Logic: Proof procedures, soundness and correctness

CPSC 322 - Logic 2

Textbook 5.2

March 7, 2011

Lecture Overview

- Recap: Propositional Definite Clause Logic (PDCL)
 - Syntax
 - Semantics
 - More on PDCL Semantics
 - Proof procedures
 - Soundness, Completeness, example
 - Bottom-up proof procedure
 - Pseudocode and example
 - Time-permitting: Soundness
 - Time-permitting: Completeness

Course Overview

Course Module

Representation

Reasoning Technique

Environment

Deterministic

Stochastic

Problem Type Constraint Static Logic

Static problems, but with richer representation

Sequential

Arc Consistency Satisfaction Variables + Search **Constraints**

Logics

Search

Bayesian Networks

> Variable Elimination

STRIPS

Search

As CSP (using arc consistency) Decision **Networks**

> Variable Elimination

Markov Processes

Value Iteration Uncertainty

Decision Theory

Representation and Reasoning System (RRS)

Definition (RRS)

A Representation and Reasoning System (RRS) consists of:

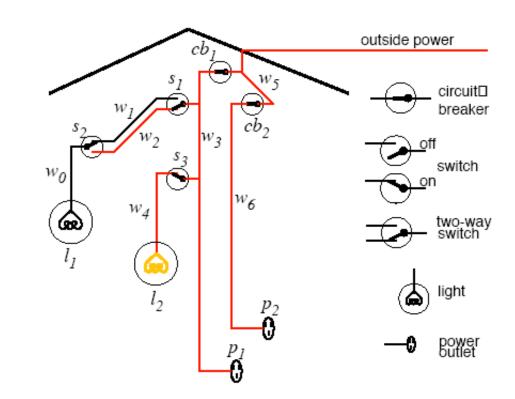
- syntax: specifies the symbols used, and how they can be combined to form legal sentences
- semantics: specifies the meaning of the symbols
- reasoning theory or proof procedure: a (possibly nondeterministic) specification of how an answer can be produced.

Propositional definite clause logic (PDCL) is one such Representation and Reasoning System

Example: Electrical Circuit

light_l1.
light_l2.
ok_l1.
ok_l2.
ok_cb1.
ok_cb2.
live_outside.

live_l₁ ←live_w₀. live_w₀ ←live_w₁ ∧up_s₂. live_w₀ ←live_w₂ ∧down_s₂. live_w₁ ←live_w₃ ∧up_s₁. live_w₂ ←live_w₃ ∧down_s₁. live_l₂ ←live_w₄. live_w₄ ←live_w₃ ∧up_s₃. live_p₁ ←live_w₃. live_w₃ ←live_w₅ ∧ok_cb₁. live_p₂ ←live_w₆. live_w₆ ←live_w₅ ∧ok_cb₂. live_w₅ ←live_outside. lit_l₁ ←light_l₁ ∧live_l₁ ∧ok_l₁. lit_l₂ ←light_l₂ ∧live_l₂ ∧ok_l₂.



Propositional Definite Clauses: Syntax

Definition (atom)

Examples: p₁. live_l₁

An atom is a symbol starting with a lower case letter

Definition (body) | Examples: p. ok_w_1 | live_w₀. $p_1 p_2 p_3 p_4$

A **body** is an atom or is of the form $b_1 \wedge b_2$ where b_1 and b_2 are bodies.

Definition (definite clause)

A definite clause is an atom

Examples: p. $p_1 \leftarrow p_2 \wedge p_3 \wedge p_4$. live_ $w_0 \leftarrow live_w_1 \cdot up_s_2$

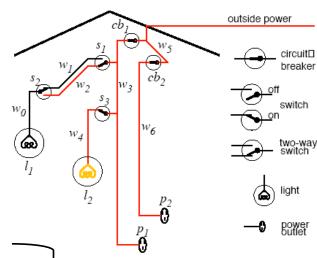
or is a rule of the form $h \leftarrow b$ where h is an atom ("head") and b is a body. (Read this as ``h if b.")

