Reasoning Under Uncertainty: Independence

CPSC 322 – Uncertainty 3

Textbook §6.2

March 21, 2011

Lecture Overview

Recap

- Conditioning & Inference by Enumeration
- Bayes Rule & Chain Rule
- Independence
 - Marginal Independence
 - Conditional Independence
 - Time-permitting: Rainbow Robot example

Recap: Conditioning

- Conditioning: revise beliefs based on new observations
- We need to integrate two sources of knowledge
 - Prior probability distribution P(X): all background knowledge
 - New evidence e
- Combine the two to form a posterior probability distribution
 - The conditional probability P(h|e)

Recap: Example for conditioning

• You have a prior for the joint distribution of weather and temperature, and the marginal distribution of temperature

Possible world	Weather	Temperature	µ(w)
w ₁	sunny	hot	0.10
W ₂	sunny	mild	0.20
W ₃	sunny	cold	0.10
W ₄	cloudy	hot	0.05
W	cloudy	mild	0.35
5	cloudy	cold	0.20
vv 6	cioday	COIG	0.20

Т	P(T W=sunny)
hot	?
mild	?
cold	?

- Now, you look outside and see that it's sunny
 - You are certain that you're in world w_1 , w_2 , or w_3

Recap: Example for conditioning

• You have a prior for the joint distribution of weather and temperature, and the marginal distribution of temperature

Possible world	Weather	Temperature	µ(w)
W ₁	sunny	hot	0.10
W ₂	sunny	mild	0.20
W ₃	sunny	cold	0.10
₩ ₄	cloudy	hot	0.05
₩5	cloudy	mild	0.35
₩ ₆	cloudy	cold	0.20

Т	P(T W=sunny)
hot	0.10/0.40=0.25
mild	0.20/0.40=0.50
cold	0.10/0.40=0.25

- Now, you look outside and see that it's sunny
 - You are certain that you're in world w_1 , w_2 , or w_3
 - To get the conditional probability, you simply renormalize to sum to 1
 - 0.10+0.20+0.10=<mark>0.40</mark>

Recap: Conditional probability

Definition (conditional probability)

The conditional probability of formula h given evidence e is

$$P(h|e) = \frac{P(h \land e)}{P(e)}$$

E.g.
$$P(T = hot | W = sunny) = \frac{P(T = hot \land W = sunny)}{P(W = sunny)}$$

	Possible world	Weather	Temperature	µ(w)
	W ₁	sunny	hot	0.10
	W ₂	sunny	mild	0.20
	W ₃	sunny	cold	0.10
	W	cloudy	hot	0.05
			mild	0.25
	••5	cioudy	mild	0.55
_	₩ ₆	cloudy	cold	0.20

Т	P(T W=sunny)
hot	0.10/0.40=0.25
mild	0.20/0.40=0.50
cold	0.10/0.40=0.25

Recap: Inference by Enumeration

- Great, we can compute arbitrary probabilities now!
- Given
 - Prior joint probability distribution (JPD) on set of variables X
 - specific values e for the evidence variables E (subset of X)
- We want to compute
 - posterior joint distribution of query variables Y (a subset of X) given evidence e
- Step 1: Condition to get distribution P(X|e)
- Step 2: Marginalize to get distribution P(Y|e)
- Generally applicable, but memory-heavy and slow

Recap: Bayes rule and Chain Rule

Theorem (Bayes theorem, or Bayes rule) $P(h|e) = \frac{P(e|h) \times P(h)}{P(e)}$ $P(final alarma) = \frac{P(alarm|fire) \times P(fire)}{P(alarm|fire)}$

E.g., $P(fire|alarm) = \frac{P(alarm|fire) \times P(fire)}{P(alarm)}$

Theorem (Chain Rule)
$$P(f_n \wedge \dots \wedge f_1) = \prod_{i=1}^n P(f_i | f_{i-1} \wedge \dots \wedge f_1)$$

E.g. $P(A,B,C,D) = P(A) \times P(B|A) \times P(C|A,B) \times P(D|A,B,C)$

We will use these rules lots!

Lecture Overview

- Recap
 - Conditioning & Inference by Enumeration
 - Bayes Rule & Chain Rule

Independence

- Marginal Independence
- Conditional Independence
- Time-permitting: Rainbow Robot example

- Some variables are independent:
 - Knowing the value of one does not tell you anything about the other
 - Example: variables W (weather) and R (result of a die throw)
 - Let's compare P(W) vs. P(W | R = 6)
- What is P(W=cloudy) ?

