
Branch & Bound,
Summary of Advanced Topics

CPSC 322 – Search 7

Textbook § 3.7.4 and 3.7.4

January 26, 2011

Students with IDs: 99263071 & 25419094
Please come see me after the lecture

(glitch with handin)

Lecture Overview

• Some clarifications & multiple path pruning

• Recap: Iterative Deepening

• Branch & Bound

2

Clarifications for the A* proof
• Defined two lemmas about prefixes x of a solution

path s
– (I called the prefix pr, but a 2-letter name is confusing;

let’s call it x instead)

• Clarifications:

- “Lemma”:
 proven statement, stepping stone in larger proof

- “Prefix” x of a path s:
 subpath starting from the same node as s
- E.g. s=(a,c,z,e,d), short aczed
- All prefixes x: a, ac, acz, acze, aczed
- E.g. not a prefix: ab, ace, acezd (order is important!)

 3

Prefixes
• Which of the following are prefixes of the path aiiscool?

• ai and aii
• aiisc is different from aisc !

– The optimal solution won’t have a cycle if all path costs are > 0

4

aisc aicool aii ai

- fmin:= cost of optimal solution path s (e.g. s=aczed)
- Cost is unknown but finite if a solution exists

- Lemmas for prefix x of s (exercise: prove at home)
- Has cost f(x) ≤ fmin (due to admissibility)
- Always one such x on the frontier (by induction)

- Used these Lemmas to prove:
A* only expands paths x with f(x) ≤ fmin

- Then we’re basically done!
- Only finite number of such paths (⇒ completeness)
- Solution with cost > fmin won’t be expanded (⇒ optimality)

Recap: A* admissibility

a c z e d

d f

b g

h i

Clarification: state space graph vs search tree

6

k c

b z

h

a
kb kc

kbz

d

f
kbza kbzd

kch

k

State space
 graph.

If there are no cycles, the two look the same

Search tree.
Nodes in this tree correspond to
paths in the state space graph

kchf
y

4 5

6 7 8

Clarification: state space graph vs search tree

7

k c

b z

h

a
kb kc

kbz

d

f
kbza kbzd

kch

k

State space
 graph.

 Search tree.

kchf

4 5

6 7 8

7

What do I mean by the numbers in the search tree’s nodes?
 Node’s

name
Order in which a search algo.
(here: BFS) expands nodes

Clarification: state space graph vs search tree

8

k c

b z

h

a
kb kc

kbk kbz

d

f

kbkb kbkc

kbza kbzd

kch

kchf

kckb kckc

kck

k

State space
 graph.

 Search tree.
 (only first 3 levels, of BFS)

• If there are cycles, the two look very different

Clarification: state space graph vs search tree

9

k c

b z

h

a
kb kc

kbk kbz

d

f

kbkb kbkc

kbza kbzd

kch

kchf

kckb kckc

kck

k

State space
 graph.

 Search tree.
 (only first 3 levels, of BFS)

What do nodes in the search tree represent in the state space?
 states nodes paths edges

Clarification: state space graph vs search tree

10

k c

b z

h

a
kb kc

kbk kbz

d

f

kbkb kbkc

kbza kbzd

kch

kchf

kckb kckc

kck

k

State space
 graph.

 Search tree.
 (only first 3 levels, of BFS)

What do edges in the search tree represent in the state space?
 states nodes paths edges

Clarification: state space graph vs search tree

11

k c

b z

h

a
kb kc

kbk kbz

d

z

kbkb kbkc

kbza kbzd

kch

kchz

kckb kckc

kck

k

State space
 graph.

May contain cycles!

Search tree.
Nodes in this tree correspond to
paths in the state space graph

(if multiple start nodes: forest)

Cannot contain cycles!

Clarification: state space graph vs search tree

12

k c

b z

h

a
kb kc

kbk kbz

d

z

kbkb kbkc

kbza kbzd

kch

kchz

kckb kckc

kck

k

State space
 graph.

