Reasoning Under Uncertainty: Conditioning, Bayes Rule \& Chain Rule

CPSC 322 - Uncertainty 2

Textbook §6.1.3
March 18, 2011

Lecture Overview

Recap: Probability \& Possible World Semantics

- Reasoning Under Uncertainty
- Conditioning
- Inference by Enumeration
- Bayes Rule
- Chain Rule

Course Overview

Course Module

Representation

Environment

Deterministic Stochastic
Reasoning
Technique

Problem Type

Static $\left\{\begin{array}{l}\text { Constraint } \\ \text { Satisfaction } \\ \text { Logic } \\ \text { Sequential }\end{array}\right.$

Planning

$\begin{array}{\|c\|} \hline \text { Arc } \\ \text { Consistency } \\ \text { Variables + Search } \\ \text { Constraints } \end{array}$	For the rest of the course, we will consider uncertainty	
${ }^{\text {Logics }}$ Search	Bayesian Networks Variable Elimination	Uncertainty
STRIPS	Decision Networks	
Search		Decision Theory
As CSP (using arc consistency)	Markov Processes Value Iteration	

Recap: Possible Worlds Semantics

- Example: model with 2 random variables
- Temperature, with domain \{hot, mild, cold\}
- Weather, with domain \{sunny, cloudy\}
- One joint random variable
- <Temperature, Weather>
- With the crossproduct domain \{hot, mild, cold\} \times \{sunny, cloudy\}
- There are 6 possible worlds
- The joint random variable has a probability for each possible world

Weather	Temperature	$\mu(w)$
sunny	hot	0.10
sunny	mild	0.20
sunny	cold	0.10
cloudy	hot	0.05
cloudy	mild	0.35
cloudy	cold	0.20

- We can read the probability for each subset of variables from the joint probability distribution
- E.g. $P($ Temperature=hot $)=P($ Temperature=hot,Weather=Sunny $)$

$$
\begin{aligned}
& +P(\text { Temperature=hot, Weather=cloudy) } \\
& =0.10+0.05
\end{aligned}
$$

Recap: Possible Worlds Semantics

- Examples for " F " (related but not identical to its meaning in logic)
- $W_{1} \vDash \mathrm{~W}=$ sunny
- w_{1} F T=hot
- $w_{1} \approx W=$ sunny $\wedge T=$ hot
- E.g.f = "T=hot"
- Only w_{1} F f and w_{4} F f
$-\mathrm{p}(\mathrm{f})=\mu\left(w_{1}\right)+\mu\left(w_{4}\right)$ $=0.10+0.05$
- E.g.f' = "W=sunny $\wedge T=$ hot"
- Only w_{1} f f
$-\mathrm{p}\left(\mathrm{f}^{\prime}\right)=\mu\left(w_{1}\right)=0.10$

Name of possible world	Weather W	Temperature T	Measure μ of possible world
w_{1}	sunny	hot	0.10
w_{2}	sunny	mild	0.20
w_{3}	sunny	cold	0.10
w_{4}	cloudy	hot	0.05
w_{5}	cloudy	mild	0.35
w_{6}	cloudy	cold	0.20

$w \vDash X=x$ means variable X is assigned value x in world w

- Probability measure $\mu(w)$ sums to 1 over all possible worlds w
- The probability of proposition f is defined by: $\quad p(f)=\sum_{\mathrm{w} \vDash \mathrm{f}} \mu(\mathrm{w})$

Recap: Probability Distributions

Definition (probability distribution)

A probability distribution P on a random variable X is a function $\operatorname{dom}(X) \rightarrow[0,1]$ such that

$$
x \rightarrow P(X=x)
$$

Note: We use notations $P(f)$ and $p(f)$ interchangeably

Recap: Marginalization

- Given the joint distribution, we can compute distributions over smaller sets of variables through marginalization:

$$
\mathrm{P}(\mathrm{X}=\mathrm{x})=\Sigma_{\mathrm{z} \in \operatorname{dom}(\mathrm{z})} \mathrm{P}(\mathrm{X}=\mathrm{x}, \mathrm{Z}=\mathrm{z})
$$

- This corresponds to summing out a dimension in the table.
- The new table still sums to 1 . It must, since it's a probability distribution!