Definition (KB) | Example: $\{p_2, p_3, p_4, p_1 \leftarrow p_2, p_3, p_4, \text{ live_l}_1\}$

A knowledge base (KB) is a set of definite clauses

light_l1.
light_l2.
ok_l1.
ok_l2.
ok_cb1.
ok_cb2.
live_outside.

atoms



definite clauses, KB live_l1 ←live_wo. live_wo ←live_w1 ∧up_52. live_wo ←live_w2 ∧down_52. live_w₁ \leftarrow live_w₃ \wedge up_5₁. live_w2 ←live_w3 ∧down_51. live 12 ←live W4. live_w4 ←live_w3 ∧up_53. live_p1 ←live_w3. live_w3 \leftarrow live_w5 \land ok_cb1. live_p2 ←live_w6. live_w6 \leftarrow live_w5 \wedge ok_cb2. live_w5 ←live_outside. $lit_1 \leftarrow light_1 \land live_1 \land ok_1$. $lit_12 \leftarrow light_12 \land live_12 \land ok_12.$

rules

Lecture Overview

- Recap: Propositional Definite Clause Logic (PDCL)
 - Syntax
- Semantics
- More on PDCL Semantics
- Proof procedures
 - Soundness, Completeness, example
 - Bottom-up proof procedure
 - Pseudocode and example
 - Time-permitting: Soundness
 - Time-permitting: Completeness

Propositional Definite Clauses: Semantics

Semantics allows you to relate the symbols in the logic to the domain you're trying to model.

Definition (interpretation)

An interpretation I assigns a truth value to each atom.

Definition (truth values of statements)

- A body b₁ ∧ b₂ is true in I if and only if b₁ is true in I and b₂ is true in I.
- A rule h ← b is
 false in I if and only if b is true in I and h is false in I.

PDC Semantics: Example

Truth values under different interpretations F=false, T=true

	a ₁	a_2	$a_1 \wedge a_2$
 1	F	F	F
12	F	Т	F
I ₃	Т	F	F
I ₄	Т	Т	Т

	h	b	$\neg b$	$\neg b \vee h$	$h \leftarrow b$
I ₁	F	F	Т	Т	Т
I ₂	F	Т	F	F	F
I ₃	Т	F	Т	Т	Т
I ₄	Т	Т	F	Т	Т

 $h \leftarrow b$ ("h if b") is only false if b is true and h is false

PDC Semantics: Example for models

Definition (model)

A model of a knowledge base KB is an interpretation in which every clause in KB is true.

$$KB = \begin{cases} p \leftarrow q \\ q \\ r \leftarrow s \end{cases}$$

Which of the interpretations below are models of KB?

	р	q	r	S	$p \leftarrow q$	q	r ← s	Model of KB
I ₁	Т	Т	Т	Т	Т	Т	Т	yes no
l ₂	F	F	F	F	Т	F	Т	yes no
I ₃	Т	Т	F	F	Т	Т	Т	yes no
I ₄	F	Т	Т	F	F	Т	Т	yes no
I ₅	Т	Т	F	Т	Т	Т	F	yes no

PDC Semantics: Example for models

Definition (model)

A model of a knowledge base KB is an interpretation in which every clause in KB is true.

Lecture Overview

- Recap: Propositional Definite Clause Logic (PDCL)
 - Syntax
 - Semantics

More on PDCL Semantics

- Proof procedures
 - Soundness, Completeness, example
 - Bottom-up proof procedure
 - Pseudocode and example
 - Time-permitting: Soundness
 - Time-permitting: Completeness

PDCL Semantics: Logical Consequence

Definition (model)

A model of a knowledge base KB is an interpretation in which every clause in KB is true.

Definition (logical consequence)

If KB is a set of clauses and g is a conjunction of atoms, G is a logical consequence of KB, written KB ⊧ g, if g is true in every model of KB

- We also say that g logically follows from KB, or that KB entails g
- In other words, KB ⊨ g if there is no interpretation in which KB is true and g is false

PDCL Semantics: Logical Consequence

Definition (model)

A model of a knowledge base KB is an interpretation in which every clause in KB is true.

