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Lecture Overview 

 
• Some clarifications & multiple path pruning 

 
• Recap: Iterative Deepening 
 
• Branch & Bound 

 
 
 
 
 
 
 

2 



Clarifications for the A* proof 
• Defined two lemmas about prefixes x of a solution 

path s  
– (I called the prefix pr, but a 2-letter name is confusing; 

let’s call it x instead) 

 
• Clarifications: 

- “Lemma”:  
 proven statement, stepping stone in larger proof 
 

- “Prefix” x of a path s:  
 subpath starting from the same node as s 
- E.g. s=(a,c,z,e,d), short aczed 
- All prefixes x: a, ac, acz, acze, aczed 
- E.g. not a prefix: ab, ace, acezd (order is important!) 
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Prefixes 
• Which of the following are prefixes of the path aiiscool? 

 
 

• ai and aii 
• aiisc is different from aisc ! 

– The optimal solution won’t have a cycle if all path costs are > 0 
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aisc aicool aii ai 



 
 

 

 
 
 
 
 

-  fmin:= cost of optimal solution path s (e.g. s=aczed) 
- Cost is unknown but finite if a solution exists 

 

-  Lemmas for prefix x of s (exercise: prove at home) 
- Has cost f(x) ≤ fmin  (due to admissibility) 
- Always one such x on the frontier (by induction) 
 

- Used these Lemmas to prove: 
A* only expands paths x with f(x) ≤ fmin  
 

- Then we’re basically done! 
- Only finite number of such paths (⇒ completeness) 
- Solution with cost > fmin won’t be expanded (⇒ optimality) 

Recap: A* admissibility 

a c z e d 

d f 

b g 

h i 



Clarification: state space graph vs search tree 
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k c 

b z 
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a 
kb kc 

kbz 

d 

f 
kbza kbzd 

kch 

k 

State space  
     graph. 
 
 
 
If there are no cycles, the two look the same 

Search tree. 
Nodes in this tree correspond to 
paths in the state space graph 
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Clarification: state space graph vs search tree 
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k c 

b z 

h 

a 
kb kc 

kbz 

d 

f 
kbza kbzd 

kch 

k 

State space  
     graph. 
 
 
 

 

 

                        Search tree. 
 
 

 

kchf 

4 5 

6 7 8 
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What do I mean by the numbers in the search tree’s nodes? 
 Node’s 

name 
Order in which a search algo. 
(here: BFS) expands nodes 



Clarification: state space graph vs search tree 
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k c 

b z 

h 

a 
kb kc 

kbk kbz 

d 

f 

kbkb kbkc 

kbza kbzd 

kch 

kchf 

kckb kckc 

kck 

k 

State space  
     graph. 

        Search tree.  
 (only first 3 levels, of BFS) 

• If there are cycles, the two look very different 
 



Clarification: state space graph vs search tree 
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kck 

k 

State space  
     graph. 

        Search tree.  
 (only first 3 levels, of BFS) 

What do nodes in the search tree represent in the state space? 
 states nodes paths edges 



Clarification: state space graph vs search tree 
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kbk kbz 
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kbkb kbkc 

kbza kbzd 

kch 

kchf 

kckb kckc 

kck 

k 

State space  
     graph. 

        Search tree.  
 (only first 3 levels, of BFS) 

What do edges in the search tree represent in the state space? 
 states nodes paths edges 



Clarification: state space graph vs search tree 
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b z 
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a 
kb kc 

kbk kbz 
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z 

kbkb kbkc 

kbza kbzd 

kch 

kchz 

kckb kckc 

kck 

k 

State space  
     graph. 
 
 
 
 

May contain cycles! 

 

Search tree. 
Nodes in this tree correspond to 
paths in the state space graph 
 

(if multiple start nodes: forest) 
 
 

Cannot contain cycles! 
 



Clarification: state space graph vs search tree 
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kbkb kbkc 
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kch 

kchz 

kckb kckc 

kck 
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State space  
     graph. 
 