Weather	Temperature	$\mu(w)$
sunny	hot	0.10
sunny	mild	0.20
sunny	cold	0.10
cloudy	hot	0.05
cloudy	mild	0.35
cloudy	cold	0.20

Temperature	$\mu(w)$
hot	0.15
mild	
cold	

Recap: Marginalization

- Given the joint distribution, we can compute distributions over smaller sets of variables through marginalization:

$$
\mathrm{P}(\mathrm{X}=\mathrm{x})=\Sigma_{\mathrm{z} \in \operatorname{dom}(\mathrm{z})} \mathrm{P}(\mathrm{X}=\mathrm{x}, \mathrm{Z}=\mathrm{z})
$$

- This corresponds to summing out a dimension in the table.
- The new table still sums to 1 . It must, since it's a probability distribution!

Weather	Temperature	$\mu(w)$			
sunny	hot	0.10			
sunny	mild	0.20			
sunny	cold	0.10			
cloudy	hot	0.05			
cloudy	mild	0.35			
cloudy	cold	0.20	\quad	Temperature	$\mu(w)$
:---	:---	:---			
hot	0.15				
mild	0.55				
cold					

Recap: Marginalization

- Given the joint distribution, we can compute distributions over smaller sets of variables through marginalization:

$$
\mathrm{P}(\mathrm{X}=\mathrm{x})=\Sigma_{\mathrm{z} \in \operatorname{dom}(\mathrm{z})} \mathrm{P}(\mathrm{X}=\mathrm{x}, \mathrm{Z}=\mathrm{z})
$$

- This corresponds to summing out a dimension in the table.
- The new table still sums to 1 . It must, since it's a probability distribution!

Weather	Temperature	$\mu(w)$
sunny	hot	0.10
sunny	mild	0.20
sunny	cold	0.10
cloudy	hot	0.05
cloudy	mild	0.35
cloudy	cold	0.20

Temperature	$\mu(w)$
hot	0.15
mild	0.55
cold	0.30
Alternative way to compute last entry: probabilities have to sum to 1 .	

Lecture Overview

- Recap: Probability \& Possible World Semantics
- Reasoning Under Uncertainty
- Conditioning
- Inference by Enumeration
- Bayes Rule
- Chain Rule

Conditioning

- Conditioning: revise beliefs based on new observations
- Build a probabilistic model (the joint probability distribution, JPD)
- Takes into account all background information
- Called the prior probability distribution
- Denote the prior probability for hypothesis h as $\mathrm{P}(\mathrm{h})$
- Observe new information about the world
- Call all information we received subsequently the evidence e
- Integrate the two sources of information
- to compute the conditional probability $\mathrm{P}(\mathrm{h} \mid \mathrm{e})$
- This is also called the posterior probability of h.
- Example
- Prior probability for having a disease (typically small)
- Evidence: a test for the disease comes out positive
- But diagnostic tests have false positives
- Posterior probability: integrate prior and evidence

Example for conditioning

- You have a prior for the joint distribution of weather and temperature, and the marginal distribution of temperature

Possible world	Weather	Temperature	$\mu(w)$
w_{1}	sunny	hot	0.10
w_{2}	sunny	mild	0.20
w_{3}	sunny	cold	0.10
w_{4}	cloudy	hot	0.05
w_{5}	cloudy	mild	0.35
w_{6}	cloudy	cold	0.20

T	$P(T \mid W=$ sunny $)$
hot	$0.10 / 0.40=0.25$
mild	$? ?$
cold	

0.20	0.40	0.50	0.80

- Now, you look outside and see that it's sunny
- You are certain that you're in world w_{1}, w_{2}, or w_{3}
- To get the conditional probability, you simply renormalize to sum to 1
- 0.10+0.20+0.10=0.40

Example for conditioning

- You have a prior for the joint distribution of weather and temperature, and the marginal distribution of temperature

Possible world	Weather	Temperature	$\mu(w)$
w_{1}	sunny	hot	0.10
w_{2}	sunny	mild	0.20
w_{3}	sunny	cold	0.10
w_{4}	cloudy	hot	0.05
w_{5}	cloudy	mild	0.35
w_{6}	cloudy	cold	0.20

T	$P(T \mid W=$ sunny $)$
hot	$0.10 / 0.40=0.25$
mild	$0.20 / 0.40=0.50$
cold	$0.10 / 0.40=0.25$

