
A* optimality proof,
cycle checking

CPSC 322 – Search 5

Textbook § 3.6 and 3.7.1

January 21, 2011
Taught by Mike Chiang

Lecture Overview

• Recap

• Admissibility of A*

• Cycle checking and multiple path pruning

Slide 2

Search heuristics
Def.: A search heuristic h(n) is an estimate of the cost of

the optimal (cheapest) path from node n to a goal node.

• Think of h(n) as only using readily obtainable
(easy to compute) information about a node.

• h can be extended to paths:

h(〈n0,…,nk〉)=h(nk)

Def.: A search heuristic h(n) is admissible if it never
overestimates the actual cost of the cheapest path from a
node to the goal

How to Construct a Heuristic

Slide 4

Identify relaxed version of the problem:
• where one or more constraints have been dropped
• problem with fewer restrictions on the actions

Result:
The cost of an optimal solution to the relaxed
problem is an admissible heuristic for the original
problem
(because it is always weakly less costly to solve a less
constrained problem!)

Example 2
Search problem: robot has to find a route from start

to goal location on a grid with obstacles
Actions: move up, down, left, right from tile to tile
Cost : number of moves
Possible h(n)? Manhattan distance (L1 distance)

between two points sum of the (absolute)
difference of their coordinates

1 2 3 4 5 6

G

4

3

2

1

Example 2
Search problem: robot has to find a route from start

to goal location on a grid with obstacles
Actions: move up, down, left, right from tile to tile
Cost : number of moves
Possible h(n)? Would the Euclidian distance (straight

line distance be an admissible heuristic?

1 2 3 4 5 6

G

4

3

2

1

Would the Euclidean distance (straight line distance) be an
admissible heuristic for the robot grid problem?

It is an admissible search heuristic

It is not a suitable search heuristic for this
problem

It is a search heuristic, but it is not admissible

• A* search takes into account both
• the cost of the path to a node c(p)
• the heuristic value of that path h(p).

• Let f(p) = c(p) + h(p).
• estimate of the cost of a path from the start to a goal

via p.

• A* always chooses the path on the frontier with the lowest
estimated distance from the start to a goal node
constrained to go via that path.

c(p) h(p)
f(p)

A* Search

Lecture Overview

• Recap of Lecture 8

• Admissibility of A*

• Cycle checking and multiple path pruning

Slide 9

• A* is complete (finds a solution, if one exists) and
optimal (finds the optimal path to a goal) if:

• the branching factor is finite
• arc costs are > 0
• h(n) is admissible -> an underestimate of the length of the

shortest path from n to a goal node.

• This property of A* is called admissibility of A*

Admissibility of A*

Slide 10

• It halts (does not get caught in cycles) because:
- Let fmin be the cost of the optimal solution path s

(unknown but finite if there exists a solution)
- Each sub-path p of s has cost f(p) ≤ fmin

- Due to admissibility (exercise: prove this at home)

- Let fmin > 0 be the minimal cost of any arc
- All paths with length > fmin / cmin have cost > fmin

- A* expands path on the frontier with minimal f(n)
- Always a prefix of s on the frontier
- Only expands paths p with f(p) ≤ fmin

- Terminates when expanding s

See how it works on the “misleading heuristic”
problem in AI space:

Why is A* admissible: complete

Presenter
Presentation Notes
f(goal)=c(goal)+h(goal)= costopt +0These paths are the only ones with cost ≤ costopt

• Let p* be the optimal solution path, with cost c*.

• Let p’ be a suboptimal solution path. That is c(p’) > c*.

We are going to show that any sub-path p’’ of p* on the
frontier will be expanded before p’ => A* won’t be caught
by p’

Why is A* admissible: optimal

p”

p*

p’

• If fact, we can prove something even stronger about A*
(when it is admissible)

• A* is optimally efficient among the algorithms that
extend the search path from the initial state.

• It finds the goal with the minimum # of expansions

Analysis of A*

Why A* is Optimally Efficient

• No other optimal algorithm is guaranteed to expand
fewer nodes than A*

• This is because any algorithm that does not expand
every node with f(n) < f* risks to miss the optimal
solution

Effect of Search Heuristic
• A search heuristic that is a better approximation on the

actual cost reduces the number of nodes expanded by A*
• Example: 8puzzle

– tiles can move anywhere
– (h1 : number of tiles that are out of place)
– tiles can move to any adjacent square
– (h2 : sum of number of squares that separate each tile from its

correct position)
• average number of paths expanded: (d = depth of the

solution; IDS=iterative depth first, see next lecture)
• d=12 IDS = 3,644,035 paths

A*(h1) = 227 paths
A*(h2) = 73 paths

• d=24 IDS = too many paths
A*(h1) = 39,135 paths
A*(h2) = 1,641 paths

Time Space Complexity of A*

• Time complexity is O(bm)
- the heuristic could be completely uninformative and the edge costs

could all be the same, meaning that A* does the same thing as
BFS

• Space complexity is O(bm) like BFS, A* maintains a frontier
which grows with the size of the tree

Learning Goals for today’s class

• Formally prove A* optimality

• Define optimally efficient

• Construct admissible heuristics for specific problems.

Lecture Overview

• Recap of Lecture 8

• Admissibility of A*

• Cycle checking and multiple path pruning

Slide 19

Cycle Checking

• You can prune a node n that is on the path from the
start node to n.

• This pruning cannot remove an optimal solution =>
cycle check

• What is the computational cost of cycle checking?

Computational Cost of Cycle Checking?

None of the above

Linear time in the path length: before adding a new node
to the currently selected path, check that the node is not
already part of the path

Constant time: set a bit to 1 when a node is selected for
expansion, and never expand a node with a bit set to 1

It depends on the algorithm

	Slide Number 1
	Lecture Overview
	Search heuristics
	How to Construct a Heuristic
	Example 2
	Example 2
	Slide Number 7
	A* Search
	Lecture Overview
	Admissibility of A*
	Why is A* admissible: complete
	Why is A* admissible: optimal
	Analysis of A*
	Why A* is Optimally Efficient
	Effect of Search Heuristic
	Time Space Complexity of A*
	Learning Goals for today’s class
	Lecture Overview
	Cycle Checking
	Slide Number 21

