Logic: Bottom-up & Top-down proof procedures

CPSC 322 – Logic 3

Textbook §5.2

March 9, 2011

Announcements

- Midterm is marked
 - Will be returned after the lecture
- Assignment 2 is taking longer to mark than the TAs thought
 - Probably will be returned on Friday
- Assignment 3 is due in a week
 - Think of it as a half- assignment on STRIPS (due today) and a half- assignment on logic

Lecture Overview

Recap: Soundness, Correctness, Bottom-up proof procedure

- Bottom-up Proof Procedure
 - Soundness proof
 - Completeness proof
- Top-down Proof Procedure

(Propositional) Logic: Review of Key ideas

- Given a domain that can be represented with n propositions, how many interpretations are there?
 - 2ⁿ interpretations (similar to possible worlds)
- If you do not know anything about the domain you could be in any of those interpretations
- If you know that some logical formulae are true (your KB), you know that you can only be in interpretations in which those formulae hold (i.e. in of KB)

(Propositional) Logic: Review of Key ideas

- Given a domain that can be represented with n propositions, how many interpretations are there?
 - 2ⁿ interpretations (similar to possible worlds)
- If you do not know anything about the domain you could be in any of those interpretations
- If you know that some logical formulae are true (your KB), you know that you can only be in interpretations in which those formulae hold (i.e. in models of KB)
- It would be nice to know what else is true in all those models
 Definition (logical consequence) If KB is a set of clauses and g is a conjunction of atoms, g is a logical consequence of KB, written KB ⊧ g, if g is true in every model of KB
- Example: $KB = \{h \leftarrow a, a, d \leftarrow c\}$. For which g is $KB \models g$ true?

(Propositional) Logic: Review of Key ideas

- Given a domain that can be represented with n propositions, how many interpretations are there?
 - 2ⁿ interpretations (similar to possible worlds)
- If you do not know anything about the domain you could be in any of those interpretations
- If you know that some logical formulae are true (your KB), you know that you can only be in interpretations in which those formulae hold (i.e. in models of KB)
- It would be nice to know what else is true in all those models
 Definition (logical consequence) If KB is a set of clauses and g is a conjunction of atoms, g is a logical consequence of KB, written KB ⊧ g, if g is true in every model of KB
- Example: $KB = \{h \leftarrow a, a, d \leftarrow c\}$. Then $KB \models a$ and $KB \models h$.

Intended interpretation

- User chooses task domain: intended interpretation.
 - This is the interpretation of the symbols the user has in mind
- User tells the system clauses (the knowledge base KB)
 - Each clause is true in the user's intended interpretation
 - Thus, the intended interpretation is a model
- The computer does not know the intended interpretation
 - But if it can derive something that's true in all models, then it is true in the intended interpretation
 - Once more, we want to derive logical consequences

Logical consequence

Definition (logical consequence)

If KB is a set of clauses and g is a conjunction of atoms, g is a logical consequence of KB, written $KB \models g$, if g is true in every model of KB

• If KB ⊧ g, then ... (multiple answers correct)

g is true in the intended interpretation

There is at least one model of KB in which g is true

g is true in every model of KB

g is true in some models of KB, but not necessarily the intended interpretation

Logical consequence

Definition (logical consequence)

If KB is a set of clauses and g is a conjunction of atoms, g is a logical consequence of KB, written $KB \models g$, if g is true in every model of KB

- If KB ⊧ g, then ...
 - g is true in every model of KB (by definition)
 - The intended interpretation is one of these models, so g is also true in it

Recap: proofs, soundness, completeness

• A proof is a mechanically derivable demonstration that a formula logically follows from a knowledge base.

Definition (derivability with a proof procedure) Given a proof procedure P, $KB \vdash_P g$ means g can be derived from knowledge base KB with proof procedure P.

