯∧ 𝑓1 = �𝑃(𝑓𝑓|𝑓𝑓 − 1 ∧ ⋯∧ 𝑓1)
𝑠

𝑖=1

 

E.g. P(A,B,C,D) = P(A) × P(B|A) × P(C|A,B) × P(D|A,B,C) 
 

We will use these rules lots! 

E.g., 𝑃 𝑓𝑓𝑓𝑒|alarm =  𝑃 𝑎𝑎𝑎𝑎𝑎 𝑓𝑖𝑎𝑓 ×𝑃(𝑓𝑖𝑎𝑓)
𝑃(𝑎𝑎𝑎𝑎𝑎)

 



Lecture Overview 
 

• Recap 
– Conditioning & Inference by Enumeration 
– Bayes Rule & Chain Rule 

 

• Independence 
– Marginal Independence 
– Conditional Independence 
– Time-permitting: Rainbow Robot example 
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Marginal Independence: example 
• Some variables are independent: 

– Knowing the value of one does not 
tell you anything about the other 

– Example: variables W (weather) and 
R (result of a die throw) 

• Let’s compare P(W) vs. P(W | R = 6 ) 

• What is P(W=cloudy) ? 
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Weather W Result R P(W,R) 

sunny 1 0.066 

sunny 2 0.066 

sunny 3 0.066 

sunny 4 0.066 

sunny 5 0.066 

sunny 6 0.066 

cloudy 1 0.1 

cloudy 2 0.1 

cloudy 3 0.1 

cloudy 4 0.1 

cloudy 5 0.1 

cloudy 6 0.1 

0.1 0.066 0.4 0.6 



Marginal Independence: example 
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Weather W Result R P(W,R) 

sunny 1 0.066 

sunny 2 0.066 

sunny 3 0.066 

sunny 4 0.066 

sunny 5 0.066 

sunny 6 0.066 

cloudy 1 0.1 

cloudy 2 0.1 

cloudy 3 0.1 

cloudy 4 0.1 

cloudy 5 0.1 

cloudy 6 0.1 

• Some variables are independent: 
– Knowing the value of one does not 

tell you anything about the other 
– Example: variables W (weather) and 

R (result of a die throw) 
• Let’s compare P(W) vs. P(W | R = 6 ) 

• What is P(W=cloudy) ? 
– P(W=cloudy) =  
Σr∈dom(R)  P(W=cloudy, R = r)  
 

= 0.1+0.1+0.1+0.1+0.1+0.1 = 0.6 

• What is P(W=cloudy|R=6) ? 
 

 
0.1/0.166 0.066/0.166 

0.066+0.1 0.1/0.6 



Marginal Independence: example 

Weather W Result R P(W,R) 

sunny 1 0.066 

sunny 2 0.066 

sunny 3 0.066 

sunny 4 0.066 

sunny 5 0.066 

sunny 6 0.066 

cloudy 1 0.1 

cloudy 2 0.1 

cloudy 3 0.1 

cloudy 4 0.1 

cloudy 5 0.1 

cloudy 6 0.1 

• Some variables are independent: 
– Knowing the value of one does not  

tell you anything about the other 
– Example: variables W (weather) and  

R (result of a die throw) 
• Let’s compare P(W) vs. P(W | R = 6 ) 

• What is P(W=cloudy) ? 
– P(W=cloudy) =  
Σr∈dom(R)  P(W=cloudy, R = r)  
 

= 0.1+0.1+0.1+0.1+0.1+0.1 = 0.6 

• What is P(W=cloudy|R=6) ? 
– P(W=cloudy|R=6) = 𝑃(𝑊=𝑐𝑎𝑜𝑠𝑐𝑠 ∧ 𝑅=6) 

𝑃(𝑅=6)
 

– P(W=cloudy ∧ R=6) = 0.1 (from table) 
– P(R=6) = 0.166 (marginal, 0.1+0.066)  
– Thus, P(W=cloudy|R=6) = 0.1/0.166 = 0.6 
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Marginal Independence: example 