 
 

Why don’t we just eliminate cycles? 
Sometimes (but not always) we want multiple solution paths 

 

Search tree. 
Nodes in this tree correspond to 
paths in the state space graph 
 

 
 



 
 

 

• Using depth-first methods, with the graph explicitly 
stored, this can be done in constant time 
- Only one path being explored at a time 

 
• Other methods: cost is linear in path length 

- (check each node in the path) 

Cycle Checking: if we only want optimal solutions 

• You can prune a node n that is on 
the path from the start node to n.  

• This pruning cannot remove an 
optimal solution ⇒ cycle  check 
 



 

• With cycles, search tree can be exponential in the 
state space 
- E.g. state space with 2 actions from each state to next 
- With  d + 1 states, search tree has depth d  

 
     

 

 
 

 

Size of search space vs search tree 

A 

B 

C 

D 

A 

B B 

C C C C 

• 2d possible paths through the search space  
=> exponentially larger search tree! 
 
 



 
 

 

• If we only want one path to the solution 
• Can prune path to a node n that has already been 

reached via a previous path 
- Store S := {all nodes n that have been expanded} 
- For newly expanded path p = (n1,…,nk,n) 

- Check whether n ∈ S 
- Subsumes cycle check 

• Can implement by storing the path to each expanded 
node 
 

 

Multiple Path Pruning 

n 



Multiple-Path Pruning & Optimal Solutions 

• Problem: what if a subsequent path to n is shorter than the 
first path to n, and we want an optimal solution ? 
 

• Can remove all paths from the frontier that use the longer 
path. (these can’t be optimal) 

2 2 

1 1 1 



Multiple-Path Pruning & Optimal Solutions 

• Problem: what if a subsequent path to n is shorter than the 
first path to n, and we want just the optimal solution ? 
 

• Can change the initial segment of the paths on the frontier 
to use the shorter path 

2 2 

1 1 1 



Multiple-Path Pruning & Optimal Solutions 

• Problem: what if a subsequent path to n is shorter than the 
first path to n, and we want just the optimal solution ? 
 

• Can prove that this can’t happen for an algorithm 
 

2 2 

1 1 1 



• Which of the following algorithms always find the shortest 
path to nodes on the frontier first? 
 

None of the above 

Least Cost Search First 

Both of the above 

A* 



• Which of the following algorithms always find the shortest 
path to nodes on the frontier first? 
– Only Least Cost First Search (like Dijkstra’s algorithm) 
– For A* this is only guaranteed for nodes on the optimal solution 

path 
 
 

– Example: A* expands the upper path first 
• Special conditions on the heuristic can recover the guarantee of LCFS 

 
 

h=3 

h=0 

h=1 2 2 

1 1 1 



Summary: pruning 
• Sometimes we don’t want pruning 

– Actually want multiple solutions (including non-optimal ones) 

 
• Search tree can be exponentially larger than search space 

– So pruning is often important 
 

• In DFS-type search algorithms 
– We can do cheap cycle checks: O(1) 

 
• BFS-type search algorithms are memory-heavy already 

– We can store the path to each expanded node and do multiple path 
pruning 
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Lecture Overview 

 
• Some clarifications & multiple path pruning 

 
• Recap: Iterative Deepening 
 
• Branch & Bound 
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Want low space complexity but completeness and optimality 
Key Idea: re-compute elements of the frontier  

            rather than saving them 
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Complete Optimal Time Space 

DFS N  
(Y if no cycles) 

N O(bm) O(mb) 

BFS Y Y O(bm) O(bm) 
LCFS 

(when arc costs available) 
Y  

Costs > 0 
Y  

Costs >=0 
O(bm) O(bm) 

 
Best First 

(when h available) 
N N O(bm) O(bm) 

A* 
(when arc costs and h 

available) 