• We want our proof procedures to be sound and complete

Definition (soundness)

A proof procedure P is sound if KB \vdash_P g implies KB \models g.

sound: every atom g that P derives follows logically from KB

Definition (completeness)

A proof procedure P is complete if KB \models g implies KB \vdash_P g.

complete: every atom g that logically follows from KB is derived by P

Example: an unsound proof procedure

- Unsound proof procedure U:
 - U derives every atom in KB: for any g that appears in KB, KB \vdash_U g
- Proof procedure U is unsound:
 - There are atoms it derives that do not logically follow from KB
 - E.g. KB = $\{a \leftarrow b\}$.
 - It will derive a and b, but neither of them logically follows from KB
 - − Thus KB \vdash_U g does not imply KB \models g → unsound
- Proof procedure U is complete:
 - It will not miss any atoms since it derives every atom g
 - Thus KB \models g implies KB \vdash_U g \rightarrow complete

Example: an incomplete proof procedure

- Incomplete proof procedure I:
 - I derives nothing: there is no atom g such that KB \vdash_{I} g
- Proof procedure I is sound:
 - It does not derive any atom at all, so every atom it derives follows from KB
 - Thus KB \vdash_{I} g implies KB \models g \rightarrow sound
- Proof procedure I is incomplete:
 - It will miss atoms that logically follow from KB
 - − E.g. KB = {a}: KB \models a, but not KB \vdash _I a
 - Thus KB \models g does not imply KB \vdash_{I} g \rightarrow incomplete

Recap: Bottom-up proof procedure

 $\label{eq:KB} \mathsf{KB} \vdash_{\mathsf{BU}} g \text{ if and only if } g \in C \text{ at the end of the following} \\ procedure.$

 $\begin{array}{l} \mathsf{C} \mathrel{\mathop:}= \{\}; \\ \textbf{repeat} \\ \textbf{select} \ \text{clause} \ \mathsf{h} \leftarrow \mathsf{b}_1 \land \ldots \land \mathsf{b}_m \ \text{in} \ \mathsf{KB} \\ & \text{such that} \ \mathsf{b}_i \in \mathsf{C} \ \text{for all} \ \mathsf{i}, \ \text{and} \ \mathsf{h} \not\in \mathsf{C}; \\ \mathsf{C} \mathrel{\mathop:}= \mathsf{C} \cup \{\mathsf{h}\} \\ \textbf{until} \ \text{no more clauses can be selected.} \end{array}$

Bottom-up proof procedure: example

a ← b ∧ c	{}
$a \leftarrow e \wedge f$	() {e}
$b \leftarrow f \wedge k$	{c e}
c ← e	{c,e,f}
$d \leftarrow k$	{cefi}
e.	{acefi}
f←j∧e	[[4,0,0,1,]]
f ← c	Done
i ← c	Done.

Lecture Overview

 Recap: Soundness, Correctness, Bottom-up proof procedure

Bottom-up Proof Procedure

- Soundness proof
- Completeness proof
- Top-down Proof Procedure

Soundness of bottom-up proof procedure BU

Definition (soundness)

A proof procedure P is sound if KB \vdash_P g implies KB \models g.

sound: every atom g that P derives follows logically from KB

What do we need to prove to show that BU is sound ?

Soundness of bottom-up proof procedure BU

Definition (soundness)

A proof procedure P is sound if KB \vdash_P g implies KB \models g.

sound: every atom g that P derives follows logically from KB

What do we need to prove to show that BU is sound ?

If $g \in C$ at the end of BU procedure, then g is true in all models of KB (KB \models g)

Soundness of bottom-up proof procedure BU

 $\label{eq:constraint} \begin{array}{l} C \mathrel{\mathop:}= \{\}; \\ \textbf{repeat} \\ & \textbf{select} \ clause \ h \leftarrow b_1 \land \ldots \land b_m \ in \ KB \\ & \textbf{such} \ that \ b_i \in C \ for \ all \ i, \ and \ h \not\in C; \\ & C \mathrel{\mathop:}= C \cup \{h\} \end{array}$

Inductive proof using inductive hypothesis IH:

IH: if $g \in C$ at loop iteration n, **then** g is true in all models of KB (KB \models g)

Base case: "IH holds for n=0". C = {}, so IH holds trivially Inductive case: "if IH holds for n, it holds for n+1".