Weather W Result R P(W,R) 

sunny 1 0.066 

sunny 2 0.066 

sunny 3 0.066 

sunny 4 0.066 

sunny 5 0.066 

sunny 6 0.066 

cloudy 1 0.1 

cloudy 2 0.1 

cloudy 3 0.1 

cloudy 4 0.1 

cloudy 5 0.1 

cloudy 6 0.1 

• Some variables are independent: 
– Knowing the value of one does not  

tell you anything about the other 
– Example: variables W (weather) and  

R (result of a die throw) 
• Let’s compare P(W) vs. P(W | R = 6 ) 

• What is P(W=cloudy) ? 
– P(W=cloudy) =  
Σr∈dom(R)  P(W=cloudy, R = r)  
 

= 0.1+0.1+0.1+0.1+0.1+0.1 = 0.6 

• What is P(W=cloudy|R=6) ? 
– P(W=cloudy|R=6) = 𝑃(𝑊=𝑐𝑎𝑜𝑠𝑐𝑠 ∧ 𝑅=6) 

𝑃(𝑅=6)
 

– P(W=cloudy ∧ R=6) = 0.1 (from table) 
– P(R=6) = 0.166 (marginal, 0.1+0.066)  
– Thus, P(W=cloudy|R=6) = 0.1/0.166 = 0.6 
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Marginal Independence: example 
• Some variables are independent: 

– Knowing the value of one does not  
tell you anything about the other 

– Example: variables W (weather) and  
R (result of a die throw) 

• Let’s compare P(W) vs. P(W | R = 6 ) 
• The two distributions are identical 
• Knowing the result of the die does not 

change our belief in the weather 
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Weather W Result R P(W,R) 

sunny 1 0.066 

sunny 2 0.066 

sunny 3 0.066 

sunny 4 0.066 

sunny 5 0.066 

sunny 6 0.066 

cloudy 1 0.1 

cloudy 2 0.1 

cloudy 3 0.1 

cloudy 4 0.1 

cloudy 5 0.1 

cloudy 6 0.1 

Weather W P(W) 

sunny 0.4 

cloudy 0.6 

Weather W P(W|R=6) 

sunny 0.066/0.166=0.4 

cloudy 0.1/0.166=0.6 



Marginal Independence 

• Intuitively: if X and Y are marginally independent, then 
– learning that Y=y does not change your belief in X 
– and this is true for all values y that Y could take 

 

• For example, weather is marginally independent  
from the result of a die throw 15 

Definition (Marginal independence) 
Random variable X is (marginally) independent of random 
variable Y if, for all xi ∈ dom(X), yj ∈ dom(Y) and yk ∈ dom(Y), 
the following equation holds: 
 

       𝑃 𝑋 = 𝑥𝑓 𝑌 = 𝑠𝑗  
   = 𝑃 𝑋 = 𝑥𝑓 𝑌 = 𝑠𝑘  
   = 𝑃(𝑋 = 𝑥𝑓) 



Examples for marginal independence 

• Results C1 and C2 of  
two tosses of a fair coin 

• Are C1 and C2  
marginally independent? 
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C1 C2 P(C1 , C2) 

heads heads 0.25 

heads tails 0.25 

tails heads 0.25 

tails tails 0.25 

Definition (Marginal independence) 
Random variable X is (marginally) independent of random 
variable Y if, for all xi ∈ dom(X), yj ∈ dom(Y) and yk ∈ dom(Y), 
the following equation holds: 
 

       𝑃 𝑋 = 𝑥𝑓 𝑌 = 𝑠𝑗  
   = 𝑃 𝑋 = 𝑥𝑓 𝑌 = 𝑠𝑘  
   = 𝑃(𝑋 = 𝑥𝑓) 

no yes 



Examples for marginal independence 

• Results C1 and C2 of  
two tosses of a fair coin 

• Are C1 and C2  
marginally independent? 
– Yes. All probabilities in  

the definition above are 0.5. 
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C1 C2 P(C1 , C2) 

heads heads 0.25 

heads tails 0.25 

tails heads 0.25 

tails tails 0.25 

Definition (Marginal independence) 
Random variable X is (marginally) independent of random 
variable Y if, for all xi ∈ dom(X), yj ∈ dom(Y) and yk ∈ dom(Y), 
the following equation holds: 
 

       𝑃 𝑋 = 𝑥𝑓 𝑌 = 𝑠𝑗  
   = 𝑃 𝑋 = 𝑥𝑓 𝑌 = 𝑠𝑘  
   = 𝑃(𝑋 = 𝑥𝑓) 



Examples for marginal independence 

• Are Weather and Temperature 
marginally independent? 

