Logic: Top-down proof procedure and Datalog

CPSC 322 - Logic 4

Textbook §5.2

March 11, 2011

Lecture Overview

Recap: Bottom-up proof procedure is sound and complete

- Top-down Proof Procedure
- Datalog

Definition (logical consequence)

If KB is a set of clauses and g is a conjunction of atoms, g is a logical consequence of KB, written KB ⊧ g, if g is true in every model of KB

Example: $KB = \{h \leftarrow a, a, a \leftarrow c\}$. Then $KB \models ?$

	а	С	h	h ← a	а	a ← c	Model of KB	
I ₁	F	F	F	Т	F	Т	no	
I_2	F	F	Т	Т	F	Т	no	
I ₃	F	Т	F	Т	F	F	no	W
I_4	F	Т	Т	Т	F	F	no	ar
I ₅	Т	F	F	F	Т	Т	no	
6	F	F		Т	Т	Т	yes	
I ₇	Т	Т	F	F	Т	Т	no	
8	T	Т	(T)	Т	Т	Т	yes	

Which atoms are entailed?

Definition (logical consequence)

If KB is a set of clauses and g is a conjunction of atoms, g is a logical consequence of KB, written KB ⊧ g, if g is true in every model of KB

Example: $KB = \{h \leftarrow a, a, a \leftarrow c\}$. Then $KB \models ?$

	а	С	h	h ← a	а	a ← c	Model of KB	
I ₁	F	F	F	Т	F	Т	no	
I ₂	F	F	Т	Т	F	Т	no	
I ₃	F	Т	F	Т	F	F	no	Which atoms
I ₄	F	Т	Т	Т	F	F	no	are entailed?
I ₅	Т	F	F	F	Т	Т	no	
I ₆	F	F		Т	Т	Т	yes	KB ⊧ a and
I ₇	Τ	Т	F	F	Т	Т	no	KB ⊧ h
8	T	Т	(T)	Т	Т	Т	yes	

Definition (logical consequence)

If KB is a set of clauses and g is a conjunction of atoms, g is a logical consequence of KB, written KB ⊧ g, if g is true in every model of KB

Example: $KB = \{h \leftarrow a, a, a \leftarrow c\}$. Then $KB \models a$ and $KB \models h$.

 $\begin{array}{ll} C := \{\}; \\ \textbf{repeat} \\ & \textbf{select} \ clause \ h \leftarrow b_1 \land \ldots \land b_m \ in \ KB \\ & such \ that \ b_i \in C \ for \ all \ i, \ and \ h \not\in C; \\ & C := C \cup \{h\} \\ & \textbf{until} \ no \ more \ clauses \ can \ be \ selected. \ KB \vdash_{BU} g \ if \ and \ only \ if \ g \in C \end{array}$

What does BU derive for the KB above?

Definition (logical consequence)

If KB is a set of clauses and g is a conjunction of atoms, g is a logical consequence of KB, written KB ⊧ g, if g is true in every model of KB

Example: $KB = \{h \leftarrow a, a, a \leftarrow c\}$. Then $KB \models a$ and $KB \models h$.

 $C := \{\};$

BU proof procedure

repeat

```
select clause h \leftarrow b_1 \land ... \land b_m in KB such that b_i \in C for all i, and h \notin C;
```

 $C \mathrel{:=} C \cup \{h\}$

until no more clauses can be selected. KB \vdash_{BU} g if and only if g \in C

What does BU derive for the KB above? Trace: {a}, {a,h}. Thus KB \vdash_{BU} a and KB \vdash_{BU} h. Exactly the logical consequences!

Summary for bottom-up proof procedure BU

- Proved last time
 - BU is sound: it derives only atoms that logically follow from KB
 - BU is complete: it derives all atoms that logically follow from KB
- Together:

it derives exactly the atoms that logically follow from KB !