- Here: "if IH held before a loop iteration, it holds afterwards"
- The only new element in C is h, so we only need to prove KB ⊧ h
- − b_1, \dots, b_m were in C before, so by IH we know KB $\models b_1 \land \dots \land b_m$
- In every model, " $b_1 \wedge ... \wedge b_m$ " is true and " $h \leftarrow b_1 \wedge ... \wedge b_m$ " is true
 - Thus, in every model, h is true. Done. KB \vdash_{BU} g implies KB \models g $_{18}$

Lecture Overview

- Recap: Soundness, Correctness, Bottom-up proof procedure
- Bottom-up Proof Procedure
 - Soundness proof
 - Completeness proof
- Top-down Proof Procedure

Minimal Model

The C at the end of BU procedure is a fixed point:

- Further applications of our rule of derivation will not change C!

Definition (minimal model)

The minimal model MM is the interpretation in which every element of BU's fixed point C is true and every other atom is false.

Lemma: minimal model MM is a model of KB

Definition (minimal model)

The minimal model MM is the interpretation in which every element of BU's fixed point C is true and every other atom is false.

Definition (model)

A **model** of a knowledge base KB is an interpretation in which every clause in KB is true.

Proof by contradiction.

Assume (for contradiction) that MM is not a model of KB.

- Then there must exist some clause in KB which is false in MM
 - Like every clause in KB, it is of the form $h \leftarrow b_1 \land \ldots \land b_m$ (with $m \ge 0$).
- h ← $b_1 \land ... \land b_m$ can only be false in MM if each b_i is true in MM and h is false in MM.
 - Since each b_i is true in MM, each b_i must be in C as well.
 - BU would add h to C, so h would be true in MM
 - Contradiction! Thus, MM is a model of KB

Completeness of bottom-up procedure

Definition (completeness)

A proof procedure P is complete if KB \models g implies KB \vdash_P g.

complete: everything that logically follows from KB is derived

What do we need to prove to show that BU is complete?

Completeness of bottom-up procedure

Definition (completeness)

A proof procedure P is complete if KB \models g implies KB \vdash_P g.

complete: everything that logically follows from KB is derived

What do we need to prove to show that BU is complete? If g is true in all models of KB (KB \models g) then g \in C at the end of BU procedure (KB \vdash_{BU} g)

Direct proof based on Lemma about minimal model:

- Suppose KB ⊧ g. Then g is true in all models of KB.
- Thus g is true in the minimal model.
- Thus $g \in C$ at the end of BU procedure.
- Thus KB \vdash_{BU} g. Done. KB \models g implies KB \vdash_{BU} g

Summary for bottom-up proof procedure BU

- BU is sound: it derives only atoms that logically follow from KB
- BU is complete: it derives all atoms that logically follow from KB
- Together: it derives exactly the atoms that logically follow from KB
- And, it is quite efficient!
 - Linear in the number of clauses in KB
 - Each clause is used maximally once by BU

Learning Goals Up To Here

PDCL syntax & semantics

- Verify whether a logical statement belongs to the language of propositional definite clauses
- Verify whether an interpretation is a model of a PDCL KB.
- Verify when a conjunction of atoms is a logical consequence of a knowledge base
- Bottom-up proof procedure
 - Define/read/write/trace/debug the Bottom Up (**BU**) proof procedure
 - Prove that the BU proof procedure is sound and complete

Lecture Overview

- Recap: Soundness, Correctness, Bottom-up proof procedure
- Bottom-up Proof Procedure
 - Soundness proof
 - Completeness proof

Bottom-up vs. Top-down

 $g \text{ is proved if } g \in C$

When does BU look at the query g?

In every loop iteration Never

At the end At the beginning

Bottom-up vs. Top-down

• Key Idea of top-down: search backward from a query g to determine if it can be derived from *KB*.

Top-down Ground Proof Procedure

Idea: search backward from a query to determine if it is a logical consequence of KB

An answer clause is of the form: yes $\leftarrow a_1 \land ... \land a_m$ where $a_1, ..., a_m$ are atoms

We express the query as an answer clause

- E.g. query $q_1 \land \ldots \land q_k$ is expressed as $yes \leftarrow q_1 \land \ldots \land q_k$

Basic operation: SLD Resolution of an answer clause $yes \leftarrow c_1 \land \ldots \land c_{i-1} \land c_i \land c_{i+1} \ldots \land c_m$ on an atom c_i with another clause $c_i \leftarrow b_1 \land \ldots \land b_p$ yields the clause $yes \leftarrow c_1 \land \ldots \land c_{i-1} \land b_1 \land \ldots \land b_p \land c_{i+1} \ldots \land c_m$