Weather W	Result R	P(W,R)
sunny	1	0.066
sunny	2	0.066
sunny	3	0.066
sunny	4	0.066
sunny	5	0.066
sunny	6	0.066
cloudy	1	0.1
cloudy	2	0.1
cloudy	3	0.1
cloudy	4	0.1
cloudy	5	0.1
cloudy	6	0.1

- Some variables are independent:
 - Knowing the value of one does not tell you anything about the other
 - Example: variables W (weather) and R (result of a die throw)
 - Let's compare P(W) vs. P(W | R = 6)
- What is P(W=cloudy) ?
 - P(W=cloudy) =

 $\Sigma_{r \in dom(R)}$ P(W=cloudy, R = r)

= 0.1 + 0.1 + 0.1 + 0.1 + 0.1 = 0.6

• What is P(W=cloudy|R=6) ?

Weather W	Result R	P(W,R)
sunny	1	0.066
sunny	2	0.066
sunny	3	0.066
sunny	4	0.066
sunny	5	0.066
sunny	6	0.066
cloudy	1	0.1
cloudy	2	0.1
cloudy	3	0.1
cloudy	4	0.1
cloudy	5	0.1
cloudy	6	0.1

- Some variables are independent:
 - Knowing the value of one does not tell you anything about the other
 - Example: variables W (weather) and R (result of a die throw)
 - Let's compare P(W) vs. P(W | R = 6)
- What is P(W=cloudy) ?
 - P(W=cloudy) =

 $\Sigma_{r \in dom(R)}$ P(W=cloudy, R = r)

= 0.1 + 0.1 + 0.1 + 0.1 + 0.1 = 0.6

• What is P(W=cloudy|R=6) ?

- P(W=cloudy|R=6) =
$$\frac{P(W=cloudy \land R=6)}{P(R=6)}$$

- $P(W=cloudy \land R=6) = 0.1$ (from table)

- P(R=6) = 0.166 (marginal, 0.1+0.066)

- Thus, P(W=cloudy|R=6) = 0.1/0.166 = 0.6

Weather W	Result R	P(W,R)
sunny	1	0.066
sunny	2	0.066
sunny	3	0.066
sunny	4	0.066
sunny	5	0.066
sunny	6	0.066
cloudy	1	0.1
cloudy	2	0.1
cloudy	3	0.1
cloudy	4	0.1
cloudy	5	0.1
cloudy	6	0.1

- Some variables are independent:
 - Knowing the value of one does not tell you anything about the other
 - Example: variables W (weather) and R (result of a die throw)
 - Let's compare P(W) vs. P(W | R = 6)
- What is P(W=cloudy) ?
 - P(W=cloudy) =

 $\Sigma_{r \in dom(R)}$ P(W=cloudy, R = r)

= 0.1 + 0.1 + 0.1 + 0.1 + 0.1 = 0.6

- What is P(W=cloudy|R=6) ?
 - P(W=cloudy|R=6) = $\frac{P(W=cloudy \land R=6)}{P(R=6)}$
 - $P(W=cloudy \land R=6) = 0.1$ (from table)

- P(R=6) = 0.166 (marginal, 0.1+0.066)

- Thus, P(W=cloudy|R=6) = 0.1/0.166 = 0.6

Weather W	Result R	P(W,R)
sunny	1	0.066
sunny	2	0.066
sunny	3	0.066
sunny	4	0.066
sunny	5	0.066
sunny	6	0.066
cloudy	1	0.1
cloudy	2	0.1
cloudy	3	0.1
cloudy	4	0.1
cloudy	5	0.1
cloudy	6	0.1

- Some variables are independent:
 - Knowing the value of one does not tell you anything about the other
 - Example: variables W (weather) and R (result of a die throw)
 - Let's compare P(W) vs. P(W | R = 6)
 - The two distributions are identical
 - Knowing the result of the die does not change our belief in the weather

Weather W	P(W)
sunny	0.4
cloudy	0.6

Weather W	P(W R=6)
sunny	0.066/0.166=0.4
cloudy	0.1/0.166=0.6

Weather W	Result R	<i>P(W,R)</i>
sunny	1	0.066
sunny	2	0.066
sunny	3	0.066
sunny	4	0.066
sunny	5	0.066
sunny	6	0.066
cloudy	1	0.1
cloudy	2	0.1
cloudy	3	0.1
cloudy	4	0.1
cloudy	5	0.1
cloudy	6	0.1