- That's why the results for \models and \models_{BU} matched for the example above
- And, it is quite efficient!
 - Linear in the number of clauses in KB
 - Each clause is used maximally once by BU

Learning Goals Up To Here

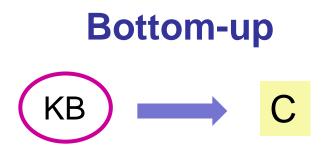
PDCL syntax & semantics

- Verify whether a logical statement belongs to the language of propositional definite clauses
- Verify whether an interpretation is a model of a PDCL KB.
- Verify when a conjunction of atoms is a logical consequence of a knowledge base
- Bottom-up proof procedure
 - Define/read/write/trace/debug the Bottom Up (**BU**) proof procedure
 - Prove that the BU proof procedure is sound and complete

Lecture Overview

- Recap: Bottom-up proof procedure is sound and complete
 - **Top-down Proof Procedure**
- Datalog

Bottom-up vs. Top-down



 $g \text{ is proved if } g \in C$

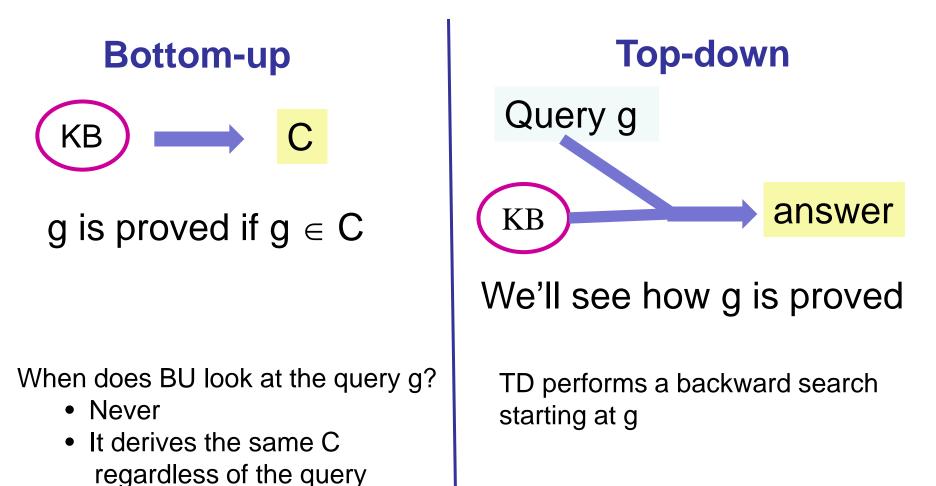
When does BU look at the query g?

In every loop iteration Never

At the end At the beginning

Bottom-up vs. Top-down

• Key Idea of top-down: search backward from a query g to determine if it can be derived from *KB*.



Top-down Ground Proof Procedure

Idea: search backward from a query

An answer clause is of the form: $yes \leftarrow a_1 \land ... \land a_m$ where $a_1, ..., a_m$ are atoms

We express the query as an answer clause

- E.g. query $q_1 \land ... \land q_k$ is expressed as $yes \leftarrow q_1 \land ... \land q_k$

 $\begin{array}{l} \text{Basic operation: SLD Resolution of an answer clause} \\ & yes \leftarrow c_1 \wedge \ldots \wedge c_{i-1} \wedge c_i \wedge c_{i+1} \ldots \wedge c_m \\ & \text{on an atom } c_i \text{ with another clause} \\ & c_i \leftarrow b_1 \wedge \ldots \wedge b_p \\ & \text{yields the clause} \\ & yes \leftarrow c_1 \wedge \ldots \wedge c_{i-1} \wedge b_1 \wedge \ldots \wedge b_p \wedge c_{i+1} \ldots \wedge c_m \end{array}$

