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Lecture Overview 
 

• Recap: Probability & Possible World Semantics 
• Reasoning Under Uncertainty 

– Conditioning 
– Inference by Enumeration 
– Bayes Rule  
– Chain Rule 
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Recap: Possible Worlds Semantics 
• Example: model with 2 random variables 

– Temperature, with domain {hot, mild, cold} 
– Weather, with domain {sunny, cloudy} 

 

• One joint random variable 
– <Temperature, Weather> 
– With the crossproduct domain  

{hot, mild, cold} × {sunny, cloudy} 

• There are 6 possible worlds 
– The joint random variable has 

a probability for each possible world 
 

• We can read the probability for each subset of variables 
from the joint probability distribution 
– E.g. P(Temperature=hot) = P(Temperature=hot,Weather=Sunny)  

                                         + P(Temperature=hot, Weather=cloudy) 
                                         = 0.10 + 0.05 

 

Weather Temperature µ(w) 

sunny hot 0.10 
sunny mild 0.20 
sunny cold 0.10 
cloudy hot 0.05 
cloudy mild 0.35 
cloudy cold 0.20 



Recap: Possible Worlds Semantics 

 
     w ⊧ X=x means variable X is assigned value x in world w 

-   Probability measure µ(w) sums to 1 over all possible worlds w 
 

-   The probability of proposition f is defined by: 
 

• Examples for “⊧” (related but not identical to its meaning in logic) 
– w1 ⊧ W=sunny 
– w1 ⊧ T=hot 
– w1 ⊧ W=sunny ∧ T=hot 

 
• E.g. f = “T=hot” 

– Only w1 ⊧ f and w4 ⊧ f 
– p(f) = µ(w1) + µ(w4)  

       = 0.10 + 0.05 
 

• E.g. f ’ = “W=sunny ∧ T=hot” 
– Only w1 ⊧ f ’ 
– p(f ’) = µ(w1) = 0.10 

Name of 
possible 

world 

Weather 
W 

Temperature 
T 

Measure µ 
of possible 

world 

w1 sunny hot 0.10 
w2  sunny mild 0.20 
w3  sunny cold 0.10 
w4  cloudy hot 0.05 
w5  cloudy mild 0.35 
w6  cloudy cold 0.20 



Recap: Probability Distributions 
 

     
 
 
 
 
 
 
 

   Note: We use notations P(f) and p(f) interchangeably 
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Definition (probability distribution) 
A probability distribution P on a random variable X is a 
function dom(X) → [0,1] such that 
 

                                     x → P(X=x) 



Recap: Marginalization 
• Given the joint distribution, we can compute distributions 

over smaller sets of variables through marginalization: 
 

         P(X=x) = Σz∈dom(Z)  P(X=x, Z = z)  
 

 

• This corresponds to summing out a dimension in the table. 
• The new table still sums to 1. It must, since it’s a probability distribution! 
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Temperature µ(w) 
hot 0.15 
mild 
cold 

Weather Temperature µ(w) 
sunny hot 0.10 
sunny mild 0.20 
sunny cold 0.10 
cloudy hot 0.05 
cloudy mild 0.35 
cloudy cold 0.20 

P(Temperature=hot) =  
   P(Temperature = hot, Weather=sunny) 
+ P(Temperature = hot, Weather=cloudy) 
= 0.10 + 0.05 = 0.15 



Recap: Marginalization 
• Given the joint distribution, we can compute distributions 

over smaller sets of variables through marginalization: 
 

         P(X=x) = Σz∈dom(Z)  P(X=x, Z = z)  
 

 

• This corresponds to summing out a dimension in the table. 
• The new table still sums to 1. It must, since it’s a probability distribution! 