Why don’t we just eliminate cycles?
Sometimes (but not always) we want multiple solution paths

Search tree.
Nodes in this tree correspond to
paths in the state space graph

• Using depth-first methods, with the graph explicitly
stored, this can be done in constant time
- Only one path being explored at a time

• Other methods: cost is linear in path length

- (check each node in the path)

Cycle Checking: if we only want optimal solutions

• You can prune a node n that is on
the path from the start node to n.

• This pruning cannot remove an
optimal solution ⇒ cycle check

• With cycles, search tree can be exponential in the
state space
- E.g. state space with 2 actions from each state to next
- With d + 1 states, search tree has depth d

Size of search space vs search tree

A

B

C

D

A

B B

C C C C

• 2d possible paths through the search space
=> exponentially larger search tree!

• If we only want one path to the solution
• Can prune path to a node n that has already been

reached via a previous path
- Store S := {all nodes n that have been expanded}
- For newly expanded path p = (n1,…,nk,n)

- Check whether n ∈ S
- Subsumes cycle check

• Can implement by storing the path to each expanded
node

Multiple Path Pruning

n

Multiple-Path Pruning & Optimal Solutions

• Problem: what if a subsequent path to n is shorter than the
first path to n, and we want an optimal solution ?

• Can remove all paths from the frontier that use the longer
path. (these can’t be optimal)

2 2

1 1 1

Multiple-Path Pruning & Optimal Solutions

• Problem: what if a subsequent path to n is shorter than the
first path to n, and we want just the optimal solution ?

• Can change the initial segment of the paths on the frontier
to use the shorter path

2 2

1 1 1

Multiple-Path Pruning & Optimal Solutions

• Problem: what if a subsequent path to n is shorter than the
first path to n, and we want just the optimal solution ?

• Can prove that this can’t happen for an algorithm

2 2

1 1 1

• Which of the following algorithms always find the shortest
path to nodes on the frontier first?

None of the above

Least Cost Search First

Both of the above

A*

• Which of the following algorithms always find the shortest
path to nodes on the frontier first?
– Only Least Cost First Search (like Dijkstra’s algorithm)
– For A* this is only guaranteed for nodes on the optimal solution

path

– Example: A* expands the upper path first
• Special conditions on the heuristic can recover the guarantee of LCFS

h=3

h=0

h=1 2 2

1 1 1

Summary: pruning
• Sometimes we don’t want pruning

– Actually want multiple solutions (including non-optimal ones)

• Search tree can be exponentially larger than search space

– So pruning is often important

• In DFS-type search algorithms
– We can do cheap cycle checks: O(1)

• BFS-type search algorithms are memory-heavy already

– We can store the path to each expanded node and do multiple path
pruning

21

Lecture Overview

• Some clarifications & multiple path pruning

• Recap: Iterative Deepening

• Branch & Bound

22

Want low space complexity but completeness and optimality
Key Idea: re-compute elements of the frontier

 rather than saving them

23

Complete Optimal Time Space

DFS N
(Y if no cycles)

N O(bm) O(mb)

BFS Y Y O(bm) O(bm)
LCFS

(when arc costs available)
Y

Costs > 0
Y

Costs >=0
O(bm) O(bm)

Best First

(when h available)
N N O(bm) O(bm)

A*
(when arc costs and h

available)

Y
Costs > 0

h admissible

Y
Costs >=0

h admissible

O(bm) O(bm)

Iterative Deepening DFS (short IDS): Motivation

Iterative Deepening DFS (IDS) in a Nutshell

• Depth-bounded depth-first search: DFS on a leash
– For depth bound d, ignore any paths with longer length:

• Not allowed to go too far away ⇒ backtrack (“fail unnaturally”)
• Only finite # paths with length ≤ d ⇒ terminates

– What is the memory requirement at depth bound d? (it is DFS!)
• m=length of optimal solution path
• b=branching factor

• O(bd) ! It’s a DFS, up to depth d.