Definition (logical consequence)

If KB is a set of clauses and g is a conjunction of atoms, G is a logical consequence of KB, written KB ⊧ g, if g is true in every model of KB

$$KB = \begin{cases} p \leftarrow q \\ q \\ r \leftarrow s \end{cases}$$
 Which of the following are true?
$$KB \models p \quad KB \models q \quad KB \models r \quad KB \models s \end{cases}$$

PDCL Semantics: Logical Consequence

Definition (model)

A model of a knowledge base KB is an interpretation in which every clause in KB is true.

Definition (logical consequence)

If KB is a set of clauses and g is a conjunction of atoms, G is a logical consequence of KB, written KB ⊧ g, if g is true in every model of KB

$$KB = \begin{cases} p \leftarrow q & \text{If KB is true, then q is true. Thus KB } \not\models q. \\ q & \text{If KB is true then both q and } p \leftarrow q \text{ are true,} \\ r \leftarrow s & \text{so p is true ("p if q"). Thus KB } \not\models p. \end{cases}$$

There is a model where r is false, likewise for s (but there is no model where s is true and r is false)

Motivation for Proof Procedure

 We want a proof procedure that can find all and only the logical consequences of a knowledge base

Why?

User's View of Semantics

- 1. Choose a task domain: intended interpretation.
- 2. Associate an atom with each proposition you want to represent.
- 3. Tell the system clauses that are true in the intended interpretation: axiomatizing the domain.
- 4. Ask questions about the intended interpretation.
 - If KB ⊧ g, then g must be true in the intended interpretation.
 - The user can interpret the answer using their intended interpretation of the symbols.

Computer's view of semantics

- The computer doesn't have access to the intended interpretation.
 - All it knows is the knowledge base.
- The computer can determine if a formula is a logical consequence of KB.
 - If KB ⊧ g then g must be true in the intended interpretation.
 - Otherwise, there is a model of KB in which g is false.
 This could be the intended interpretation.

Role of semantics

In user's mind:

- I2_broken: light I2 is broken
- sw3_up: switch is up
- power: there is power in the building
- unlit_l2: light l2 isn't lit
- lit_l1: light l1 is lit

In computer:

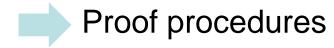
- I2_broken ← sw3_up ∧ power ∧ unlit_l2.
- sw3_up.
- power ← lit_l1.
- unlit_l2.
- lit 11.

Conclusion: I2_broken

- The computer doesn't know the meaning of the symbols
- The user can interpret the symbols using their meaning

Lecture Overview

- Recap: Propositional Definite Clause Logic (PDCL)
 - Syntax
 - Semantics
- More on PDCL Semantics



- Soundness, Completeness, example
- Bottom-up proof procedure
 - Pseudocode and example
 - Time-permitting: Soundness
 - Time-permitting: Completeness

Proofs

- A proof is a mechanically derivable demonstration that a formula logically follows from a knowledge base.
- Given a proof procedure P, KB + g means g can be derived from knowledge base KB with the proof procedure.
- Recall KB ⊧ g means g is true in all models of KB.

- Example: simple proof procedure S
 - Enumerate all interpretations
 - For each interpretation I, check whether all clauses in KB hold
 - If all clauses are true, I is a model
 - KB ⊢_S g if g holds in all such models

Soundness of a proof procedure

Definition (soundness)

A proof procedure P is sound if KB \vdash_P g implies KB \models g.

sound: everything it derives follows logically from KB (i.e. is true in every model)

- Soundness of some proof procedure P: need to prove that
 If g can be derived by the procedure (KB ⊢_P g)
 then g is true in all models of KB (KB ⊧ g)
- Example: simple proof procedure S
 - For each interpretation I, check whether all clauses in KB hold
 - If all clauses are true, I is a model
 - KB ⊢_S g if g holds in all such models
- The simple proof procedure S is sound:

If KB \vdash_S g, then it is true in all models, i.e. KB \models g

Completeness of a proof procedure

Definition (completeness)

A proof procedure P is complete if KB \models g implies KB \vdash _P g.

complete: everything that logically follows from KB is derived

- Completeness of some proof procedure P: need to prove that
 If g is true in all models of KB (KB ≠ g)
 then g is derived by the procedure (KB ⊢_P g)
- Example: simple proof procedure S
 - For each interpretation I, check whether all clauses in KB hold
 - If all clauses are true, I is a model
 - KB ⊢_S g if g holds in all such models
- The simple proof procedure S is complete:
 If KB ⊧ g , i.e. g is true in all models, then KB ⊦_S g