Rules of derivation in top-down and bottom-up

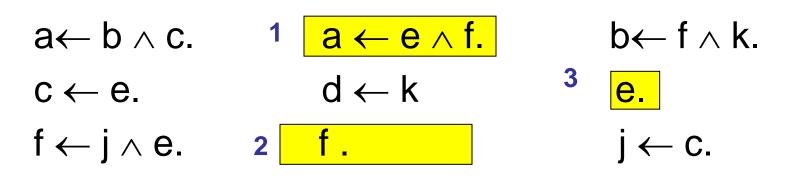
Top-down: SLD Resolution

$$\begin{array}{ll} yes \leftarrow c_1 \wedge \ldots \wedge c_{i-1} \wedge c_i \wedge c_{i+1} \ldots \wedge c_m & c_i \leftarrow b_1 \wedge \ldots \wedge b_p \\ yes \leftarrow c_1 \wedge \ldots \wedge c_{i-1} \wedge b_1 \wedge \ldots \wedge b_p \wedge c_{i+1} \ldots \wedge c_m \end{array}$$

Bottom-up: Generalized modus ponens

$$\begin{array}{ccc} h \leftarrow b_1 \wedge \ldots \wedge b_m & b_1 \wedge \ldots \wedge b_m \\ & & & & & \\ & & & & & \\ \end{array}$$

Example for (successful) SLD derivation



f

Query: ?a

$$\gamma_0$$
: yes \leftarrow a
 γ_1 : yes \leftarrow e \land
 γ_2 : yes \leftarrow e
 γ_3 : yes \leftarrow

Done. The question was "Can we derive a?"

The answer is "Yes, we can"

SLD Derivations

• An answer is an answer clause with m = 0.

 $yes \leftarrow$.

- A successful derivation from KB of query $\mathbf{?q}_1 \land ... \land \mathbf{q}_k$ is a sequence of answer clauses $\gamma_0, \gamma_1, ..., \gamma_n$ such that
 - γ_0 is the answer clause yes $\leftarrow q_1 \land ... \land q_k$.
 - γ_i is obtained by resolving γ_{i-1} with a clause in KB, and
 - γ_n is an answer yes \leftarrow
- An unsuccessful derivation from KB of query $\mathbf{Pq}_1 \wedge \ldots \wedge \mathbf{q}_k$
 - We get to something like yes ← b₁ ∧ ... ∧ b_k, where there is no clause in KB with any of the b_i as its head

Top-down Proof Procedure for PDCL

To solve the query $? q_1 \land ... \land q_k$:

```
ac:= yes \leftarrow body, where body is q_1 \land ... \land q_k

repeat

select q_i \in body;

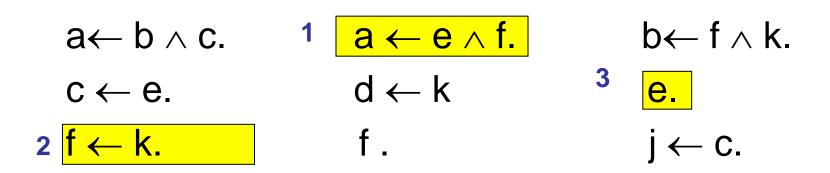
choose clause C \in KB, C is q_i \leftarrow b_c;

replace q_i in body by b_c

until ac is an answer (fail if no clause with q_i as head)
```

Select: any choice will work Choose: non-deterministic, have to pick the right one

Example for failing SLD derivation



Query: ?a

$$\begin{array}{l} \gamma_0 \text{: yes} \leftarrow a \\ \gamma_1 \text{: yes} \leftarrow e \wedge f \\ \gamma_2 \text{: yes} \leftarrow e \wedge k \\ \gamma_3 \text{: yes} \leftarrow k \end{array}$$

"Can we derive a?" "This time we failed"

There is no rule with k as its head, thus ... fail

Correspondence between BU and TD proofs

If the following is a top-down (TD) derivation in a given KB, what would be the bottom-up (BU) derivation of the same query?

```
TD derivation
yes \leftarrow a.
yes \leftarrow b \land f.
yes \leftarrow b \land g \land h.
yes \leftarrow c \land d \land g \land h.
yes \leftarrow d \land \underline{q} \land h.
yes \leftarrow g \land h.
yes \leftarrow h.
yes \leftarrow .
```