Temperature µ(w) 
hot 0.15 
mild 0.55 
cold 

Weather Temperature µ(w) 
sunny hot 0.10 
sunny mild 0.20 
sunny cold 0.10 
cloudy hot 0.05 
cloudy mild 0.35 
cloudy cold 0.20 8 



Recap: Marginalization 
• Given the joint distribution, we can compute distributions 

over smaller sets of variables through marginalization: 
 

         P(X=x) = Σz∈dom(Z)  P(X=x, Z = z)  
 

 

• This corresponds to summing out a dimension in the table. 
• The new table still sums to 1. It must, since it’s a probability distribution! 
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Temperature µ(w) 
hot 0.15 
mild 0.55 
cold 0.30 

Weather Temperature µ(w) 
sunny hot 0.10 
sunny mild 0.20 
sunny cold 0.10 
cloudy hot 0.05 
cloudy mild 0.35 
cloudy cold 0.20 

Alternative way to 
compute last entry: 
probabilities have  
to sum to 1. 



Lecture Overview 
 

• Recap: Probability & Possible World Semantics 
• Reasoning Under Uncertainty 

– Conditioning 
– Inference by Enumeration 
– Bayes Rule  
– Chain Rule 
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Conditioning 
• Conditioning: revise beliefs based on new observations 

– Build a probabilistic model (the joint probability distribution, JPD) 
• Takes into account all background information 
• Called the prior probability distribution  
• Denote the prior probability for hypothesis h as P(h)  

– Observe new information about the world 
• Call all information we received subsequently the evidence e 

– Integrate the two sources of information  
• to compute the conditional probability P(h|e) 
• This is also called the posterior probability of h. 

 

• Example 
– Prior probability for having a disease (typically small) 
– Evidence: a test for the disease comes out positive 

• But diagnostic tests have false positives 
– Posterior probability: integrate prior and evidence 11 



Example for conditioning 
• You have a prior for the joint distribution of weather and 

temperature, and the marginal distribution of temperature 
 
 
 
 
 
 
 
 

• Now, you look outside and see that it’s sunny 
– You are certain that you’re in world w1, w2, or w3  
– To get the conditional probability, you simply renormalize to sum to 1 
– 0.10+0.20+0.10=0.40 
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Possible 
world 

Weather Temperature µ(w) 

w1 sunny hot 0.10 
w2 sunny mild 0.20 
w3 sunny cold 0.10 
w4 cloudy hot 0.05 
w5 cloudy mild 0.35 
w6 cloudy cold 0.20 

T P(T|W=sunny) 
hot 0.10/0.40=0.25 
mild 
cold 

0.40 0.20 0.50 0.80 

?? 



Example for conditioning 
• You have a prior for the joint distribution of weather and 

temperature, and the marginal distribution of temperature 
 
 
 
 
 
 
 
 

• Now, you look outside and see that it’s sunny 
– You are certain that you’re in world w1, w2, or w3  
– To get the conditional probability, you simply renormalize to sum to 1 
– 0.10+0.20+0.10=0.40 
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Possible 
world 

Weather Temperature µ(w) 

w1 sunny hot 0.10 
w2 sunny mild 0.20 
w3 sunny cold 0.10 
w4 cloudy hot 0.05 
w5 cloudy mild 0.35 
w6 cloudy cold 0.20 

T P(T|W=sunny) 
hot 0.10/0.40=0.25 
mild 0.20/0.40=0.50 
cold 0.10/0.40=0.25 



Semantics of Conditioning 
• Evidence e (“W=sunny”) rules out possible worlds incompatible with e. 

– Now we formalize what we did in the previous example 
 
 
 
 
 
 
 
 
 

 
 

• We represent the  
updated probability  
using a new measure,  
µe, over possible worlds 
 







 ×
=

ewif

ewifw
eP

0

)(
)(

1

(w)e

µ
µ

⊧ 

⊧ 

What is P(e)? 
 
 
 
 
Recall: 
e = “W=sunny” 

0.40 0.20 

0.50 0.80 

Possible 
world 

Weather 
W 

Temperature µ(w) µe(w) 

w1 sunny hot 0.10 
w2 sunny mild 0.20 
w3 sunny cold 0.10 
w4 cloudy hot 0.05 
w5 cloudy mild 0.35 
w6 cloudy cold 0.20 



Semantics of Conditioning 
• Evidence e (“W=sunny”) rules out possible worlds incompatible with e. 

