Iterative Deepening

CPSC 322 - Search 6

Textbook § 3.7.3

January 24, 2011

Lecture Overview

Recap from last week

Iterative Deepening

Search with Costs

Sometimes there are costs associated with arcs.

Def.: The cost of a path is the sum of the costs of its arcs

$$cost(\langle n_0, \dots, n_k \rangle) = \sum_{i=1}^k cost(\langle n_{i-1}, n_i \rangle)$$

- In this setting we often don't just want to find any solution
 - we usually want to find the solution that minimizes cost

Def.: A search algorithm is optimal if when it finds a solution, it is the best one: it has the lowest path cost

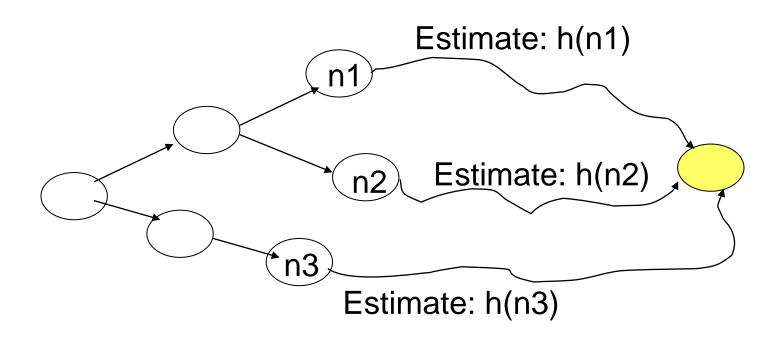
Lowest-Cost-First Search (LCFS)

- Expands the path with the lowest cost on the frontier.
- The frontier is implemented as a priority queue ordered by path cost.
- How does this differ from Dijkstra's algorithm?
 - The two algorithms are very similar
 - But Dijkstra's algorithm
 - works with nodes not with paths
 - stores one bit per node (infeasible for infinite/very large graphs)
 - checks for cycles

Heuristic search

Def.:

A search heuristic h(n) is an estimate of the cost of the optimal (cheapest) path from node n to a goal node.



Best-First Search (LCFS)

- Expands the path with the lowest h value on the frontier.
- The frontier is implemented as a priority queue ordered by h.
- Greedy: expands path that appears to lead to the goal quickest
 - Can get trapped
 - Can yield arbitrarily poor solutions
 - But with a perfect heuristic, it moves straight to the goal

A*

- Expands the path with the lowest cost + h value on the frontier
- The frontier is implemented as a priority queue ordered by f(p) = cost(p) + h(p)

Admissibility of a heuristic

Def.:

Let c(n) denote the cost of the optimal path from node n to any goal node. A search heuristic h(n) is called admissible if $h(n) \le c(n)$ for all nodes n, i.e. if for all nodes it is an underestimate of the cost to any goal.

- E.g. Euclidian distance in routing networks
- General construction of heuristics: relax the problem,
 i.e. ignore some constraints
 - Can only make it easier
 - Saw lots of examples on Wednesday: Routing network, grid world, 8 puzzle, Infinite Mario

Admissibility of A*

- A* is complete (finds a solution, if one exists) and optimal (finds the optimal path to a goal) if:
 - the branching factor is finite
 - arc costs are > 0
 - h is admissible.
- This property of A* is called admissibility of A*

Why is A* admissible: complete

If there is a solution, A* finds it:

- f_{min}:= cost of optimal solution path s (unknown but finite)
- Lemmas for prefix pr of s (exercise: prove at home)
 - Has cost $f(pr) \le f_{min}$ (due to admissibility)
 - Always one such pr on the frontier (prove by induction)
- A^* only expands paths with $f(p) \le f_{min}$
 - Expands paths p with minimal f(p)
 - Always a pr on the frontier, with $f(pr) \leq f_{min}$
 - Terminates when expanding s
- Number of paths p with cost $f(p) \le f_{min}$ is finite
 - Let $c_{min} > 0$ be the minimal cost of any arc
 - $k := f_{min} / c_{min}$. All paths with length > k have cost > f_{min}
 - Only b^k paths of length k. Finite $b \Rightarrow$ finite

Why is A* admissible: optimal

Proof by contradiction

- Assume (for contradiction):
 First solution s' that A* expands is suboptimal: i.e. cost(s') > f_{min}
- Since s' is a goal, h(s') = 0, and $f(s') = cost(s') > f_{min}$
- A* selected s' \Rightarrow all other paths p on the frontier had $f(p) \ge f(s') > f_{min}$
- But we know that a prefix pr of optimal solution path s is on the frontier, with f(pr) ≤ f_{min}
 ⇒ Contradiction!