 
 

Definition (Marginal independence) 
Random variable X is (marginally) independent of random 
variable Y if, for all xi ∈ dom(X), yj ∈ dom(Y) and yk ∈ dom(Y), 
the following equation holds: 
 

       𝑃 𝑋 = 𝑥𝑓 𝑌 = 𝑠𝑗  
   = 𝑃 𝑋 = 𝑥𝑓 𝑌 = 𝑠𝑘  
   = 𝑃(𝑋 = 𝑥𝑓) 

Weather W Temperature T P(W,T) 
sunny hot 0.10 
sunny mild 0.20 
sunny cold 0.10 
cloudy hot 0.05 
cloudy mild 0.35 
cloudy cold 0.20 

no yes 



Examples for marginal independence 

• Are Weather and Temperature 
marginally independent? 
– No. We saw before that knowing 

the Temperature changes our 
belief on the weather 

– E.g. P(hot) = 0.10+0.05=0.15 
P(hot|cloudy) = 0.05/0.6 ≅ 0.083 
 
 

Definition (Marginal independence) 
Random variable X is (marginally) independent of random 
variable Y if, for all xi ∈ dom(X), yj ∈ dom(Y) and yk ∈ dom(Y), 
the following equation holds: 
 

       𝑃 𝑋 = 𝑥𝑓 𝑌 = 𝑠𝑗  
   = 𝑃 𝑋 = 𝑥𝑓 𝑌 = 𝑠𝑘  
   = 𝑃(𝑋 = 𝑥𝑓) 

Weather W Temperature T P(W,T) 
sunny hot 0.10 
sunny mild 0.20 
sunny cold 0.10 
cloudy hot 0.05 
cloudy mild 0.35 
cloudy cold 0.20 



Examples for marginal independence 

• Intuitively (without numbers): 
– Boolean random variable “Canucks win the Stanley Cup this season” 
– Numerical random variable “Canucks’ revenue last season” ? 
– Are the two marginally independent?  
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Definition (Marginal independence) 
Random variable X is (marginally) independent of random 
variable Y if, for all xi ∈ dom(X), yj ∈ dom(Y) and yk ∈ dom(Y), 
the following equation holds: 
 

       𝑃 𝑋 = 𝑥𝑓 𝑌 = 𝑠𝑗  
   = 𝑃 𝑋 = 𝑥𝑓 𝑌 = 𝑠𝑘  
   = 𝑃(𝑋 = 𝑥𝑓) 

no yes 



Examples for marginal independence 

• Intuitively (without numbers): 
– Boolean random variable “Canucks win the Stanley Cup this season” 
– Numerical random variable “Canucks’ revenue last season” ? 
– Are the two marginally independent?  

• No! Without revenue they cannot afford to keep their best players 
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Definition (Marginal independence) 
Random variable X is (marginally) independent of random 
variable Y if, for all xi ∈ dom(X), yj ∈ dom(Y) and yk ∈ dom(Y), 
the following equation holds: 
 

       𝑃 𝑋 = 𝑥𝑓 𝑌 = 𝑠𝑗  
   = 𝑃 𝑋 = 𝑥𝑓 𝑌 = 𝑠𝑘  
   = 𝑃(𝑋 = 𝑥𝑓) 



Exploiting marginal independence 
• Recall the product rule: 𝑃 𝑓2 ∧ 𝑓1 = 𝑃 𝑓2|𝑓1 × 𝑃(𝑓1) 
• Thus, 𝑃 𝑋 = 𝑥 ∧ 𝑌 = 𝑠 = 𝑃 𝑋 = 𝑥 𝑌 = 𝑠) × 𝑃 𝑌 = 𝑠  