– Now we formalize what we did in the previous example 
 
 
 
 
 
 
 
 
 

 
 

• We represent the  
updated probability  
using a new measure,  
µe, over possible worlds 
 







 ×
=

ewif

ewifw
eP

0

)(
)(

1

(w)e

µ
µ

⊧ 

⊧ 

Possible 
world 

Weather 
W 

Temperature µ(w) µe(w) 

w1 sunny hot 0.10 
w2 sunny mild 0.20 
w3 sunny cold 0.10 
w4 cloudy hot 0.05 
w5 cloudy mild 0.35 
w6 cloudy cold 0.20 

What is P(e)? 
 
Marginalize out 
Temperature, i.e. 
0.10+0.20+0.10=0.40 



Semantics of Conditioning 
• Evidence e (“W=sunny”) rules out possible worlds incompatible with e. 

– Now we formalize what we did in the previous example 
 
 
 
 
 
 
 
 
 

 
 

• We represent the  
updated probability  
using a new measure,  
µe, over possible worlds 
 







 ×
=

ewif

ewifw
eP

0

)(
)(

1

(w)e

µ
µ

⊧ 

⊧ 

What is P(e)? 
 
Marginalize out 
Temperature, i.e. 
0.10+0.20+0.10=0.40 

Possible 
world 

Weather 
W 

Temperature µ(w) µe(w) 

w1 sunny hot 0.10 0.10/0.40=0.25 
w2 sunny mild 0.20 0.20/0.40=0.50 
w3 sunny cold 0.10 0.10/0.40=0.25 
w4 cloudy hot 0.05 0 
w5 cloudy mild 0.35 0 
w6 cloudy cold 0.20 0 



Definition (conditional probability) 
The conditional probability of formula h given evidence e is 

Conditional Probability 
•  P(e): Sum of probability for all worlds in which e is true 
•  P(h∧e): Sum of probability for all worlds in which both h and e are true 
•  P(h|e) = P(h∧e) / P(e)         (Only defined if P(e) > 0) 
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Example for Conditional Probability 
• Conditional probability distribution of Temperature given “W=sunny” 

• We know 𝑃 ℎ 𝑒 =  𝑃(ℎ ∧ 𝑒) 
𝑃(𝑒)

 

– E.g. 𝑃 𝑇 = ℎ𝑜𝑜 𝑊 = 𝑠𝑠𝑠𝑠𝑠 =  𝑃(𝑇=ℎ𝑜𝑜 ∧ 𝑊=𝑠𝑠𝑠𝑠𝑠) 
𝑃(𝑊=𝑠𝑠𝑠𝑠𝑠)

 

– What is P(W=sunny)? 
• Marginalize out Temperature, i.e. 0.10+0.20+0.10=0.40 

• P(Temperature | W=sunny) is a  
new probability distribution only defined over Temperature 

 
 
 

 
 

Weather W Temperature T P(T∧W) 
sunny hot 0.10 
sunny mild 0.20 
sunny cold 0.10 
cloudy hot 0.05 
cloudy mild 0.35 
cloudy cold 0.20 

Temperature T P(T|W=sunny) 
hot 0.10/0.40=0.25 
mild 0.20/0.40=0.50 
cold 0.10/0.40=0.25 



Lecture Overview 
 

• Recap: Probability & Possible World Semantics 
• Reasoning Under Uncertainty 

– Conditioning 
– Inference by Enumeration 
– Bayes Rule  
– Chain Rule 
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Inference by Enumeration 
• Great, we can compute arbitrary probabilities now! 