- Now, you look outside and see that it's sunny
- You are certain that you're in world w_{1}, w_{2}, or w_{3}
- To get the conditional probability, you simply renormalize to sum to 1
- 0.10+0.20+0.10=0.40

Semantics of Conditioning

- Evidence e ("W=sunny") rules out possible worlds incompatible with e.
- Now we formalize what we did in the previous example

Possible world	Weather w	Temperature	$\mu(w)$	$\mu_{\mathrm{e}}(w)$	What is $\mathrm{P}(\mathrm{e})$?	
w_{1}	sunny	hot	0.10			
w_{2}	sunny	mild	0.20		0.20	0.40
w_{3}	sunny	cold	0.10		0.50	0.80
W_{4}	cloudy	hot	0.05		Recall:$e=\text { "W=sunny" }$	
w_{5}	cloudy	mild	0.35			
w_{6}	cloudy	cold	0.20			

- We represent the updated probability using a new measure, μ_{e}, over possible worlds

$$
\mu_{\mathrm{e}}(\mathrm{w})= \begin{cases}\frac{1}{P(e)} \times \mu(w) & \text { if } \quad w \vDash e \\ 0 & \text { if } \quad w \not \models e\end{cases}
$$

Semantics of Conditioning

- Evidence e ("W=sunny") rules out possible worlds incompatible with e.
- Now we formalize what we did in the previous example

Possible world	Weather W	Temperature	$\mu(w)$	$\mu_{\mathrm{e}}(w)$
w_{1}	sunny	hot	0.10	
w_{2}	sunny	mild	0.20	
w_{3}	sunny	cold	0.10	
w_{4}	cloudy	hot	0.05	
w_{5}	cloudy	mild $P(\mathrm{e}) ?$		
w_{6}	cloudy	cold	0.35	

- We represent the updated probability using a new measure, μ_{e}, over possible worlds

$$
\mu_{\mathrm{e}}(\mathrm{w})= \begin{cases}\frac{1}{P(e)} \times \mu(w) & \text { if } \quad w \vDash e \\ 0 & \text { if } \quad w \not \vDash e\end{cases}
$$

Semantics of Conditioning

- Evidence e ("W=sunny") rules out possible worlds incompatible with e.
- Now we formalize what we did in the previous example

Possible world	Weather W	Temperature	$\mu(w)$	$\mu_{\mathrm{e}}(w)$
w_{1}	sunny	hot	0.10	$0.10 / 0.40=0.25$
w_{2}	sunny	mild	0.20	$0.20 / 0.40=0.50$
w_{3}	sunny	cold	0.10	$0.10 / 0.40=0.25$
w_{4}	cloudy	hot	0.05	0
w_{5}	Marginalize out $\mathrm{P}(\mathrm{e}) ?$			
w_{6}	cloudy	mild	$0.10+0.20+0.10=0.40$	

- We represent the updated probability using a new measure, μ_{e}, over possible worlds

$$
\mu_{\mathrm{e}}(\mathrm{w})= \begin{cases}\frac{1}{P(e)} \times \mu(w) & \text { if } \quad w \vDash e \\ 0 & \text { if } \quad w \not \vDash e\end{cases}
$$

Conditional Probability

- $P(e)$: Sum of probability for all worlds in which e is true
- $P(h \wedge e)$: Sum of probability for all worlds in which both h and e are true
- $P(h \mid e)=P(h \wedge e) / P(e) \quad$ (Only defined if $P(e)>0)$

$$
\mu_{\mathrm{e}}(\mathrm{w})= \begin{cases}\frac{1}{P(e)} \times \mu(w) & \text { if } \quad w \vDash e \\ 0 & \text { if } \quad w \not \models e\end{cases}
$$

Definition (conditional probability)

The conditional probability of formula h given evidence e is

$$
P(h \mid e)=\sum_{w \vDash h} \mu_{\boxminus}(w)=\frac{1}{P(e)} \sum_{w \vDash h \boxed{ }(\underline{e}} \mu(w)=\frac{P(h \wedge e)}{P(e)}
$$