Y  
Costs > 0 

h admissible 

Y  
Costs >=0 

h admissible 

O(bm) O(bm) 

Iterative Deepening DFS (short IDS): Motivation 



Iterative Deepening DFS (IDS) in a Nutshell 

• Depth-bounded depth-first search: DFS on a leash 
– For depth bound d, ignore any paths with longer length: 

• Not allowed to go too far away ⇒ backtrack (“fail unnaturally”) 
• Only finite # paths with length ≤ d ⇒ terminates 

– What is the memory requirement at depth bound d? (it is DFS!) 
• m=length of optimal solution path 
• b=branching factor 

 

 
• O(bd) ! It’s a DFS, up to depth d.  

• Progressively increase the depth bound d 
– Start at 1 
– Then 2 
– Then 3 
– ... 
– Until it finds the solution at depth m 
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O(dm) O(bm) O(bd) O(mb) 



Iterative Deepening DFS, depth bound = 1 
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Example 
Depth d=1 

d=2 

d=3 

d=4 

d=5 

d=6 

3 

This node is 
expanded, 
but its neighbours 
are not added to the 
frontier because of 
the depth bound 

Same for this node 

Numbers in  
nodes: when  
expanded? 2 

1 



Iterative Deepening DFS, depth bound = 2 
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Example 
Depth d=1 

d=2 

d=3 

d=4 

d=5 

d=6 

2 5 

3 4 6 7 

Numbers in  
nodes: when  
expanded? 

This node is 
expanded, 
but its neighbours 
are not added to the 
frontier because of 
the depth bound 

Same here 

Same here Same here 

2 

1 

3 4 

5 

6 7 



Iterative Deepening DFS, depth bound = 3 
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Example 
Depth d=1 

d=2 

d=3 

d=4 

d=5 

d=6 

2 

Numbers in  
nodes: when  
expanded? 

3 

4 5 

6 

7 8 

1 

This node is 
expanded, 
but its neighbours 
are not added to the 
frontier because of 
the depth bound 

Same here 

Same here 
This node is 
expanded, it’s a 
goal, we’re done 



Analysis of Iterative Deepening DFS (IDS) 

• Space complexity 
 
 
– DFS scheme, only explore one branch at a time 

 

• Complete? 
 

– Only finite # of paths up to depth m, doesn’t explore longer paths 

 
• Optimal?  

 
– Proof by contradiction 

28 

O(b+m) O(bm) O(bm) O(mb) 

Yes No 

Yes No 



The solution is at depth m, branching factor b 
Total # of paths generated: 
   ≤ bm + (2 bm-1)+ (3 bm-2) + ...+ mb  

(Time) Complexity of IDS 

We only expand 
paths at depth m 
once 

We only expand 
paths at depth m-1 
twice 

We only expand 
paths at depth m-2 
three times 

We expand paths at 
depth 1 m times 
(for every single 
depth bound) 



(Time) Complexity of IDS 
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From there on, it’s just math:  
Total # paths generated by IDS 
≤  bm + (2 bm-1)+ (3 bm-2) + ...+ mb  
= bm (1 b0 + 2 b-1 + 3 b-2 + ...+ m b1-m ) 
 



Conclusion for Iterative Deepening 
• Even though it redoes what seems like a lot of work 

– Actually, compared to how much work there is at greater depths, 
it’s not a lot of work 

– Redoes the first levels most often 
• But those are the cheapest ones 

 

• Time Complexity O(bm) 
– Just like a single DFS 
– Just like the last depth-bounded DFS 

• That last depth bounded DFS dominates the search complexity 
 

• Space complexity: O(bm) 
• Optimal 
• Complete 
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(Heuristic) Iterative Deepening: IDA* 
 

• Like Iterative Deepening DFS 
– But the “depth” bound is measured in terms of the f value 
– f-value-bounded DFS: DFS on a f-value leash 
– IDA* is a bit of a misnomer 