• Progressively increase the depth bound d
– Start at 1
– Then 2
– Then 3
– ...
– Until it finds the solution at depth m

24

O(dm) O(bm) O(bd) O(mb)

Iterative Deepening DFS, depth bound = 1

25

Example
Depth d=1

d=2

d=3

d=4

d=5

d=6

3

This node is
expanded,
but its neighbours
are not added to the
frontier because of
the depth bound

Same for this node

Numbers in
nodes: when
expanded? 2

1

Iterative Deepening DFS, depth bound = 2

26

Example
Depth d=1

d=2

d=3

d=4

d=5

d=6

2 5

3 4 6 7

Numbers in
nodes: when
expanded?

This node is
expanded,
but its neighbours
are not added to the
frontier because of
the depth bound

Same here

Same here Same here

2

1

3 4

5

6 7

Iterative Deepening DFS, depth bound = 3

27

Example
Depth d=1

d=2

d=3

d=4

d=5

d=6

2

Numbers in
nodes: when
expanded?

3

4 5

6

7 8

1

This node is
expanded,
but its neighbours
are not added to the
frontier because of
the depth bound

Same here

Same here
This node is
expanded, it’s a
goal, we’re done

Analysis of Iterative Deepening DFS (IDS)

• Space complexity

– DFS scheme, only explore one branch at a time

• Complete?

– Only finite # of paths up to depth m, doesn’t explore longer paths

• Optimal?

– Proof by contradiction

28

O(b+m) O(bm) O(bm) O(mb)

Yes No

Yes No

The solution is at depth m, branching factor b
Total # of paths generated:
 ≤ bm + (2 bm-1)+ (3 bm-2) + ...+ mb

(Time) Complexity of IDS

We only expand
paths at depth m
once

We only expand
paths at depth m-1
twice

We only expand
paths at depth m-2
three times

We expand paths at
depth 1 m times
(for every single
depth bound)

(Time) Complexity of IDS

)(mbO∈

))(()(
1

11

1

1 ∑∑
=

−−

=

− ==
m

i

im
m

i

im bibibb

r
r

i

i

−
=∑

∞

= 1
1

0
 Geometric progression: for |r|<1:

2
0

1

0)1(
1
r

irr
dr
d

i

i

i

i

−
==∑∑

∞

=

−
∞

=

))((
0

11∑
∞

=

−−≤
i

im bib
2

11
1

−

= −b
bm

2

1

−
=

b
bbm

If b > 1

From there on, it’s just math:
Total # paths generated by IDS
≤ bm + (2 bm-1)+ (3 bm-2) + ...+ mb
= bm (1 b0 + 2 b-1 + 3 b-2 + ...+ m b1-m)

Conclusion for Iterative Deepening
• Even though it redoes what seems like a lot of work

– Actually, compared to how much work there is at greater depths,
it’s not a lot of work

– Redoes the first levels most often
• But those are the cheapest ones

• Time Complexity O(bm)
– Just like a single DFS
– Just like the last depth-bounded DFS

• That last depth bounded DFS dominates the search complexity

• Space complexity: O(bm)
• Optimal
• Complete

31

(Heuristic) Iterative Deepening: IDA*

• Like Iterative Deepening DFS
– But the “depth” bound is measured in terms of the f value
– f-value-bounded DFS: DFS on a f-value leash
– IDA* is a bit of a misnomer

• The only thing it has in common with A* is that it uses the f value
f(p) = cost(p) + h(p)

• It does NOT expand the path with lowest f value. It is doing DFS!
• But f-value-bounded DFS doesn’t sound as good …

• If you don’t find a solution at a given f-value
– Increase the bound:

to the minimum of the f-values that exceeded the previous bound

• Will explore all nodes with f value < fmin (optimal one)

32

Analysis of Iterative Deepening A* (IDA*)
• Complete and optimal? Same conditions as A*

– h is admissible
– all arc costs > 0
– finite branching factor

• Time complexity: O(bm)
– Same argument as for Iterative Deepening DFS

• Space complexity:

– Same argument as for Iterative Deepening DFS

33

O(b+m) O(bm) O(bm) O(mb)