Example for Conditional Probability

- Conditional probability distribution of Temperature given "W=sunny"
- We know $P(h \mid e)=\frac{P(h \wedge e)}{P(e)}$
- E.g. $P(T=$ hot $\mid W=$ sunny $)=\frac{P(T=\text { hot } \wedge W=\text { sunny })}{P(W=\text { sunny })}$
- What is $\mathrm{P}(\mathrm{W}=$ sunny $)$?
- Marginalize out Temperature, i.e. $0.10+0.20+0.10=0.40$
- P (Temperature | $\mathrm{W}=$ sunny) is a new probability distribution only defined over Temperature

Weather W	Temperature T	$P(T \wedge W)$
sunny	hot	0.10
sunny	mild	0.20
sunny	cold	0.10
cloudy	hot	0.05
cloudy	mild	0.35
cloudy	cold	0.20

Temperature T	$P(T \mid W=$ sunny $)$
hot	$0.10 / 0.40=0.25$
mild	$0.20 / 0.40=0.50$
cold	$0.10 / 0.40=0.25$

Lecture Overview

- Recap: Probability \& Possible World Semantics
- Reasoning Under Uncertainty
- Conditioning
- Inference by Enumeration
- Bayes Rule
- Chain Rule

Inference by Enumeration

- Great, we can compute arbitrary probabilities now!
- Given
- Prior joint probability distribution (JPD) on set of variables X
- specific values e for the evidence variables E (subset of X)
- We want to compute
- posterior joint distribution of query variables Y (a subset of X) given evidence e
- Step 1: Condition to get distribution $\mathrm{P}(\mathrm{X} \mid \mathrm{e})$
- Step 2: Marginalize to get distribution $\mathrm{P}(\mathrm{Y} \mid \mathrm{e})$

Inference by Enumeration: example

- Given $P(X)$ as JPD below, and evidence $e=$ "Wind=yes"
- What is the probability it is hot? I.e., P (Temperature=hot | Wind=yes)
- Step 1: condition to get distribution $P(X \mid e)$

Windy W	Cloudy	Temperature	$P(W, C, T)$
yes	no	hot	0.04
yes	no	mild	0.09
yes	no	cold	0.07
yes	yes	hot	0.01
yes	yes	mild	0.10
yes	yes	cold	0.12
no	no	hot	0.06
no	no	mild	0.11
no	no	cold	0.03
no	yes	hot	0.04
no	yes	mild	0.25
no	yes	cold	0.08

Inference by Enumeration: example

- Given $P(X)$ as JPD below, and evidence $e=$ "Wind=yes"
- What is the probability it is hot? I.e., P (Temperature=hot | Wind=yes)
- Step 1: condition to get distribution $P(X \mid e)$

Windy W	Cloudy C	Temperature T	$P(W, C, T)$
yes	no	hot	0.04
yes	no	mild	0.09
yes	no	cold	0.07
yes	yes	hot	0.01
yes	yes	mild	0.10
yes	yes	cold	0.12
no	no	hol	0.06
no	no	mild	0.11
no	no	cold	0.03
no	yes	hot	0.04
no	yes	mild	0.25
no	yes	cold	0.08

Cloudy C	Temperature T	$P(C, T \mid W=y e s)$
sunny	hot	
sunny	mild	
sunny	cold	
cloudy	hot	
cloudy	mild	
cloudy	cold	

$$
\begin{aligned}
& P(C=c \wedge T=t \mid W=y e s) \\
& =\frac{P(C=c \wedge T=t \wedge W=y e s)}{P(W=y e s)}
\end{aligned}
$$

$$
\mathrm{P}(\mathrm{~W}=\mathrm{yes})=0.04+0.09+0.07+0.01+0.10+0.12=0.4322
$$

Inference by Enumeration: example

- Given $P(X)$ as JPD below, and evidence $e=$ "Wind=yes"
- What is the probability it is hot? I.e., P (Temperature=hot | Wind=yes)
- Step 1: condition to get distribution $P(X \mid e)$

Windy W	Cloudy C	Temperature T	$P(W, C, T)$
yes	no	hot	0.04
yes	no	mild	0.09
yes	no	cold	0.07
yes	yes	hot	0.01
yes	yes	mild	0.10
yes	yes	cold	0.12
no	no	hol	0.06
no	no	midd	0.11
no	no	cold	0.03
no	yes	hot	0.04
no	yes	mild	0.25
no	yes	cold	0.08