Another example for a proof procedure

- Unsound proof procedure U:
 - U derives every atom: for any g, KB ⊢_U g
- Proof procedure U is complete:

```
If KB \models g, then KB \vdash<sub>S</sub> g (because KB \vdash<sub>U</sub> g for any g)
```

Proof procedure U is not sound:

```
Proof by counterexample: KB = \{a \leftarrow b.\}

KB \vdash_{U} a, but not KB \models a

(a is false in some model, e.g. a=false, b=false)
```

Problem of the simplistic proof procedure

- Simple proof procedure: enumerate all interpretations
 - For each interpretation, check whether all clauses in KB hold
 - If all clauses hold, the interpretation is a model
 - KB + g if g holds in all such models

What's the problem with this approach?

Space complexity

Time complexity

Not sound

Not complete

Problem of the simplistic proof procedure

- Enumerate all interpretations
 - For each interpretation, check whether all clauses of the knowledge base hold
 - If all clauses hold, the interpretation is a model
- Very much like the generate-and-test approach for CSPs
- Sound and complete, but there are a lot of interpretations
 - For n propositions, there are 2ⁿ interpretations

Lecture Overview

- Recap: Propositional Definite Clause Logic (PDCL)
 - Syntax
 - Semantics
- More on PDCL Semantics
- Proof procedures
 - Soundness, Completeness, example

- Bottom-up proof procedure
 - Pseudocode and example
 - Time-permitting: Soundness
 - Time-permitting: Completeness

Bottom-up proof procedure

- One rule of derivation, a generalized form of modus ponens:
 - If " $h \leftarrow b_1 \land ... \land b_m$ " is a clause in the knowledge base, and each b_i has been derived, then h can be derived.
- This rule also covers the case when m = 0.

Bottom-up proof procedure

```
 \begin{tabular}{ll} $C := \{\}; \\ \hline {\bf repeat} \\ \hline {\bf select} \ clause \ h \leftarrow b_1 \wedge \ldots \wedge b_m \ in \ KB \\ \hline {\bf such that} \ b_i \in C \ for \ all \ i, \ and \ h \not \in C; \\ \hline {\bf C} := C \cup \{h\} \\ \hline {\bf until \ no \ more \ clauses \ can \ be \ selected}. \\ \end{tabular}
```

 $KB \vdash g \text{ if } g \in C \text{ at the end of this procedure.}$

Bottom-up proof procedure: example

```
\begin{split} \textbf{C} &:= \{\}; \\ \textbf{repeat} \\ &\quad \textbf{select} \text{ clause } h \leftarrow b_1 \wedge \ldots \wedge b_m \text{ in KB} \\ &\quad \text{such that } b_i \in C \text{ for all } i, \text{ and } h \not\in C; \\ &\quad C := C \cup \{h\} \\ \textbf{until } \text{ no more clauses can be selected.} \end{split}
```

```
a \leftarrow b \land c

a \leftarrow e \land f

b \leftarrow f \land k

c \leftarrow e

d \leftarrow k

e.

f \leftarrow j \land e

f \leftarrow c
```

Bottom-up proof procedure: example

```
\label{eq:continuous} \begin{split} \textbf{C} &:= \{\}; \\ \textbf{repeat} \\ & \textbf{select} \text{ clause } h \leftarrow b_1 \wedge \ldots \wedge b_m \text{ in KB} \\ & \text{such that } b_i \in C \text{ for all } i, \text{ and } h \not\in C; \\ & C := C \cup \{h\} \\ \textbf{until } \text{ no more clauses can be selected.} \end{split}
```

```
a \leftarrow b \wedge c
a \leftarrow e \wedge f
b \leftarrow f \wedge k
c \leftarrow e
d \leftarrow k
e.
f \leftarrow j \wedge e

f \leftarrow c
```