• The only thing it has in common with A* is that it uses the f value 
f(p) = cost(p) + h(p) 

• It does NOT expand the path with lowest f value. It is doing DFS! 
• But f-value-bounded DFS doesn’t sound as good … 

 

• If you don’t find a solution at a given f-value 
– Increase the bound: 

to the minimum of the f-values that exceeded the previous bound 
 

• Will explore all nodes with f value < fmin (optimal one) 
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Analysis of Iterative Deepening A* (IDA*) 
• Complete and optimal?  Same conditions as A* 

– h is admissible 
– all arc costs > 0 
– finite branching factor 

 

• Time complexity: O(bm) 
– Same argument as for Iterative Deepening DFS 

 

• Space complexity: 
 
 
– Same argument as for Iterative Deepening DFS 

33 

O(b+m) O(bm) O(bm) O(mb) 



Search methods so far 
Complete Optimal Time Space 

DFS N  
(Y if no cycles) 

N O(bm) O(mb) 

BFS Y Y O(bm) O(bm) 
IDS Y Y O(bm) O(mb) 

LCFS 
(when arc costs available) 

Y  
Costs > 0 

Y  
Costs >=0 

O(bm) O(bm) 
 

Best First 
(when h available) 

N N O(bm) O(bm) 

A* 
(when arc costs and h 

available) 

Y  
Costs > 0 

h admissible 

Y  
Costs >=0 

h admissible 

O(bm) O(bm) 

IDA* Y (same cond. 
as A*) 

Y O(bm) 
 

O(mb) 
 

  



Lecture Overview 

 
• Some clarifications & multiple path pruning 

 
• Recap: Iterative Deepening 
 
• Branch & Bound 
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Heuristic DFS 
• Other than IDA*, can we use heuristic information in DFS? 

– When we expand a node, we put all its neighbours on the stack 
– In which order? 

• Can use heuristic guidance: h or f 
• Perfect heuristic: would solve problem without any backtracking 

 
• Heuristic DFS is very frequently used in practice 

– Often don’t need optimal solution, just some solution 
– No requirement for admissibility of heuristic 
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Branch-and-Bound Search 
• Another way to combine DFS with heuristic guidance 

 

• Follows exactly the same search path as depth-first search 
– But to ensure optimality, it does not stop at the first solution found 

 

• It continues, after recording upper bound on solution cost 
• upper bound: UB = cost of  the best solution found so far 
• Initialized to ∞ or any overestimate of solution cost 

 
• When a path p is selected for expansion: 

• Compute LB(p) = f(p) = cost(p) + h(p) 
• If LB(p) ≥UB, remove p from frontier without expanding it (pruning) 

 

• Else expand p, adding all of its neighbors to the frontier 
• Requires admissible h 
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Example •Arc cost = 1 
•h(n) = 0 for every n 
 

•UB = ∞ 

Solution! 
UB = ?   

38 

Solution! 
UB = 5   

4 9 5 8 



Example •Arc cost = 1 
•h(n) = 0 for every n 
 

•UB = 5 

Cost = 5 
Prune! (Don’t expand.) 
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Example •Arc cost = 1 
•h(n) = 0 for every n 
 

•UB = 5 

Cost = 5 
Prune! 

Cost = 5 
Prune! 

Solution! 
UB =? 
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Example •Arc cost = 1 
•h(n) = 0 for every n 
 

•UB = 3 

Cost = 3 
Prune! 

Cost = 3 
Prune! 

41 

Cost = 3 
Prune! 



Branch-and-Bound Analysis 
• Complete?  

 
• Same as DFS: can’t handle infinite graphs.  
• But complete if initialized with some finite UB 

 

• Optimal? 
 
• YES. 