 
• If X and Y are marginally independent, then  

𝑃 𝑋 = 𝑥 =  𝑃 𝑋 = 𝑥 𝑌 = 𝑠  
 

• We thus have 𝑃 𝑋 = 𝑥 ∧ 𝑌 = 𝑠 = 𝑃 𝑋 = 𝑥 × 𝑃 𝑌 = 𝑠  
– In distribution form: 𝑃 𝑋,𝑌 = 𝑃 𝑋 × 𝑃 𝑌  

 
• In general, if X1, …, Xn are marginally independent, then 

we can represent their JPD as a product of marginal 
distributions 

𝑃 𝑋1 , … ,𝑋𝑠 = � 𝑃(𝑋𝑓)
𝑠

𝑖=1
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Exploiting marginal independence 
• If X1, …, Xn are marginally independent, then we can 

represent their JPD as a product of marginal distributions 

𝑃 𝑋1 , … ,𝑋𝑠 = � 𝑃(𝑋𝑓)
𝑠

𝑖=1
 

 
• If all of X1, …, Xn are Boolean, how many entries does the 

JPD 𝑃 𝑋1 , … ,𝑋𝑠  have? 
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2n 2n 2+n n2 



Exploiting marginal independence 
• If X1, …, Xn are marginally independent, then we can 

represent their JPD as a product of marginal distributions 

𝑃 𝑋1 , … ,𝑋𝑠 = � 𝑃(𝑋𝑓)
𝑠

𝑖=1
 

 
• If all of X1, …, Xn are Boolean, how many entries does the 

JPD 𝑃 𝑋1 , … ,𝑋𝑠  have? 
– One entry for each possible world: 2n 

 
• How many entries would all the marginal distributions have 

combined? 
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2n 2n 2+n n2 



Exploiting marginal independence 
• If X1, …, Xn are marginally independent, then we can 

represent their JPD as a product of marginal distributions 

𝑃 𝑋1 , … ,𝑋𝑠 = � 𝑃(𝑋𝑓)
𝑠

𝑖=1
 

 
• If all of X1, …, Xn are Boolean, how many entries does the 

JPD 𝑃 𝑋1 , … ,𝑋𝑠  have? 
– One entry for each possible world: 2n 

 
• How many entries would all the marginal distributions have 

combined? 
– Each of the n tables only has two entries P(X1 =true) and P(X1 =false) 
– So, in total: 2n.  
– Exponentially fewer than the JPD! 
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Lecture Overview 
 

• Recap 
– Conditioning & Inference by Enumeration 
– Bayes Rule & Chain Rule 

 

• Independence 
– Marginal Independence 
– Conditional Independence 
– Time-permitting: Rainbow Robot example 
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Follow-up Example 
 

• Intuitively (without numbers): 
– Boolean random variable “Canucks win the Stanley Cup this season” 
– Numerical random variable “Canucks’ revenue last season” ? 
– Are the two marginally independent?  

• No! Without revenue they cannot afford to keep their best players 
 

– But they are conditionally independent given the Canucks line-up 
• Once we know who is playing then learning their revenue last year 

won’t change our belief in their chances 
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Conditional Independence 
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Definition (Conditional independence) 
Random variable X is (conditionally) independent of random 
variable Y given random variable Z if, for all xi ∈ dom(X),  
yj ∈ dom(Y), yk ∈ dom(Y) and zm ∈ dom(Z) the following 
equation holds: 
 

       𝑃 𝑋 = 𝑥𝑓 𝑌 = 𝑠𝑗,𝑍 = 𝑧𝑧  
   = 𝑃 𝑋 = 𝑥𝑓 𝑌 = 𝑠𝑘,𝑍 = 𝑧𝑧  
   = 𝑃 𝑋 = 𝑥𝑓 𝑍 = 𝑧𝑧  

• Intuitively: if X and Y are conditionally independent given Z, 
then 
– learning that Y=y does not change your belief in X  

when we already know Z=z 
– and this is true for all values y that Y could take  

and all values z that Z could take 



Example for Conditional Independence 

• Whether light l1 is lit is conditionally independent from the 
position of switch s2 given whether there is power in wire w0 

