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Search heuristics
Def.:  A search heuristic h(n) is an estimate of the cost of 

the optimal (cheapest) path  from node n to a goal node.

• Think of h(n) as only using readily obtainable 
(easy to compute) information about a node.

• h can be extended to paths:  

h(〈n0,…,nk〉)=h(nk)

Def.:  A search heuristic h(n) is admissible if it never 
overestimates the actual cost of the cheapest path from a 
node to the goal



How to Construct a Heuristic
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Identify relaxed version of the problem: 
• where one or more constraints have been dropped
• problem with fewer restrictions on the actions

Result:
The cost of an optimal solution to the relaxed 
problem is an admissible heuristic for the original 
problem
(because it is always weakly less costly to solve a less 
constrained problem!)



Example 2
Search problem: robot has to find a route from start 

to goal location on a grid with obstacles
Actions: move up, down, left, right from tile to tile
Cost : number of moves
Possible h(n)? Manhattan distance (L1 distance) 

between two points  sum of the (absolute) 
difference of their coordinates 
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Example 2
Search problem: robot has to find a route from start 

to goal location on a grid with obstacles
Actions: move up, down, left, right from tile to tile
Cost : number of moves
Possible h(n)? Would the Euclidian distance (straight 

line distance be an admissible heuristic?
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Would the Euclidean distance (straight line distance) be an 
admissible heuristic for the robot grid problem?

It is an admissible  search heuristic

It is not a suitable search heuristic for this 
problem

It is a search heuristic, but it is not admissible



• A* search takes into account both 
• the cost of the path to a node c(p)
• the heuristic value of that path h(p).

• Let f(p) = c(p) + h(p). 
• estimate of the cost of a path from the start to a goal 

via p.

• A* always chooses the path on the frontier with the lowest 
estimated distance from the start to a goal node 
constrained to go via that path. 

c(p) h(p)
f(p)

A* Search
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• A* is complete (finds a  solution, if one exists) and  
optimal (finds the optimal path to a goal) if:

• the branching factor is finite
• arc costs are > 0 
• h(n) is admissible -> an underestimate of the length of the 

shortest path from n to a goal node.

• This property of A* is called admissibility of A*

Admissibility of A*

Slide 10



• It halts (does not get caught in cycles) because: 
- Let fmin be the cost of the optimal solution path s

(unknown but finite if there exists a solution)
- Each sub-path p of s has cost f(p) ≤ fmin

- Due to admissibility (exercise: prove this at home)

- Let fmin > 0 be the minimal cost of any arc
- All paths with length > fmin / cmin have cost > fmin 

- A* expands path on the frontier with minimal f(n)
- Always a prefix of s on the frontier
- Only expands paths p with f(p) ≤ fmin

- Terminates when expanding s

See how it works on the “misleading heuristic” 
problem in AI space: 

Why is A* admissible: complete

Presenter
Presentation Notes
f(goal)=c(goal)+h(goal)= costopt +0These paths are the only ones with cost ≤ costopt



• Let p* be the optimal solution path, with cost c*.

• Let p’ be a suboptimal solution path. That is c(p’) > c*.

We are going to show that any sub-path p’’ of p* on the 
frontier will be expanded before p’ => A* won’t be caught 
by p’

Why is A* admissible: optimal

p”

p*

p’



• If fact, we can prove something even stronger about A* 
(when it is admissible)

• A* is optimally efficient among the algorithms that 
extend the search path from the initial state. 

• It finds the goal with the minimum # of expansions

Analysis of A*



Why A* is Optimally Efficient

• No other optimal algorithm is guaranteed to expand 
fewer nodes than A*

• This is because any algorithm that does not expand 
every node with f(n) < f* risks to miss the optimal 
solution



Effect of Search Heuristic
• A search heuristic that is a better approximation on the 

actual cost reduces the number of nodes expanded by A*
• Example: 8puzzle

– tiles can move anywhere
– (h1 : number of tiles that are out of place)
– tiles can move to any adjacent square 
– (h2 : sum of number of squares that separate each tile from its 

correct position)
• average number of paths expanded: (d = depth of the 

solution; IDS=iterative depth first, see next lecture)
• d=12       IDS = 3,644,035 paths

A*(h1) = 227 paths 
A*(h2) = 73 paths

• d=24       IDS = too many paths 
A*(h1) = 39,135 paths 
A*(h2) = 1,641 paths



Time Space Complexity of A*

• Time complexity is O(bm)
- the heuristic could be completely uninformative and the edge costs 

could all be the same, meaning that A* does the same thing as 
BFS

• Space complexity is O(bm) like BFS, A* maintains a frontier 
which grows with the size of the tree



Learning Goals for today’s class

• Formally prove A* optimality

• Define optimally efficient

• Construct admissible heuristics for specific problems. 
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Cycle Checking

• You can prune a node n that is on the path from the 
start node to n. 

• This pruning cannot remove an optimal solution => 
cycle check

• What is the computational cost of cycle checking?



Computational Cost of Cycle Checking?

None of the above

Linear time in the path length: before adding a new node 
to the currently selected path, check that the node is not 
already part of the path

Constant time: set a bit to 1 when a node is selected for 
expansion, and never expand a node with a bit set to 1  

It depends on the algorithm
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