 

• Given  
– Prior joint probability distribution (JPD) on set of variables X 
– specific values e for the evidence variables E (subset of X) 

 

• We want to compute 
– posterior joint distribution of query variables Y (a subset of X)  

given evidence e 
 

• Step 1: Condition to get distribution P(X|e) 
• Step 2: Marginalize to get distribution P(Y|e) 

20 



Inference by Enumeration: example 
• Given P(X) as JPD below, and evidence e = “Wind=yes” 

– What is the probability it is hot? I.e., P(Temperature=hot | Wind=yes)  

• Step 1: condition to get distribution P(X|e) 
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Windy 
W 

Cloudy  
C 

Temperature  
T 

P(W, C, T) 

yes no hot 0.04 

yes no mild 0.09 

yes no cold 0.07 

yes yes hot 0.01 

yes yes mild 0.10 

yes yes cold 0.12 

no no hot 0.06 

no no mild 0.11 

no no cold 0.03 

no yes hot 0.04 

no yes mild 0.25 

no yes cold 0.08 



Inference by Enumeration: example 
• Given P(X) as JPD below, and evidence e = “Wind=yes” 

– What is the probability it is hot? I.e., P(Temperature=hot | Wind=yes)  

• Step 1: condition to get distribution P(X|e) 
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Cloudy 
C 

Temperature 
T 

P(C, T| W=yes) 

sunny hot 

sunny mild 

sunny cold 

cloudy hot 

cloudy mild 

cloudy cold 

Windy 
W 

Cloudy  
C 

Temperature  
T 

P(W, C, T) 

yes no hot 0.04 

yes no mild 0.09 

yes no cold 0.07 

yes yes hot 0.01 

yes yes mild 0.10 

yes yes cold 0.12 

no no hot 0.06 

no no mild 0.11 

no no cold 0.03 

no yes hot 0.04 

no yes mild 0.25 

no yes cold 0.08 

𝑃 𝐶 = 𝑐 ∧  𝑇 = 𝑜 𝑊 = 𝑠𝑒𝑠

=  
𝑃(𝐶 = 𝑐 ∧ 𝑇 = 𝑜 ∧𝑊 = 𝑠𝑒𝑠) 

𝑃(𝑊 = 𝑠𝑒𝑠)
 

 
P(W=yes) = 0.04+0.09+0.07+0.01+0.10+0.12=0.43 



Inference by Enumeration: example 
• Given P(X) as JPD below, and evidence e = “Wind=yes” 

– What is the probability it is hot? I.e., P(Temperature=hot | Wind=yes)  

• Step 1: condition to get distribution P(X|e) 
Cloudy 

C 

Temperature 
T 

P(C, T| W=yes) 

sunny hot 0.04/0.43 ≅ 0.10 

sunny mild 0.09/0.43 ≅ 0.21 

sunny cold 0.07/0.43 ≅ 0.16 

cloudy hot 0.01/0.43 ≅ 0.02 

cloudy mild 0.10/0.43 ≅ 0.23 

cloudy cold 0.12/0.43 ≅ 0.28 

Windy 
W 

Cloudy  
C 

Temperature  
T 

P(W, C, T) 

yes no hot 0.04 

yes no mild 0.09 

yes no cold 0.07 

yes yes hot 0.01 

yes yes mild 0.10 

yes yes cold 0.12 

no no hot 0.06 

no no mild 0.11 

no no cold 0.03 

no yes hot 0.04 

no yes mild 0.25 

no yes cold 0.08 

𝑃 𝐶 = 𝑐 ∧  𝑇 = 𝑜 𝑊 = 𝑠𝑒𝑠

=  
𝑃(𝐶 = 𝑐 ∧ 𝑇 = 𝑜 ∧𝑊 = 𝑠𝑒𝑠) 

𝑃(𝑊 = 𝑠𝑒𝑠)
 

 
P(W=yes) = 0.04+0.09+0.07+0.01+0.10+0.12=0.43 



Inference by Enumeration: example 
• Given P(X) as JPD below, and evidence e = “Wind=yes” 

– What is the probability it is hot? I.e., P(Temperature=hot | Wind=yes)  

• Step 2: marginalize to get distribution P(Y|e) 
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Cloudy 
C 