Search methods so far
Complete Optimal Time Space

DFS N
(Y if no cycles)

N O(bm) O(mb)

BFS Y Y O(bm) O(bm)
IDS Y Y O(bm) O(mb)

LCFS
(when arc costs available)

Y
Costs > 0

Y
Costs >=0

O(bm) O(bm)

Best First
(when h available)

N N O(bm) O(bm)

A*
(when arc costs and h

available)

Y
Costs > 0

h admissible

Y
Costs >=0

h admissible

O(bm) O(bm)

IDA* Y (same cond.
as A*)

Y O(bm)

O(mb)

Lecture Overview

• Some clarifications & multiple path pruning

• Recap: Iterative Deepening

• Branch & Bound

35

Heuristic DFS
• Other than IDA*, can we use heuristic information in DFS?

– When we expand a node, we put all its neighbours on the stack
– In which order?

• Can use heuristic guidance: h or f
• Perfect heuristic: would solve problem without any backtracking

• Heuristic DFS is very frequently used in practice

– Often don’t need optimal solution, just some solution
– No requirement for admissibility of heuristic

36

Branch-and-Bound Search
• Another way to combine DFS with heuristic guidance

• Follows exactly the same search path as depth-first search
– But to ensure optimality, it does not stop at the first solution found

• It continues, after recording upper bound on solution cost
• upper bound: UB = cost of the best solution found so far
• Initialized to ∞ or any overestimate of solution cost

• When a path p is selected for expansion:

• Compute LB(p) = f(p) = cost(p) + h(p)
• If LB(p) ≥UB, remove p from frontier without expanding it (pruning)

• Else expand p, adding all of its neighbors to the frontier
• Requires admissible h

37

Example •Arc cost = 1
•h(n) = 0 for every n

•UB = ∞

Solution!
UB = ?

38

Solution!
UB = 5

4 9 5 8

Example •Arc cost = 1
•h(n) = 0 for every n

•UB = 5

Cost = 5
Prune! (Don’t expand.)

39

Example •Arc cost = 1
•h(n) = 0 for every n

•UB = 5

Cost = 5
Prune!

Cost = 5
Prune!

Solution!
UB =?

40

Example •Arc cost = 1
•h(n) = 0 for every n

•UB = 3

Cost = 3
Prune!

Cost = 3
Prune!

41

Cost = 3
Prune!

Branch-and-Bound Analysis
• Complete?

• Same as DFS: can’t handle infinite graphs.
• But complete if initialized with some finite UB

• Optimal?

• YES.

• Time complexity: O(bm)

• Space complexity
• It’s a DFS

NO IT DEPENDS YES

42

NO IT DEPENDS YES

O(b+m) O(bm) O(bm) O(mb)

Combining B&B with heuristic guidance
• We said

– “Follows exactly the same search path as depth-first search”“
– Let’s make that heuristic depth-first search

• Can freely choose order to put neighbours on the stack
– Could e.g. use a separate heuristic h’ that is NOT admissible

• To compute LB(p)
– Need to compute f value using an admissible heuristic h

• This combination is used a lot in practice
– Sudoku solver in assignment 2 will be along those lines
– But also integrates some logical reasoning at each node

43

Search methods so far
Complete Optimal Time Space

DFS N
(Y if no cycles)

N O(bm) O(mb)

BFS Y Y O(bm) O(bm)
IDS Y Y O(bm) O(mb)

LCFS
(when arc costs available)

Y
Costs > 0

Y
Costs >=0

O(bm) O(bm)

Best First
(when h available)

N N O(bm) O(bm)

A*
(when arc costs and h

available)

Y
Costs > 0

h admissible

Y
Costs >=0

h admissible

O(bm) O(bm)

IDA* Y (same cond.
as A*)

Y O(bm)

O(mb)

Branch & Bound N (Y if init. with
finite UB)

Y O(bm) O(mb)

• Define/read/write/trace/debug different search algorithms
- In more detail today: Iterative Deepening,