Marginal Independence

Definition (Marginal independence)

Random variable X is (marginally) independent of random variable Y if, for all $x_i \in dom(X)$, $y_j \in dom(Y)$ and $y_k \in dom(Y)$, the following equation holds:

 $P(X = xi|Y = y_j)$ = $P(X = xi|Y = y_k)$ = P(X = xi)

- Intuitively: if X and Y are marginally independent, then
 - learning that Y=y does not change your belief in X
 - and this is true for all values y that Y could take
- For example, weather is marginally independent from the result of a die throw

Definition (Marginal independence)

Random variable X is (marginally) independent of random variable Y if, for all $x_i \in dom(X)$, $y_j \in dom(Y)$ and $y_k \in dom(Y)$, the following equation holds:

 $P(X = xi|Y = y_j)$ = $P(X = xi|Y = y_k)$ = P(X = xi)

- Results C₁ and C₂ of two tosses of a fair coin
- Are C₁ and C₂ marginally independent?

no

ves

C ₁	C ₂	<i>P(</i> C ₁ , C ₂)
heads	heads	0.25
heads	tails	0.25
tails	heads	0.25
tails	tails	0.25

Definition (Marginal independence)

Random variable X is (marginally) independent of random variable Y if, for all $x_i \in dom(X)$, $y_j \in dom(Y)$ and $y_k \in dom(Y)$, the following equation holds:

 $P(X = xi|Y = y_j)$ = $P(X = xi|Y = y_k)$ = P(X = xi)

- Results C₁ and C₂ of two tosses of a fair coin
- Are C₁ and C₂ marginally independent?
 - Yes. All probabilities in the definition above are 0.5.

C ₁	C ₂	<i>P(</i> C ₁ , C ₂)
heads	heads	0.25
heads	tails	0.25
tails	heads	0.25
tails	tails	0.25

Definition (Marginal independence)

Random variable X is (marginally) independent of random variable Y if, for all $x_i \in dom(X)$, $y_j \in dom(Y)$ and $y_k \in dom(Y)$, the following equation holds:

$$P(X = xi|Y = y_j)$$

= $P(X = xi|Y = y_k)$
= $P(X = xi)$

 Are Weather and Temperature marginally independent?

Weather W	Temperature T	<i>P(W,T)</i>
sunny	hot	0.10
sunny	mild	0.20
sunny	cold	0.10
cloudy	hot	0.05
cloudy	mild	0.35
cloudy	cold	0.20

Definition (Marginal independence)

Random variable X is (marginally) independent of random variable Y if, for all $x_i \in dom(X)$, $y_j \in dom(Y)$ and $y_k \in dom(Y)$, the following equation holds:

$$P(X = xi|Y = y_j)$$

= $P(X = xi|Y = y_k)$
= $P(X = xi)$

- Are Weather and Temperature marginally independent?
 - No. We saw before that knowing the Temperature changes our belief on the weather
 - E.g. P(hot) = 0.10+0.05=0.15
 P(hot|cloudy) = 0.05/0.6 ≈ 0.083

Weather W	Temperature T	P(W,T)
sunny	hot	0.10
sunny	mild	0.20
sunny	cold	0.10
cloudy	hot	0.05
cloudy	mild	0.35
cloudy	cold	0.20

Definition (Marginal independence)

Random variable X is (marginally) independent of random variable Y if, for all $x_i \in dom(X)$, $y_j \in dom(Y)$ and $y_k \in dom(Y)$, the following equation holds:

 $P(X = xi|Y = y_j)$ = $P(X = xi|Y = y_k)$ = P(X = xi)

- Intuitively (without numbers):
 - Boolean random variable "Canucks win the Stanley Cup this season"
 - Numerical random variable "Canucks' revenue last season" ?
 - Are the two marginally independent?