BU derivation {}

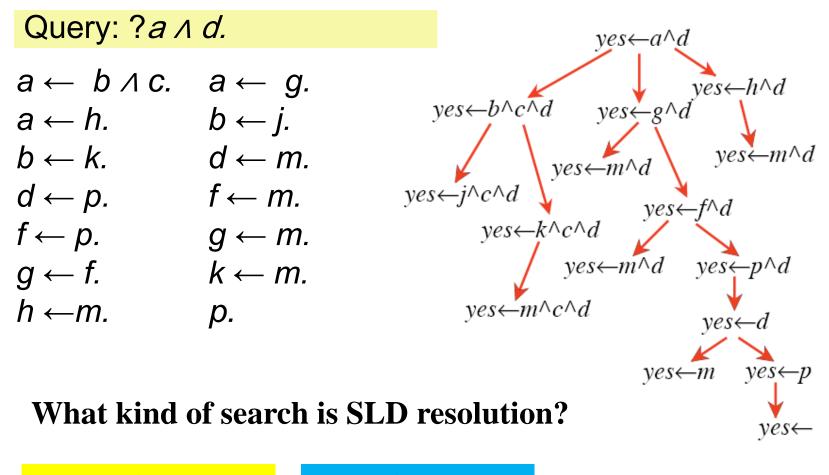
Correspondence between BU and TD proofs

If the following is a top-down (TD) derivation in a given KB, what would be the bottom-up (BU) derivation of the same query?

TD derivation	BU derivation
yes ← a.	{}
yes \leftarrow b \land f.	{h}
yes $\leftarrow b \land g \land h$.	{g,h}
yes $\leftarrow c \land d \land g \land h$.	{d,g,h}
yes $\leftarrow d \land g \land h$.	{c,d,g,h}
yes $\leftarrow g \land h$.	{b,c,d,g,h}
yes ← h.	{b,c,d,f,g,h}
yes \leftarrow .	{a,b,c,d,f,g,h}

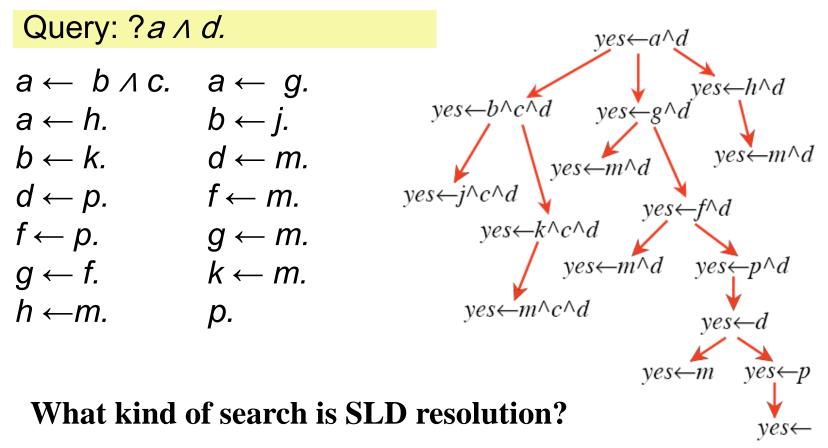
Is the Top-down procedure sound and complete?

- Yes, since there is a 1:1 correspondence between topdown and bottom-up proofs
 - The two methods derive exactly the same atoms (if the SLD resolution picks the successful derivations)