• Once we know Power(w0) learning values for any other 
variable will not change our beliefs about Lit(l1) 
– I.e., Lit(l1) is independent of any other variable given Power(w0) 
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Example: conditionally but not marginally independent 

• ExamGrade and AssignmentGrade are not marginally 
independent 
– Students who do well on one typically do well on the other 

 

• But conditional on UnderstoodMaterial, they are 
independent 
– Variable UnderstoodMaterial is a common cause of  

variables ExamGrade and AssignmentGrade 
– UnderstoodMaterial shields any information we could get from 

AssignmentGrade 

30 

Understood
Material 

Assignment 
Grade 

Exam 
Grade 



Example: marginally but not conditionally independent 

• Two variables can be marginally 
but not conditionally independent 
– “Smoking At Sensor” S: resident smokes cigarette next to fire sensor 
– “Fire” F: there is a fire somewhere in the building 
– “Alarm” A: the fire alarm rings 
– S and F are marginally independent 

• Learning S=true or S=false does not change your belief in F 
– But they are not conditionally independent given alarm 

• If the alarm rings and you learn S=true your belief in F decreases 

31 

Alarm 

Smoking At 
Sensor 

Fire 



Conditional vs. Marginal Independence 
• Two variables can be  

– Both marginally nor conditionally independent 
• CanucksWinStanleyCup and Lit(l1) 
• CanucksWinStanleyCup and Lit(l1) given Power(w0) 
 

– Neither marginally nor conditionally independent 
• Temperature and Cloudiness 
• Temperature and Cloudiness given Wind 

 
– Conditionally but not marginally independent 

• ExamGrade and AssignmentGrade 
• ExamGrade and AssignmentGrade given UnderstoodMaterial 

 
– Marginally but not conditionally independent 

• SmokingAtSensor and Fire 
• SmokingAtSensor and Fire given Alarm 
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Exploiting Conditional Independence 
• Example 1: Boolean variables A,B,C 

– C is conditionally independent of A given B 
– We can then rewrite P(C | A,B) as P(C|B) 

Definition (Conditional independence) 
Random variable X is (conditionally) independent of random 
variable Y given random variable Z if, for all xi ∈ dom(X),  
yj ∈ dom(Y), yk ∈ dom(Y) and zm ∈ dom(Z) the following 
equation holds: 
 

       𝑃 𝑋 = 𝑥𝑓 𝑌 = 𝑠𝑗,𝑍 = 𝑧𝑧  
   = 𝑃 𝑋 = 𝑥𝑓 𝑌 = 𝑠𝑘,𝑍 = 𝑧𝑧  
   = 𝑃 𝑋 = 𝑥𝑓 𝑍 = 𝑧𝑧  



Exploiting Conditional Independence 
• Example 2: Boolean variables A,B,C,D 

– D is conditionally independent of A given C 
– D is conditionally independent of B given C 
– We can then rewrite P(D | A,B,C) as P(D|B,C) 
– And can further rewrite P(D|B,C) as P(D|C) 

Definition (Conditional independence) 
Random variable X is (conditionally) independent of random 
variable Y given random variable Z if, for all xi ∈ dom(X),  
yj ∈ dom(Y), yk ∈ dom(Y) and zm ∈ dom(Z) the following 
equation holds: 
 

       𝑃 𝑋 = 𝑥𝑓 𝑌 = 𝑠𝑗,𝑍 = 𝑧𝑧  
   = 𝑃 𝑋 = 𝑥𝑓 𝑌 = 𝑠𝑘,𝑍 = 𝑧𝑧  
   = 𝑃 𝑋 = 𝑥𝑓 𝑍 = 𝑧𝑧  



Exploiting Conditional Independence 
• Recall the chain rule 
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                     Theorem (Chain Rule) 