Definition (Marginal independence)

Random variable X is (marginally) independent of random variable Y if, for all $x_i \in dom(X)$, $y_j \in dom(Y)$ and $y_k \in dom(Y)$, the following equation holds:

 $P(X = xi|Y = y_j)$ = $P(X = xi|Y = y_k)$ = P(X = xi)

- Intuitively (without numbers):
 - Boolean random variable "Canucks win the Stanley Cup this season"
 - Numerical random variable "Canucks' revenue last season" ?
 - Are the two marginally independent?
 - No! Without revenue they cannot afford to keep their best players

- Recall the product rule: $P(f_2 \wedge f_1) = P(f_2|f_1) \times P(f_1)$
- Thus, $P(X = x \land Y = y) = P(X = x | Y = y) \times P(Y = y)$
- If X and Y are marginally independent, then P(X = x) = P(X = x|Y = y)
- We thus have $P(X = x \land Y = y) = P(X = x) \times P(Y = y)$ - In distribution form: $P(X, Y) = P(X) \times P(Y)$
- In general, if X₁, ..., X_n are marginally independent, then we can represent their JPD as a product of marginal distributions

$$P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i)$$

22

• If X₁, ..., X_n are marginally independent, then we can represent their JPD as a product of marginal distributions

$$P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i)$$

If all of X₁, ..., X_n are Boolean, how many entries does the JPD P(X₁, ..., Xn) have?

If X₁, ..., X_n are marginally independent, then we can represent their JPD as a product of marginal distributions

$$P(X_1, \dots, Xn) = \prod_{i=1}^{n} P(Xi)$$

- If all of X₁, ..., X_n are Boolean, how many entries does the JPD P(X₁, ..., Xn) have?
 - One entry for each possible world: 2ⁿ
- How many entries would all the marginal distributions have combined?

• If X₁, ..., X_n are marginally independent, then we can represent their JPD as a product of marginal distributions

$$P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i)$$

- If all of X₁, ..., X_n are Boolean, how many entries does the JPD P(X₁, ..., Xn) have?
 - One entry for each possible world: 2ⁿ
- How many entries would all the marginal distributions have combined?
 - Each of the n tables only has two entries $P(X_1 = true)$ and $P(X_1 = true)$
 - So, in total: 2n.
 - Exponentially fewer than the JPD!

Lecture Overview

- Recap
 - Conditioning & Inference by Enumeration
 - Bayes Rule & Chain Rule
- Independence
 - Marginal Independence
 - Conditional Independence
 - Time-permitting: Rainbow Robot example

Follow-up Example

- Intuitively (without numbers):
 - Boolean random variable "Canucks win the Stanley Cup this season"
 - Numerical random variable "Canucks' revenue last season" ?
 - Are the two marginally independent?
 - No! Without revenue they cannot afford to keep their best players
 - But they are conditionally independent given the Canucks line-up
 - Once we know who is playing then learning their revenue last year won't change our belief in their chances

Conditional Independence

Definition (Conditional independence)

Random variable X is (conditionally) independent of random variable Y given random variable Z if, for all $x_i \in dom(X)$, $y_j \in dom(Y)$, $y_k \in dom(Y)$ and $z_m \in dom(Z)$ the following equation holds:

$$P(X = xi|Y = \mathbf{y}_{j}, Z = zm)$$

= $P(X = xi|Y = \mathbf{y}_{k}, Z = zm)$
= $P(X = xi|Z = zm)$

- Intuitively: if X and Y are conditionally independent given Z, then
 - learning that Y=y does not change your belief in X when we already know Z=z
 - and this is true for all values y that Y could take and all values z that Z could take

Example for Conditional Independence

- Whether light I₁ is lit is conditionally independent from the position of switch s₂ given whether there is power in wire w₀
- Once we know Power(w₀) learning values for any other variable will not change our beliefs about Lit(I₁)
 - I.e., $Lit(I_1)$ is independent of any other variable given Power(w_0)

Example: conditionally but not marginally independent

- ExamGrade and AssignmentGrade are not marginally independent
 - Students who do well on one typically do well on the other
- But conditional on UnderstoodMaterial, they are independent
 - Variable UnderstoodMaterial is a common cause of variables ExamGrade and AssignmentGrade
 - UnderstoodMaterial shields any information we could get from AssignmentGrade

Example: marginally but not conditionally independent

- Two variables can be marginally but not conditionally independent
 - "Smoking At Sensor" S: resident smokes cigarette next to fire sensor
 - "Fire" F: there is a fire somewhere in the building
 - "Alarm" A: the fire alarm rings
 - S and F are marginally independent
 - Learning S=true or S=false does not change your belief in F
 - But they are not conditionally independent given alarm
 - If the alarm rings and you learn S=true your belief in F decreases