Lecture Overview

- Recap: Propositional Definite Clause Logic (PDCL)
 - Syntax
 - Semantics
- More on PDCL Semantics
- Proof procedures
 - Soundness, Completeness, example
 - Bottom-up proof procedure
 - Pseudocode and example
 - Time-permitting: Soundness
 - Time-permitting: Completeness

Soundness of bottom-up proof procedure BU

Definition (soundness)

A proof procedure P is sound if KB \vdash_P g implies KB \models g.

sound: everything it derives follows logically from KB (i.e. is true in every model)

```
\label{eq:continuous} \begin{split} \textbf{C} &:= \{\}; \\ \textbf{repeat} \\ & \textbf{select} \text{ clause } h \leftarrow b_1 \wedge \ldots \wedge b_m \text{ in KB} \\ & \text{such that } b_i \in C \text{ for all } i, \text{ and } h \not\in C; \\ & C := C \cup \{h\} \\ \textbf{until } \text{ no more clauses can be selected.} \end{split}
```

For soundness of bottom-up proof procedure BU: prove

If g ∈ C at the end of BU procedure,
then g is true in all models of KB (KB ⊧ g)

Soundness of bottom-up proof procedure BU

```
\label{eq:continuous} \begin{split} \textbf{C} &:= \{\}; \\ \textbf{repeat} \\ & \textbf{select} \text{ clause } h \leftarrow b_1 \wedge \ldots \wedge b_m \text{ in KB} \\ & \text{such that } b_i \in C \text{ for all i, and } h \not\in C; \\ & C := C \cup \{h\} \\ \textbf{until } \text{ no more clauses can be selected.} \end{split}
```

For soundness of bottom-up proof procedure BU: prove

If g ∈ C at the end of BU procedure,
then g is true in all models of KB (KB ⊧ g)

By contradiction: Suppose there is a g such that KB ⊢ g but not KB ⊧ g.

- Let h be first atom added to C that's not true in every model of KB
 - In particular, suppose I is a model of KB in which h isn't true.
- There must be a clause in KB of form h ← $b_1 \wedge ... \wedge b_m$
- Each b_i is true in I. h is false in I. So this clause is false in I.
- Thus, I is not a model of KB. Contradiction: thus no such g exists

Lecture Overview

- Recap: Propositional Definite Clause Logic (PDCL)
 - Syntax
 - Semantics
- More on PDCL Semantics
- Proof procedures
 - Soundness, Completeness, example
 - Bottom-up proof procedure
 - Pseudocode and example
 - Time-permitting: Soundness
 - Time-permitting: Completeness

Minimal Model

- Observe that the C generated at the end of the bottom-up algorithm is a fixed point
 - Further applications of our rule of derivation will not change C!

Definition (minimal model)

The minimal model MM is the interpretation in which every element of BU's fixed point C is true and every other atom is false.

- Lemma: MM is a model of KB.
 - Proof by contradiction. Assume that MM is not a model of KB.
 - Then there must exist some clause of the form $h \leftarrow b_1 \wedge ... \wedge b_m$ in KB (with $m \ge 0$) which is false in MM.
 - This can only occur when h is false and each b_i is true in MM.
 - Since each b_i belonged to C, we would have added h to C as well.
 - But MM is a fixed point, so nothing else gets added. Contradiction!

Completeness of bottom-up procedure

Definition (completeness)

A proof procedure is complete if KB ⊧ g implies KB ⊦ g.

complete: everything that logically follows from KB is derived

For completeness of BU, we need to prove:

If g is true in all models of KB (KB \neq g) then g is derived by the BU procedure (KB \vdash_{BU} g)

Direct proof based on Lemma about minimal model:

- Suppose KB = g. Then g is true in all models of KB.
- Thus g is true in the minimal model.
- Thus g is generated by the bottom up algorithm.
- Thus KB ⊢_{BU} g.

Learning Goals Up To Here

PDCL syntax & semantics

- Verify whether a logical statement belongs to the language of propositional definite clauses
- Verify whether an interpretation is a model of a PDCL KB.
- Verify when a conjunction of atoms is a logical consequence of a knowledge bases
- Bottom-up proof procedure
 - Define/read/write/trace/debug the Bottom Up (BU) proof procedure
 - Prove that the BU proof procedure is sound and complete

.