Cloudy C	Temperature T	$P(C, T \mid W=y e s)$
sunny	hot	$0.04 / 0.43 \cong 0.10$
sunny	mild	$0.09 / 0.43 \cong 0.21$
sunny	cold	$0.07 / 0.43 \cong 0.16$
cloudy	hot	$0.01 / 0.43 \cong 0.02$
cloudy	mild	$0.10 / 0.43 \cong 0.23$
cloudy	cold	$0.12 / 0.43 \cong 0.28$

$$
\begin{aligned}
& P(C=c \wedge T=t \mid W=y e s) \\
& =\frac{P(C=c \wedge T=t \wedge W=y e s)}{P(W=y e s)}
\end{aligned}
$$

$P(W=y e s)=0.04+0.09+0.07+0.01+0.10+0.12=0.43$

Inference by Enumeration: example

- Given $P(X)$ as JPD below, and evidence $e=$ "Wind=yes"
- What is the probability it is hot? I.e., P (Temperature=hot | Wind=yes)
- Step 2: marginalize to get distribution $\mathrm{P}(\mathrm{Y} \mid \mathrm{e})$

Cloudy C	Temperature T	$P(C, T \mid W=y e s)$
sunny	hot	0.10
sunny	mild	0.21
sunny	cold	0.16
cloudy	hot	0.02
cloudy	mild	0.23
cloudy	cold	0.28

Temperature T	$P(T \mid W=y e s)$
hot	$0.10+0.02=0.12$
mild	$0.21+0.23=0.44$
cold	$0.16+0.28=0.44$

Problems of Inference by Enumeration

- If we have n variables, and d is the size of the largest domain
- What is the space complexity to store the joint distribution?

$$
O\left(d^{\mathrm{n}}\right) \quad O\left(\mathrm{n}^{\mathrm{d}}\right) \quad O(\mathrm{nd}) \quad O(\mathrm{n}+\mathrm{d})
$$

Problems of Inference by Enumeration

- If we have n variables, and d is the size of the largest domain
- What is the space complexity to store the joint distribution?
- We need to store the probability for each possible world
- There are $O\left(d^{n}\right)$ possible worlds, so the space complexity is $O\left(d^{n}\right)$
- How do we find the numbers for $O\left(d^{n}\right)$ entries?
- Time complexity O(dn)
- We have some of our basic tools, but to gain computational efficiency we need to do more
- We will exploit (conditional) independence between variables
- (Next week)

Lecture Overview

- Recap: Probability \& Possible World Semantics
- Reasoning Under Uncertainty
- Conditioning
- Inference by Enumeration
- Bayes Rule
- Chain Rule

Using conditional probability

- Often you have causal knowledge:
- For example
- P(symptom | disease)
- P (light is off \| status of switches and switch positions)
- P(alarm | fire)
- In general: P (evidence e | hypothesis h)
- ... and you want to do evidential reasoning:
- For example
- P(disease \| symptom)
- P (status of switches | light is off and switch positions)
- P(fire | alarm)
- In general: P (hypothesis $\mathrm{h} \mid$ evidence e)

Bayes rule

- By definition, we know that $P(h \mid e)=\frac{P(h \wedge e)}{P(e)}$
- We can rearrange terms to show:

$$
P(h \wedge e)=P(h \mid e) \times P(e)
$$

- Similarly, we can show:

$$
P(e \wedge h)=P(e \mid h) \times P(h)
$$

- Since $e \wedge h$ and $h \wedge e$ are identical, we have:

Theorem (Bayes theorem, or Bayes rule)

$$
P(h \mid e)=\frac{P(e \mid h) \times P(h)}{P(e)}
$$

Example for Bayes rule

- On average, the alarm rings once a year
$-P($ alarm $)=?$
- If there is a fire, the alarm will almost always ring
- On average, we have a fire every 10 years
- The fire alarm rings. What is the probability there is a fire?