Conditional vs. Marginal Independence

- Two variables can be
 - Both marginally nor conditionally independent
 - CanucksWinStanleyCup and Lit(I₁)
 - CanucksWinStanleyCup and Lit(I₁) given Power(w₀)
 - Neither marginally nor conditionally independent
 - Temperature and Cloudiness
 - Temperature and Cloudiness given Wind
 - Conditionally but not marginally independent
 - ExamGrade and AssignmentGrade
 - ExamGrade and AssignmentGrade given UnderstoodMaterial
 - Marginally but not conditionally independent
 - SmokingAtSensor and Fire
 - SmokingAtSensor and Fire given Alarm

Exploiting Conditional Independence

- Example 1: Boolean variables A,B,C
 - C is conditionally independent of A given B
 - We can then rewrite P(C | A,B) as P(C|B)

Definition (Conditional independence)

Random variable X is (conditionally) independent of random variable Y given random variable Z if, for all $x_i \in dom(X)$, $y_j \in dom(Y)$, $y_k \in dom(Y)$ and $z_m \in dom(Z)$ the following equation holds:

$$P(X = xi|Y = y_j, Z = zm)$$

= $P(X = xi|Y = y_k, Z = zm)$
= $P(X = xi|Z = zm)$

Exploiting Conditional Independence

- Example 2: Boolean variables A,B,C,D
 - D is conditionally independent of A given C
 - D is conditionally independent of B given C
 - We can then rewrite P(D | A,B,C) as P(D|B,C)
 - And can further rewrite P(D|B,C) as P(D|C)

Definition (Conditional independence) Random variable X is (conditionally) independent of random variable Y given random variable Z if, for all $x_i \in dom(X)$, $y_j \in dom(Y)$, $y_k \in dom(Y)$ and $z_m \in dom(Z)$ the following equation holds:

$$P(X = xi|Y = \mathbf{y}_{j}, Z = zm)$$

= $P(X = xi|Y = \mathbf{y}_{k}, Z = zm)$
= $P(X = xi|Z = zm)$

Exploiting Conditional Independence

• Recall the chain rule

Theorem (Chain Rule)
$$P(f_n \wedge \dots \wedge f_1) = \prod_{i=1}^n P(f_i | f_{i-1} \wedge \dots \wedge f_1)$$

E.g. $P(A,B,C,D) = P(A) \times P(B|A) \times P(C|A,B) \times P(D|A,B,C)$

- If, e.g., D is conditionally independent of A and B given C, we can rewrite this as P(A,B,C,D) = P(A) × P(B/A) × P(C/A,B) × P(D/C)
- Under independence, we gain compactness
 - The chain rule lets us represent the JPD as a product of conditional distributions
 - Conditional independence allows us to write them compactly
 35

Lecture Overview

- Recap
 - Conditioning & Inference by Enumeration
 - Bayes Rule & Chain Rule
- Independence
 - Marginal Independence
 - Conditional Independence
 - Time-permitting: Rainbow Robot example

Rainbow Robot Example

- P(Position₂ | Position₀, Position₁, Sensors₁, Sensors₂)
 - What variables is $Position_2 cond.$ independent of given $Position_1$?

Rainbow Robot Example

- P(Pos₂ | Pos₀, Pos₁, Sens₁, Sens₂)
 - What variables is Pos_2 conditionally independent of given Pos_1 ?
 - Pos₂ is conditionally independent of Pos₀ given Pos₁
 - Pos₂ is conditionally independent of Sens₁ given Pos₁

Rainbow Robot Example (cont'd)

• In general:

$$P(Pos_{n}|Pos_{0}, ..., Pos_{n-1}, Sens_{1}, ..., Sens_{n-1})$$

$$\propto P(Pos_{n}|Pos_{n-1}) \times P(Sens_{n}|Pos_{n})$$

- Simply take the last belief state,
 - multiply it with the transition probability $P(Pos_n | Pos_{n-1})$ and
 - multiply it with the observation probability $P(Sens_n | Pos_n)$
 - and normalize

Learning Goals For Today's Class

- Define and use marginal independence
- Define and use conditional independence

- Assignment 4 available on WebCT
 - Due in 2 weeks
 - Do the questions early
 - Right after the material for the question has been covered in class
 - This will help you stay on track