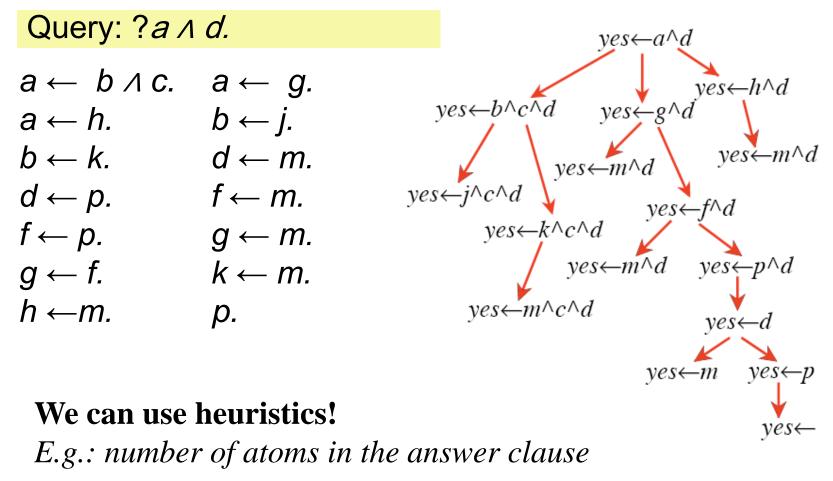


Breadth-first search

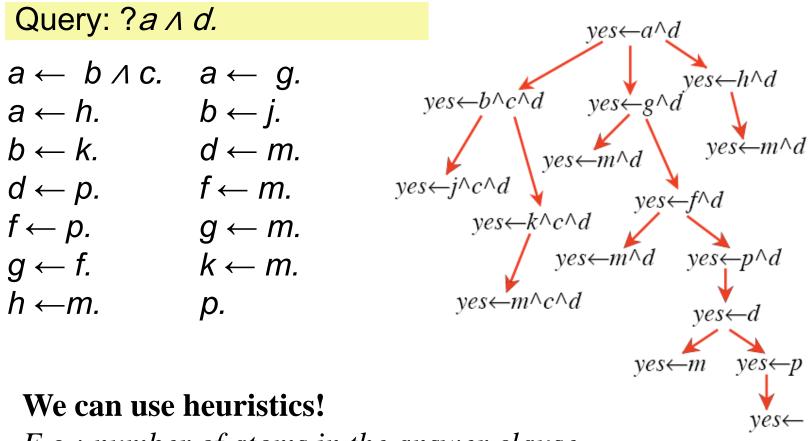
Depth-first-search



It's a depth-first-search. Failing resolutions are paths where the search has to backtrack.



Admissible?



E.g.: number of atoms in the answer clause

Admissible?

Yes, you need at least these many SLD steps to get an answer

Inference as Standard Search

- Constraint Satisfaction (Problems):
 - State: assignments of values to a subset of the variables
 - Successor function: assign values to a "free" variable
 - Goal test: set of constraints
 - Solution: possible world that satisfies the constraints
 - Heuristic function: none (all solutions at the same distance from start)
- Planning :
 - State: full assignment of values to features
 - Successor function: states reachable by applying valid actions
 - Goal test: partial assignment of values to features
 - Solution: a sequence of actions
 - Heuristic function: relaxed problem! E.g. "ignore delete lists"
- Inference (Top-down/SLD resolution)
 - State: answer clause of the form yes $\leftarrow q_1 \land ... \land q_k$
 - Successor function: all states resulting from substituting first atom a with $b_1 \land ... \land b_m$ if there is a clause $a \leftarrow b_1 \land ... \land b_m$
 - Goal test: is the answer clause empty (i.e. yes \leftarrow) ?
 - Solution: the proof, i.e. the sequence of SLD resolutions
 - Heuristic function: number of atoms in the query clause

Lecture Overview

- Recap: Bottom-up proof procedure is sound and complete
- Top-down Proof Procedure

Representation and Reasoning in complex domains

 Expressing knowledge with propositions can be quite limiting

> up_s_2 up_s_3 ok_cb_1 ok_cb_2 $live_w_1$ $connected_w_1_w_2$

E.g. there is no notion that w_1 is the same in live_ w_1 and in connected_ w_1 _ w_2 It is often natural to consider individuals and their properties

 $up(s_2)$ $up(s_3)$ $ok(cb_1)$ $ok(cb_2)$ $live(w_1)$ $connected(w_1, w_2)$

Now there is a notion that w_1 is the same in live(w_1) and in connected(w_1 , w_2)

What do we gain?

• Express knowledge that holds for set of individuals (by introducing variables), e.g.

```
live(W) <- connected_to(W,W<sub>1</sub>) \land live(W<sub>1</sub>) \land
wire(W) \land wire(W<sub>1</sub>).
```

 We can ask generic queries, such as "which wires are connected to w₁?"