Rules of derivation in top-down and bottom-up

Top-down: SLD Resolution

$$\begin{array}{ccc} yes \leftarrow c_1 \wedge \ldots \wedge c_m & c_i \leftarrow b_1 \wedge \ldots \wedge b_p \\ \hline yes \leftarrow c_1 \wedge \ldots \wedge c_{i-1} \wedge b_1 \wedge \ldots \wedge b_p \wedge c_{i+1} \ldots \wedge c_m \end{array}$$

Bottom-up: Generalized modus ponens

$$\begin{array}{ccc} h \leftarrow b_1 \wedge \ldots \wedge b_m & b_1 \wedge \ldots \wedge b_m \\ & h \end{array}$$

SLD Derivations

• An answer is an answer clause with m = 0.

 $yes \leftarrow$.

- A successful derivation from KB of query $\mathbf{?q}_1 \land ... \land \mathbf{q}_k$ is a sequence of answer clauses $\gamma_0, \gamma_1, ..., \gamma_n$ such that
 - γ_0 is the answer clause yes $\leftarrow q_1 \land ... \land q_k$.
 - γ_i is obtained by resolving γ_{i-1} with a clause in KB, and
 - γ_n is an answer yes \leftarrow
- An unsuccessful derivation from KB of query $\mathbf{Pq}_1 \wedge \ldots \wedge \mathbf{q}_k$
 - We get to something like yes $\leftarrow b_1 \land ... \land b_k$.
 - There is no clause in KB with any of the b_i as its head

Top-down Proof Procedure for PDCL

To solve the query $? q_1 \land ... \land q_k$:

```
ac:= yes \leftarrow body, where body is q_1 \land ... \land q_k

repeat

select q_i \in body;

choose clause C \in KB, C is q_i \leftarrow b_c;

replace q_i in body by b_c

until ac is an answer (fail if no clause with q_i as head)
```

Select: any choice will work Choose: non-deterministic, have to pick the right one

Example: successful derivation

Query: ?a

- γ_0 : yes \leftarrow a
- γ_1 : yes $\leftarrow e \land f$
- γ_2 : yes $\leftarrow e \land c$
- γ_3 : yes \leftarrow c
- γ_4 : yes $\leftarrow e$
- γ_5 : yes \leftarrow

Example: failing derivation

Query: ?a

$$a \leftarrow e \land f.$$
2 $b \leftarrow f \land k.$ $d \leftarrow k$ 5,7 $e.$ $3 f \leftarrow c.$ $j \leftarrow c.$

 $\begin{array}{l} \gamma_{0} : \text{yes} \leftarrow a \\ \gamma_{1} : \text{yes} \leftarrow b \land c \\ \gamma_{2} : \text{yes} \leftarrow f \land k \land c \\ \gamma_{3} : \text{yes} \leftarrow c \land k \land c \\ \gamma_{4} : \text{yes} \leftarrow e \land k \land c \\ \gamma_{5} : \text{yes} \leftarrow k \land c \\ \gamma_{6} : \text{yes} \leftarrow k \land e \\ \gamma_{7} : \text{yes} \leftarrow k \end{array}$ There is no rule with k as its head, thus ... fail

Correspondence between BU and TD proofs

If the following is a top-down derivation in a given KB, what would be the bottom-up derivation of the same query?

yes \leftarrow a. yes \leftarrow b \land f. yes \leftarrow b \land g \land h. yes \leftarrow c \land d \land g \land h. yes \leftarrow d \land g \land h. yes \leftarrow g \land h. yes \leftarrow h. yes \leftarrow . {}
{h}
{g,h}
{g,h}
{d,g,h}
{c,d,g,h}
{b,c,d,g,h}
{b,c,d,f,g,h}
{a,b,c,d,f,g,h}

Midterm

- Midterm is marked
 - Average: 73.6
 - Median: 78
 - Maximum: 98
- 8 of 77 students below 50%
 - Nothing that can't be fixed
 - Remember: if final exam grade is \geq 20% higher than midterm grade, then midterm counts only 15% and final counts 65%
 - But need to start working hard NOW
 - Please use the office hours
 - My office hours are every time right after class in the classroom
 - Or schedule an appointment via email (<u>hutter@cs.ubc.ca</u>)