𝑃 𝑓𝑠 ∧ ⋯∧ 𝑓1 = �𝑃(𝑓𝑓|𝑓𝑓 − 1 ∧ ⋯∧ 𝑓1)
𝑠

𝑖=1

 

E.g. P(A,B,C,D) = P(A) × P(B|A) × P(C|A,B) × P(D|A,B,C) 

• If, e.g., D is conditionally independent of A and B given C, 
we can rewrite this as  
P(A,B,C,D) = P(A) × P(B|A) × P(C|A,B) × P(D|C) 
 

• Under independence, we gain compactness 
– The chain rule lets us represent the JPD as a product of conditional 

distributions 
– Conditional independence allows us to write them compactly 



Lecture Overview 
 

• Recap 
– Conditioning & Inference by Enumeration 
– Bayes Rule & Chain Rule 

 

• Independence 
– Marginal Independence 
– Conditional Independence 
– Time-permitting: Rainbow Robot example 
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Rainbow Robot Example 
• P(Position2 | Position0, Position1, Sensors1, Sensors2) 

– What variables is Position2 cond. independent of given Position1 ? 
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Sens1 

Pos0 Pos1 

Sens2 

Pos2 



Rainbow Robot Example 
• P(Pos2 | Pos0, Pos1, Sens1, Sens2) 

– What variables is Pos2 conditionally independent of given Pos1 ? 
• Pos2 is conditionally independent of Pos0 given Pos1  

• Pos2 is conditionally independent of Sens1 given Pos1  
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Rainbow Robot Example (cont’d) 
𝑃 𝑃𝑜𝑠2|𝑃𝑜𝑠0, 𝑆𝑒𝑠𝑠1,𝑃𝑜𝑠1, 𝑆𝑒𝑠𝑠2  

 

= 𝑃 𝑃𝑜𝑠2|𝑃𝑜𝑠1, 𝑆𝑒𝑠𝑠2  
  
  

=  
𝑃 𝑆𝑒𝑠𝑠2 𝑃𝑜𝑠1,𝑃𝑜𝑠2 × 𝑃(𝑃𝑜𝑠2|𝑃𝑜𝑠1)

𝑃 𝑆𝑒𝑠𝑠2 𝑃𝑜𝑠1
 

 
  

=  
𝑃 𝑆𝑒𝑠𝑠2 𝑃𝑜𝑠2 × 𝑃(𝑃𝑜𝑠2|𝑃𝑜𝑠1)

𝑃 𝑆𝑒𝑠𝑠2 𝑃𝑜𝑠1
 

  
∝ 𝑃 𝑆𝑒𝑠𝑠2 𝑃𝑜𝑠2 × 𝑃 𝑃𝑜𝑠2 𝑃𝑜𝑠1  
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Pos2 is conditionally 
independent of Pos0 
and Sens1 given Pos1 

Bayes rule 

Sens2 is conditionally 
independent of Pos1 
given Pos2 

The denominator is a 
constant (does not 
depend on Pos2). 
The probability just 
has to sum to 1. 



Rainbow Robot Example (cont’d) 
• In general: 

 
𝑃 𝑃𝑜𝑠n|𝑃𝑜𝑠0, … ,𝑃𝑜𝑠n−1, 𝑆𝑒𝑠𝑠1, … , 𝑆𝑒𝑠𝑠n−1  
  

      ∝ 𝑃 𝑃𝑜𝑠n 𝑃𝑜𝑠n−1 × 𝑃 𝑆𝑒𝑠𝑠n 𝑃𝑜𝑠n  

 
• Simply take the last belief state,  

– multiply it with the transition probability 𝑃 𝑃𝑜𝑠n 𝑃𝑜𝑠n−1  and 
– multiply it with the observation probability 𝑃 𝑆𝑒𝑠𝑠n 𝑃𝑜𝑠n  

– and normalize 
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• Define and use marginal independence 
• Define and use conditional independence 

 
 

• Assignment 4 available on WebCT 
– Due in 2 weeks 
– Do the questions early  

• Right after the material for the question has been covered in class 
• This will help you stay on track 
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Learning Goals For Today’s Class 
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