New today: Iterative Deepening A*, Branch & Bound

• Apply basic properties of search algorithms:
– completeness, optimality, time and space complexity

Announcements:

– New practice exercises are out: see WebCT
• Heuristic search
• Branch & Bound
• Please use these! (Only takes 5 min. if you understood things…)

– Assignment 1 is out: see WebCT

45

Learning Goals for today’s class

Learning Goals for search
• Identify real world examples that make use of deterministic,

goal-driven search agents
• Assess the size of the search space of a given search

problem.
• Implement the generic solution to a search problem.
• Apply basic properties of search algorithms:

- completeness, optimality, time and space complexity

• Select the most appropriate search algorithms for specific
problems.

• Define/read/write/trace/debug different search algorithms
• Construct heuristic functions for specific search problems
• Formally prove A* optimality.
• Define optimally efficient

Selection Complete Optimal Time Space
DFS

BFS
IDS

LCFS

Best First

A*
B&B

IDA*

Learning goals: know how to fill this

48

Memory-bounded A*

• Iterative deepening A* and B & B use little memory
• What if we've got more memory, but not O(bm)?
• Do A* and keep as much of the frontier in memory as

possible
• When running out of memory

• delete worst path (highest f value) from frontier
• Back its f value up to a common ancestor

• Subtree gets regenerated only when all other paths have
been shown to be worse than the “forgotten” path

• Details are beyond the scope of the course, but
• Complete and optimal if solution is at depth manageable for

available memory

Selection Complete Optimal Time Space
DFS LIFO N N O(bm) O(mb)

BFS FIFO Y Y O(bm) O(bm)
IDS LIFO Y Y O(bm) O(mb)

LCFS min cost Y ** Y ** O(bm) O(bm)

Best
First

min h N N O(bm) O(bm)

A* min f Y** Y** O(bm) O(bm)
B&B LIFO + pruning N (Y if UB finite) Y O(bm) O(mb)

IDA* LIFO Y Y O(bm) O(mb)

MBA* min f Y** Y** O(bm) O(bm)

Algorithms Often Used in Practice

** Needs conditions

Coming up: Constraint Satisfaction Problems

• Read chapter 4

• Student with IDs: 99263071 & 25419094
– Please come see me (glitch with handin)

50

	Slide Number 1
	Lecture Overview
	Clarifications for the A* proof
	Prefixes
	Recap: A* admissibility
	Clarification: state space graph vs search tree
	Clarification: state space graph vs search tree
	Clarification: state space graph vs search tree
	Clarification: state space graph vs search tree
	Clarification: state space graph vs search tree
	Clarification: state space graph vs search tree
	Clarification: state space graph vs search tree
	Cycle Checking: if we only want optimal solutions
	Size of search space vs search tree
	Multiple Path Pruning
	Multiple-Path Pruning & Optimal Solutions
	Multiple-Path Pruning & Optimal Solutions
	Multiple-Path Pruning & Optimal Solutions
	Slide Number 19
	Slide Number 20
	Summary: pruning
	Lecture Overview
	Iterative Deepening DFS (short IDS): Motivation
	Iterative Deepening DFS (IDS) in a Nutshell
	Iterative Deepening DFS, depth bound = 1
	Iterative Deepening DFS, depth bound = 2
	Iterative Deepening DFS, depth bound = 3
	Analysis of Iterative Deepening DFS (IDS)
	(Time) Complexity of IDS
	(Time) Complexity of IDS
	Conclusion for Iterative Deepening
	(Heuristic) Iterative Deepening: IDA*
	Analysis of Iterative Deepening A* (IDA*)
	Search methods so far
	Lecture Overview
	Heuristic DFS
	Branch-and-Bound Search
	Example
	Example
	Example
	Example
	Branch-and-Bound Analysis
	Combining B&B with heuristic guidance
	Search methods so far
	Slide Number 45
	Learning Goals for search
	Learning goals: know how to fill this
	Memory-bounded A*
	Algorithms Often Used in Practice
	Coming up: Constraint Satisfaction Problems