Summary: any prefix of optimal solution is expanded before suboptimal solution would be expanded

Learning Goals for last week

- Select the most appropriate algorithms for specific problems
 - Depth-First Search vs. Breadth-First Search
 vs. Least-Cost-First Search vs. Best-First Search vs. A*
- Define/read/write/trace/debug different search algorithms
 - With/without cost
 - Informed/Uninformed
- Construct heuristic functions for specific search problems
- Formally prove A* optimality
 - Define optimal efficiency

Learning Goals for last week, continued

- Apply basic properties of search algorithms:
 - completeness, optimality, time and space complexity

	Complete	Optimal	Time	Space
DFS	N	N	$O(b^m)$	O(mb)
	(Y if no cycles)			
BFS	Y	Υ	$O(b^m)$	$O(b^m)$
LCFS	Y	Y	$O(b^m)$	$O(b^m)$
(when arc costs available)	Costs > 0	$Costs \geq 0$		
Best First	N	N	$O(b^m)$	$O(b^m)$
(when <i>h</i> available)				
A*	Y	Y	$O(b^m)$	$O(b^m)$
(when arc costs and h	Costs > 0	Costs ≥ 0		
available)	<i>h</i> admissible	<i>h</i> admissible		

Lecture Overview

Recap from last week

Iterative Deepening

Iterative Deepening DFS (short IDS): Motivation

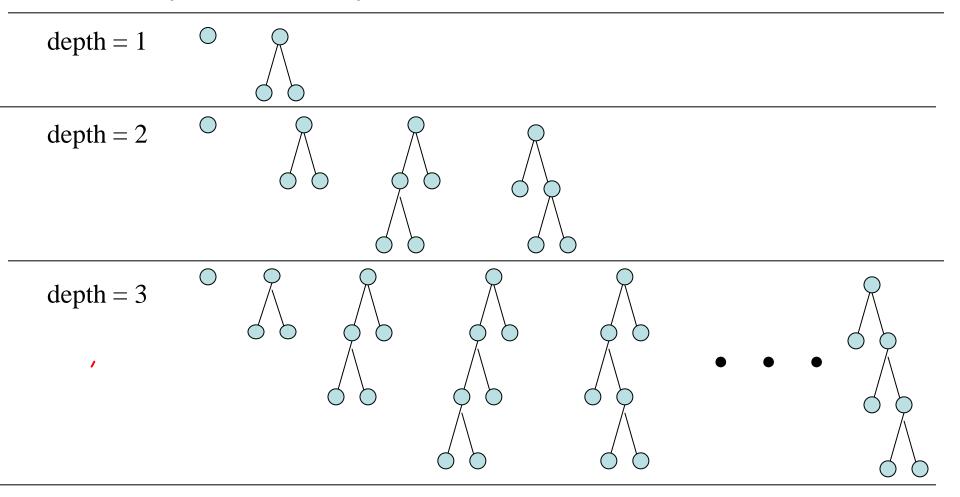
Want low space complexity but completeness and optimality

Key Idea: re-compute elements of the frontier rather than saving them

	Complete	Optimal	Time	Space
DFS	N	N	$O(b^m)$	O(mb)
	(Y if no cycles)			
BFS	Y	Y	$O(b^m)$	$O(b^m)$
LCFS	Y	Y	$O(b^m)$	$O(b^m)$
(when arc costs available)	Costs > 0	Costs >=0		
Best First	N	N	$O(b^m)$	$O(b^m)$
(when <i>h</i> available)				
A*	Y	Y	$O(b^m)$	$O(b^m)$
(when arc costs and h	Costs > 0	Costs >=0		
available)	<i>h</i> admissible	<i>h</i> admissible		

Iterative Deepening DFS (IDS) in a Nutshell

- Use DSF to look for solutions at depth 1, then 2, then 3, etc
 - For depth D, ignore any paths with longer length
 - Depth-bounded depth-first search



(Time) Complexity of IDS

- That sounds wasteful!
- Let's analyze the time complexity
- For a solution at depth m with branching factor b