? connected_to(W, w₁)

Datalog: a relational rule language

Datalog expands the syntax of PDCL....

A variable is a symbol starting with an upper case letter Examples: X, Y

A constant is a symbol starting with lower-case letter or a sequence of digits.

Examples: alan, w1

A term is either a variable or a constant.

Examples: X, Y, alan, w1

A predicate symbol is a symbol starting with a lower-case letter. Examples: live, connected, part-of, in

Datalog Syntax (cont')

An atom is a symbol of the form p or $p(t_1 \dots t_n)$ where p is a predicate symbol and t_i are terms

Examples: sunny, in(alan,X)

A definite clause is either an atom (a fact) or of the form:

$$h \leftarrow b_1 \wedge \ldots \wedge b_m$$

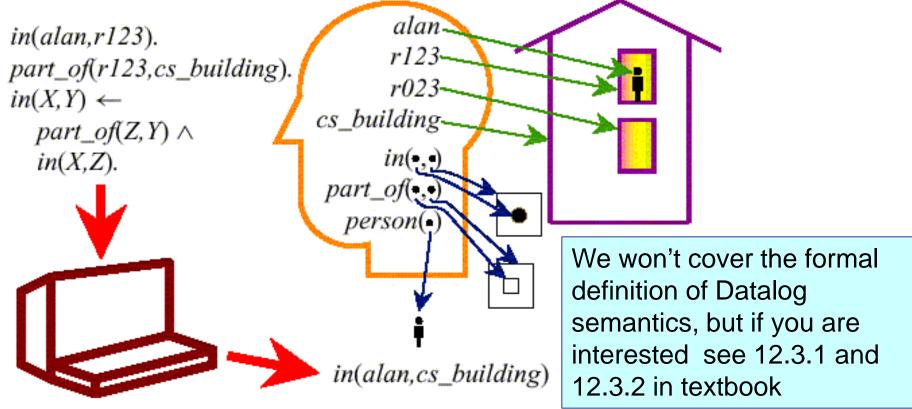
where *h* and the b_i are atoms (Read this as ``*h* if *b*.'')

Example: in(X,Z) \leftarrow in(X,Y) \land part-of(Y,Z)

A knowledge base is a set of definite clauses

Datalog Sematics

- Role of semantics is still to connect symbols and sentences in the language with the target domain. Main difference:
 - need to create correspondence both between terms and individuals, as well as between predicate symbols and relations



Datalog: Top Down Proof

- Extension of TD for PDCL. How to deal with variables?
 - Idea: TD finds clauses with consequence predicates that match the query, then substitutes variables with the appropriate constants *throughout* the clause
 - We won't look at the details of the formal process (called *unification*)

```
Example:in(alan, r123).<br/>part_of(r123,cs_building).<br/>in(X,Y) <- part_of(Z,Y) & in(X,Z).</td>
```

Query: yes <- in(alan, cs_building).

See trace of how the answer is found in Deduction Applet, example *in-part-of* available in course schedule

Datalog: queries with variables

```
in(alan, r123).
part_of(r123,cs_building).
in(X,Y) <- part_of(Z,Y) & in(X,Z).</pre>
```

Query: in(alan, X1).


```
Yes(X1) <- in(alan, X1).
```

See outcome in Deduction Applet, example *in-part-of* available at http://cs.ubc.ca/~hutter/teaching/cpsc322/ /alan.pl

Learning Goals For Logic

- PDCL syntax & semantics
 - Verify whether a logical statement belongs to the language of propositional definite clauses
 - Verify whether an interpretation is a model of a PDCL KB.
 - Verify when a conjunction of atoms is a logical consequence of a KB
- Bottom-up proof procedure
 - Define/read/write/trace/debug the Bottom Up (**BU**) proof procedure
 - Prove that the BU proof procedure is sound and complete
- Top-down proof procedure
 - Define/read/write/trace/debug the Top-down (**SLD**) proof procedure (as a search problem)
- Datalog
 - Represent simple domains in Datalog
 - Apply the Top-down proof procedure in Datalog