Temperature 
T 

P(C, T| W=yes) 

sunny hot 0.10 

sunny mild 0.21 

sunny cold 0.16 

cloudy hot 0.02 

cloudy mild 0.23 

cloudy cold 0.28 

Temperature 
T 

P(T| W=yes) 

hot 0.10+0.02 = 0.12 

mild 0.21+0.23 = 0.44 

cold 0.16+0.28 = 0.44 



Problems of Inference by Enumeration 
• If we have n variables,  

and d is the size of the largest domain 
 

• What is the space complexity to store the joint distribution? 
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O(nd) O(dn) O(nd) O(n+d) 



Problems of Inference by Enumeration 
• If we have n variables,  

and d is the size of the largest domain 
 

• What is the space complexity to store the joint distribution? 
– We need to store the probability for each possible world 
– There are O(dn) possible worlds, so the space complexity is O(dn)  

 
• How do we find the numbers for O(dn) entries? 
• Time complexity O(dn) 

 
• We have some of our basic tools, but  

to gain computational efficiency we need to do more 
– We will exploit (conditional) independence between variables 
– (Next week) 26 



Lecture Overview 
 

• Recap: Probability & Possible World Semantics 
• Reasoning Under Uncertainty 

– Conditioning 
– Inference by Enumeration 
– Bayes Rule  
– Chain Rule 
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Using conditional probability 
• Often you have causal knowledge: 

– For example 
• P(symptom | disease) 
• P(light is off | status of switches and switch positions) 
• P(alarm | fire) 

– In general: P(evidence e | hypothesis h) 
 

• ... and you want to do evidential reasoning: 
– For example 

• P(disease | symptom) 
• P(status of switches | light is off and switch positions) 
• P(fire | alarm) 

– In general: P(hypothesis h | evidence e) 
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Bayes rule 
• By definition, we know that 𝑃 ℎ 𝑒 =  𝑃(ℎ ∧ 𝑒) 

𝑃(𝑒)
 

 

• We can rearrange terms to show: 
   𝑃 ℎ ∧ 𝑒 =  𝑃 ℎ 𝑒 × 𝑃(𝑒) 

 

• Similarly, we can show: 
𝑃 𝑒 ∧ ℎ =  𝑃 𝑒 ℎ × 𝑃(ℎ) 

 
• Since 𝑒 ∧ ℎ and ℎ ∧ 𝑒 are identical, we have: 

29 

  Theorem (Bayes theorem, or Bayes rule) 
 

𝑃 ℎ|𝑒 =  
𝑃 𝑒 ℎ × 𝑃(ℎ)

𝑃(𝑒)
 

 



Example for Bayes rule 
• On average, the alarm rings once a year 

– 𝑃(𝑎𝑎𝑎𝑎𝑎) = ? 
 

• If there is a fire, the alarm will almost always ring 
 

 

• On average, we have a fire every 10 years 
 

 

• The fire alarm rings. What is the probability there is a fire? 
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Example for Bayes rule 
• On average, the alarm rings once a year 

– 𝑃(𝑎𝑎𝑎𝑎𝑎) = 1/365 
 

• If there is a fire, the alarm will almost always ring 
– 𝑃 𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑎𝑒  = 0.999 

 

• On average, we have a fire every 10 years 
– 𝑃(𝑓𝑓𝑎𝑒) = 1/3650 

 

• The fire alarm rings. What is the probability there is a fire? 
– Take a few minutes to do the math! 
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0.9 0.999 0.0999 0.1 



Example for Bayes rule 
• On average, the alarm rings once a year 

– 𝑃(𝑎𝑎𝑎𝑎𝑎) = 1/365 
 

• If there is a fire, the alarm will almost always ring 
– 𝑃 𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑎𝑒  = 0.999 

 

• On average, we have a fire every 10 years 
– 𝑃(𝑓𝑓𝑎𝑒) = 1/3650 

 

• The fire alarm rings. What is the probability there is a fire? 
 