Depth	Total # of paths at that level	#times created by BFS (or DFS)	#times created by IDS	Total #paths for IDS
1	b	1	m	mb
2	b ²	1	m-1	$(m-1) b^2$
•		1		•
•	•	•	•	•
m-1	b ^{m-1}	1	2	2 b ^{m-1}
m	b ^m	1	1	b ^m

(Time) Complexity of IDS

Solution at depth m, branching factor b

Total # of paths generated:

$$b^{m} + 2b^{m-1} + 3b^{m-2} + \dots + mb$$

$$= b^{m} (1b^{0} + 2b^{-1} + 3b^{-2} + \dots + mb^{1-m})$$

$$= b^{m} (\sum_{i=1}^{m} ib^{1-i}) = b^{m} (\sum_{i=1}^{m} i(b^{-1})^{i-1})$$

$$\leq b^{m} (\sum_{i=0}^{\infty} i(b^{-1})^{i-1}) = b^{m} \left(\frac{1}{1-b^{-1}}\right)^{2} = b^{m} \left(\frac{b}{b-1}\right)^{2} \in O(b^{m})$$

Geometric progression: for
$$|r| < 1$$
:
$$\sum_{i=0}^{\infty} r^i = \frac{1}{1-r}$$

$$\frac{d}{dr} \sum_{i=0}^{\infty} r^i = \sum_{i=0}^{\infty} i r^{i-1} = \frac{1}{(1-r)^2}$$

Further Analysis of Iterative Deepening DFS (IDS)

Space complexity

- DFS scheme, only explore one branch at a time
- Complete? Yes No
 - Only finite # of paths up to depth m, doesn't explore longer paths
- Optimal? Yes No
 - Proof by contradiction

Search methods so far

	Complete	Optimal	Time	Space
DFS	N	N	$O(b^m)$	O(mb)
	(Y if no cycles)			
BFS	Y	Y	$O(b^m)$	$O(b^m)$
IDS	Y	Y	$O(b^m)$	O(mb)
LCFS	Y	Y	$O(b^m)$	$O(b^m)$
(when arc costs available)	Costs > 0	Costs >=0		
Best First	N	N	$O(b^m)$	$O(b^m)$
(when <i>h</i> available)				
A*	Υ	Υ	$O(b^m)$	$O(b^m)$
(when arc costs and h	Costs > 0	Costs >=0		
available)	<i>h</i> admissible	<i>h</i> admissible		

(Heuristic) Iterative Deepening: IDA*

- Like Iterative Deepening DFS
 - But the depth bound is measured in terms of the f value
- If you don't find a solution at a given depth
 - Increase the depth bound:
 to the minimum of the f-values that exceeded the previous bound

Analysis of Iterative Deepening A* (IDA*)

- Complete and optimal? Same conditions as A*
 - h is admissible
 - all arc costs > 0
 - finite branching factor
- Time complexity: O(b^m)
- Space complexity:

Same argument as for Iterative Deepening DFS

Examples and Clarifications

On the white board ...

Search methods so far

	Complete	Optimal	Time	Space
DFS	N	N	$O(b^m)$	O(mb)
	(Y if no cycles)			
BFS	Y	Y	$O(b^m)$	$O(b^m)$
IDS	Y	Y	$O(b^m)$	O(mb)
LCFS	Y	Y	$O(b^m)$	$O(b^m)$
(when arc costs available)	Costs > 0	Costs >=0		
Best First	N	N	$O(b^m)$	$O(b^m)$
(when <i>h</i> available)				
A*	Υ	Y	$O(b^m)$	$O(b^m)$
(when arc costs and h	Costs > 0	Costs >=0		
available)	<i>h</i> admissible	<i>h</i> admissible		
IDA*	Y (same cond. as A*)	Y	<i>O(b^m)</i>	O(mb)
Branch & Bound	Y (same cond. as A*)	Y	$O(b^m)$	O(mb)

Learning Goals for today's class

- Define/read/write/trace/debug different search algorithms
 - New: Iterative Deepening,
 Iterative Deepening A*, Branch & Bound
- Apply basic properties of search algorithms:
 - completeness, optimality, time and space complexity

Announcements:

- New practice exercises are out: see WebCT
 - Heuristic search
 - Branch & Bound
 - Please use these! (Only takes 5 min. if you understood things...)
- Assignment 1 is out: see WebCT