 

• Time complexity: O(bm) 
 

• Space complexity 
• It’s a DFS 

NO IT DEPENDS YES 
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NO IT DEPENDS YES 

O(b+m) O(bm) O(bm) O(mb) 



Combining B&B with heuristic guidance 
• We said 

– “Follows exactly the same search path as depth-first search”“ 
– Let’s make that heuristic depth-first search 

 

• Can freely choose order to put neighbours on the stack 
– Could e.g. use a separate heuristic h’ that is NOT admissible 

 

• To compute LB(p) 
– Need to compute f value using an admissible heuristic h 

 

• This combination is used a lot in practice 
– Sudoku solver in assignment 2 will be along those lines 
– But also integrates some logical reasoning at each node 
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Search methods so far 
Complete Optimal Time Space 

DFS N  
(Y if no cycles) 

N O(bm) O(mb) 

BFS Y Y O(bm) O(bm) 
IDS Y Y O(bm) O(mb) 

LCFS 
(when arc costs available) 

Y  
Costs > 0 

Y  
Costs >=0 

O(bm) O(bm) 
 

Best First 
(when h available) 

N N O(bm) O(bm) 

A* 
(when arc costs and h 

available) 

Y  
Costs > 0 

h admissible 

Y  
Costs >=0 

h admissible 

O(bm) O(bm) 

IDA* Y (same cond. 
as A*) 

Y O(bm) 
 

O(mb) 
 

Branch & Bound N (Y if init. with 
finite UB) 

Y O(bm) O(mb) 

  



•  Define/read/write/trace/debug different search algorithms 
- In more detail today: Iterative Deepening,  

New today:               Iterative Deepening A*, Branch & Bound 
 

•  Apply basic properties of search algorithms:  
– completeness, optimality, time and space complexity 

 
Announcements:  

– New practice exercises are out: see WebCT 
• Heuristic search 
• Branch & Bound 
• Please use these! (Only takes 5 min. if you understood things…) 

– Assignment 1 is out: see WebCT 
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Learning Goals for today’s class 



Learning Goals for search 
• Identify real world examples that make use of deterministic, 

goal-driven search agents  
• Assess the size of the search space of a given search 

problem.  
• Implement the generic solution to a search problem.  
• Apply basic properties of search algorithms: 

- completeness, optimality, time and space complexity 

• Select the most appropriate search algorithms for specific 
problems.  

• Define/read/write/trace/debug different search algorithms   
• Construct heuristic functions for specific search problems 
• Formally prove A* optimality. 
• Define optimally efficient 

 



 
 
 
 
 
 
 

Selection Complete Optimal Time Space 
DFS 

BFS 
IDS 

LCFS 

Best First 

A* 
B&B 

IDA* 

Learning goals: know how to fill this 
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Memory-bounded A* 

• Iterative deepening A* and B & B use little memory 
• What if we've got more memory, but not O(bm)? 
• Do A* and keep as much of the frontier in memory as 

possible 
• When running out of memory 

• delete worst path (highest f value) from frontier 
• Back its f value up to a common ancestor 

• Subtree gets regenerated only when all other paths have 
been shown to be worse than the “forgotten” path 
 

• Details are beyond the scope of the course, but 
• Complete and optimal if solution is at depth manageable for 

available memory 
 

 



 
 
 
 
 
 
 

Selection Complete Optimal Time Space 
DFS LIFO N N O(bm) O(mb) 

BFS FIFO Y Y O(bm) O(bm) 
IDS LIFO Y Y O(bm) O(mb) 

LCFS min cost Y ** Y ** O(bm) O(bm) 

Best 
First 

min h N N O(bm) O(bm) 

A* min f Y** Y** O(bm) O(bm) 
B&B LIFO + pruning N (Y if UB finite) Y  O(bm) O(mb) 

IDA* LIFO Y Y O(bm) O(mb) 

MBA* min f Y** Y** O(bm) O(bm) 

Algorithms Often Used in Practice 

** Needs conditions 



Coming up: Constraint Satisfaction Problems 

• Read chapter 4 
 

• Student with IDs: 99263071 & 25419094 
– Please come see me (glitch with handin) 
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