• 𝑃 𝑓𝑓𝑎𝑒|alarm =  𝑃 𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑎𝑒 ×𝑃(𝑓𝑓𝑎𝑒)
𝑃(𝑎𝑎𝑎𝑎𝑎)

=  0.999 × 1/3650
1/365

= 0.0999 
 

– Even though the alarm rings the chance for a fire is only about 10%! 
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Lecture Overview 
 

• Recap: Probability & Possible World Semantics 
• Reasoning Under Uncertainty 

– Conditioning 
– Bayes Rule 
– Inference by Enumeration  
– Chain Rule 
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Product Rule 
• By definition, we know that 

𝑃(𝑓2|𝑓1) =  
𝑃(𝑓2 ∧ 𝑓1) 
𝑃(𝑓1)

 
 

• We can rewrite this to 
 

𝑃 𝑓2 ∧ 𝑓1 = 𝑃 𝑓2|𝑓1 × 𝑃(𝑓1) 
 

• In general: 

34 

 

                                Theorem (Product Rule) 
 

𝑃 𝑓𝑠 ∧ ⋯∧ 𝑓𝑓 + 1 ∧ 𝑓i ∧ ⋯∧ 𝑓1 = 𝑃 𝑓𝑠 ∧ ⋯∧ 𝑓𝑓 + 1|𝑓i ∧ ⋯∧ 𝑓1 × 𝑃 𝑓i ∧ ⋯∧ 𝑓1  

 
 
 



Chain Rule 
• We know 

 

𝑃 𝑓2 ∧ 𝑓1 = 𝑃 𝑓2|𝑓1 × 𝑃(𝑓1) 
 

• In general: 
 𝑃 𝑓𝑠 ∧ 𝑓𝑠 − 1 ∧ ⋯∧ 𝑓1                                                                                                  

    = 𝑃 𝑓𝑠|𝑓𝑠 − 1 ∧ ⋯∧ 𝑓1 × 𝑃 𝑓𝑠 − 1 ∧ ⋯∧ 𝑓1   
  

   = 𝑃 𝑓𝑠|𝑓𝑠 − 1 ∧ ⋯∧ 𝑓1 × 𝑃 𝑓𝑠 − 1|𝑓𝑠 − 2 ∧ ⋯∧ 𝑓1  

                                                                                                                × 𝑃(𝑓𝑠 − 2 ∧ ⋯∧ 𝑓1) 

    = … 
    =∏ 𝑃(𝑓𝑓|𝑓𝑓 − 1 ∧ ⋯∧ 𝑓1)𝑠

𝑓=1  
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                     Theorem (Chain Rule) 

𝑃 𝑓𝑠 ∧ ⋯∧ 𝑓1 = �𝑃(𝑓𝑓|𝑓𝑓 − 1 ∧ ⋯∧ 𝑓1)
𝑠

𝑓=1

 

 
 



Why does the chain rule help us? 
 

• We can simplify some terms 
– For example, how about   P(Weather | PriceOfOil) ? 

• Weather in Vancouver is independent of the price of oil: 
 

𝑃 𝑊𝑒𝑎𝑜ℎ𝑒𝑎|𝑃𝑎𝑓𝑐𝑒𝑃𝑓𝑃𝑓𝑎 = 𝑃 𝑊𝑒𝑎𝑜ℎ𝑒𝑎  

 
• Under independence, we gain compactness 

– We can represent the JPD as a product of marginal distributions 
– For example: P(Weather,PriceOfOil) = P(Weather) × P(PriceOfOil) 
– But not all variables are independent 

 

𝑃 𝑊𝑒𝑎𝑜ℎ𝑒𝑎|𝑇𝑒𝑎𝑇𝑒𝑎𝑎𝑜𝑠𝑎𝑒 ≠ 𝑃 𝑊𝑒𝑎𝑜ℎ𝑒𝑎  
 

• More about (conditional) independence next week 
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• Prove the formula to compute conditional probability P(h|e) 
• Use inference by enumeration  

– to compute joint posterior probability distributions over any subset 
of variables given evidence 

• Derive and use Bayes Rule 
• Derive the Chain Rule 

 
• Marginalization, conditioning and Bayes rule are crucial 

– They are core to reasoning under uncertainty 
– Be sure you understand them and be able to use them! 

 

• First question of assignment 4 available on WebCT 
– Simple application of Bayes rule 
– Do it as an exercise before next class 

 37 

Learning Goals For Today’s Class 
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