Example for Bayes rule

- On average, the alarm rings once a year
- $P($ alarm $)=1 / 365$
- If there is a fire, the alarm will almost always ring
$-P($ alarm \mid fire $)=0.999$
- On average, we have a fire every 10 years
$-P($ fire $)=1 / 3650$
- The fire alarm rings. What is the probability there is a fire?
- Take a few minutes to do the math!

$$
\begin{array}{|l|l|l|l|}
\hline 0.999 & 0.9 & 0.0999 & 0.1 \\
\hline
\end{array}
$$

Example for Bayes rule

- On average, the alarm rings once a year
- $P($ alarm $)=1 / 365$
- If there is a fire, the alarm will almost always ring
$-P($ alarm \mid fire $)=0.999$
- On average, we have a fire every 10 years
- $P($ fire $)=1 / 3650$
- The fire alarm rings. What is the probability there is a fire?
- $P($ fire \mid alarm $)=\frac{P(\text { alarm } \mid \text { fir }) \times P(\text { fire })}{P(\text { alarm })}=\frac{0.999 \times 1 / 3650}{1 / 365}=0.0999$
- Even though the alarm rings the chance for a fire is only about 10\%!

Lecture Overview

- Recap: Probability \& Possible World Semantics
- Reasoning Under Uncertainty
- Conditioning
- Bayes Rule
- Inference by Enumeration
- Chain Rule

Product Rule

- By definition, we know that

$$
P\left(f_{2} \mid f_{1}\right)=\frac{P\left(f_{2} \wedge f_{1}\right)}{P\left(f_{1}\right)}
$$

- We can rewrite this to

$$
P\left(f_{2} \wedge f_{1}\right)=P\left(f_{2} \mid f_{1}\right) \times P\left(f_{1}\right)
$$

- In general:

Theorem (Product Rule)

$$
P\left(f_{n} \wedge \cdots \wedge f i_{+1} \wedge f_{\mathrm{i}} \wedge \cdots \wedge f_{1}\right)=P\left(f_{n} \wedge \cdots \wedge f i_{+1} \mid f_{\mathrm{i}} \wedge \cdots \wedge f_{1}\right) \times P\left(f_{\mathrm{i}} \wedge \cdots \wedge f_{1}\right)
$$

Chain Rule

- We know

$$
P\left(f_{2} \wedge f_{1}\right)=P\left(f_{2} \mid f_{1}\right) \times P\left(f_{1}\right)
$$

- In general:

$$
\begin{aligned}
& P\left(f_{n} \wedge f_{n-1} \wedge \cdots \wedge f_{1}\right) \\
&=P\left(f_{n} \mid f_{n-1} \wedge \cdots \wedge f_{1}\right) \times P\left(f_{n-1} \wedge \cdots \wedge f_{1}\right) \\
&=P\left(f_{n} \mid f_{n-1} \wedge \cdots \wedge f_{1}\right) \times P\left(f_{n-1} \mid f_{n-2}\right.\left.\wedge \cdots \wedge f_{1}\right) \\
& \times P\left(f_{n-2} \wedge \cdots \wedge f_{1}\right)
\end{aligned}
$$

$$
=\ldots
$$

$$
=\prod_{i=1}^{n} P\left(f_{i} \mid f_{i-1} \wedge \cdots \wedge f_{1}\right)
$$

Theorem (Chain Rule)

$$
P\left(f_{n} \wedge \cdots \wedge f_{1}\right)=\prod_{i=1}^{n} P\left(f i \mid f_{i-1} \wedge \cdots \wedge f_{1}\right)
$$

Why does the chain rule help us?

- We can simplify some terms
- For example, how about $\mathrm{P}($ Weather | PriceOfOil)?
- Weather in Vancouver is independent of the price of oil:

$$
P(\text { Weather } \mid \text { PriceOfOil })=P(\text { Weather })
$$

- Under independence, we gain compactness
- We can represent the JPD as a product of marginal distributions
- For example: $\mathrm{P}($ Weather,PriceOfOil $)=\mathrm{P}($ Weather $) \times \mathrm{P}$ (PriceOfOil)
- But not all variables are independent

$$
P(\text { Weather } \mid \text { Temperature }) \neq P(\text { Weather })
$$

- More about (conditional) independence next week

Learning Goals For Today’s Class

- Prove the formula to compute conditional probability $\mathrm{P}(\mathrm{h} \mid \mathrm{e})$
- Use inference by enumeration
- to compute joint posterior probability distributions over any subset of variables given evidence
- Derive and use Bayes Rule
- Derive the Chain Rule
- Marginalization, conditioning and Bayes rule are crucial
- They are core to reasoning under uncertainty
- Be sure you understand them and be able to use them!
- First question of assignment 4 available on WebCT
- Simple application of Bayes rule
- Do it as an exercise before next class

