Applications of Al

CPSC 322 - Intro 3 January 10, 2011

Textbook §1.5 - 1.6

Today's Lecture

Recap from last lecture

- Further Representational Dimensions
- Applications of AI

Representation and Reasoning (R&R) System

Problem \Rightarrow representation \Rightarrow computation

- A representation language that allows to describe
 - The environment and
 - Problems (questions/tasks) to be solved
- Computational reasoning procedures to
 - Compute a solution to a problem
 - E.g., an answer/sequence of actions
- How should an agent act given the current state of its environment and its goals?
- How should the environment be represented in order to help an agent to reason effectively?

Main Representational Dimensions Considered

Domains can be classified by the following dimensions:

- 1. Uncertainty
 - Deterministic vs. stochastic domains
- 2. How many actions does the agent need to perform?
 - Static vs. sequential domains

An important design choice is:

- 3. Representation scheme
 - Explicit states vs. propositions vs. relations

Features vs. States, another example

- T_{11} : student 1 takes course 1 T_{12} : student 1 takes course 2 T_{21} : student 2 takes course 1 T_{21} : student 2 takes course 2
- T₂₂: student 2 takes course 2

Does student 2 take course 2?

- Feature-based: Is T₂₂ true?
- State-based: are we in one of the red states?

	T ₁₁	T ₁₂	T ₂₁	T ₂₂
S ₀	0	0	0	0
S ₁	0	0	0	1
S ₂	0	0	1	0
S ₃	0	0	1	1
S_4	0	1	0	0
S ₅	0	1	0	1
S_6	0	1	1	0
S ₇	0	1	1	1
S ₈	1	0	0	0
S ₉	1	0	0	1
S ₁₀	1	0	1	0
S ₁₁	1	0	1	1
S ₁₂	1	1	0	0
S ₁₃	1	1	0	1
S ₁₄	1	1	1	0
S ₁₅	1	1	1	1

Course overview

Dimen- sions Course Modules	Deterministic vs. Stochastic	Static vs. Sequential	States vs. Features vs. Relations
1. Search	Deterministic	Static	States
2. CSPs	Deterministic	Static	Features
3. Planning	Deterministic	Sequential	States or Features
4. Logic	Deterministic	Static	Relations
5. Uncertainty	Stochastic	Static	Features
6. Decision Theory	Stochastic	Sequential	Features

Example problems:

"find path in known map"

"are deliveries feasible?"

"what order to do things in to finish jobs fastest?"

"HasCoffee(Person) if InRoom(Person, Room) ∧ DeliveredCoffee(Room)"

"probability of slipping"

"given that I may slip and the utilities of being late and of crashing, should I take a detour?" ⁶

Today's Lecture

- Recap from last lecture
 - Further Representational Dimensions
- Applications of AI

Further Dimensions of Representational Complexity

We've already discussed:

- 1. Deterministic versus stochastic domains
- 2. Static vs. Sequential domains
- 3. Explicit state or features or relations

Some other important dimensions of complexity:

- 4. Flat vs. hierarchical representation
- 5. Knowledge given vs.
 - knowledge learned from experience
- 6. Goals vs. complex preferences
- 7. Single-agent vs. multi-agent
- 8. Perfect rationality vs. bounded rationality

4. Flat vs. hierarchical

- Should we model the whole world on the same level of abstraction?
 - Single level of abstraction: flat
 - Multiple levels of abstraction: hierarchical
- Example: Planning a trip from here to a resort in Cancun, Mexico

- Delivery robot: Plan on level of cities, districts, buildings, ...
- This course: only flat representations
 - Hieararchical representations pose mainly engineering problems

5. Knowledge given vs. knowledge learned from experience

- The agent is provided with a model of the world once and far all
- The agent can learn how the world works based on experience
 - in this case, the agent often still does start out with some prior knowledge
- Delivery robot: Known/learned map, prob. of slipping, ...
- This course: mostly knowledge given
 - Learning: CPSC 340

6. Goals vs. (complex) preferences

- An agent may have a goal that it wants to achieve
 - E.g., there is some state or set of states of the world that the agent wants to be in
 - E.g., there is some proposition or set of propositions that the agent wants to make true
- An agent may have preferences
 - E.g., a preference/utility function describes how happy the agent is in each state of the world
 - Agent's task is to reach a state which makes it as happy as possible
- Preferences can be complex
 - E.g., diagnostic assistant faces multi-objective problem
 - Life expectancy, suffering, risk of side effects, costs, ...
- Delivery robot: "deliver coffee!" vs "mail trumps coffee, but Chris needs coffee quickly, and don't stand in the way"
- This course: goals and simple preferences
 - Some scalar, e.g. linear combination of competing objectives

7. Single-agent vs. Multiagent domains

- Does the environment include other agents?
- If there are other agents whose actions affect us
 - It can be useful to explicitly model their goals and beliefs, and how they react to our actions
- Other agents can be: cooperative, competitive, or a bit of both
- Delivery robot: Are there other agents?
 - Should I coordinate with other robots?
 - Are kids out to trick me?
- This course: only single agent scenario
 - Multiagent problems tend to be complex
 - Exception: deterministic 2-player games can be formalized easily

8. Perfect rationality vs. bounded rationality

We've defined rationality as an abstract ideal

- Is the agent able to live up to this ideal?
 - Perfect rationality:

the agent can derive what the best course of action is

- Bounded rationality:

the agent must make good decisions based on its perceptual, computational and memory limitations

• Delivery robot:

- "Find perfect plan" vs.
- "Can't spend an hour thinking (thereby delaying action) to then deliver packages a minute faster than by some standard route"
- This course: mostly perfect rationality
 - But also consider anytime algorithms for optimization problems

Today's Lecture

- Recap from last lecture
- Further Representational Dimensions
 - Applications of Al

Course Map

	Dimen- sions Course Modules	Deterministic vs. Stochastic	Static vs. Sequential	States vs. Features vs. Relations
\mathbf{r}	1. Search	Deterministic	Static	States
,	2. CSPs	Deterministic	Static	Features
	3. Planning	Deterministic	Sequential	States or Features
	4. Logic	Deterministic	Static	Relations
	5. Uncertainty	Stochastic	Static	Features
	6. Decision Theory	Stochastic	Sequential	Features

Search: Checkers

- Early work in 1950s by Arthur Samuel at IBM
- Chinook program by
 Jonathan Schaeffer (UofA)
 - Search to explore the space of possible moves and their consequences
 - 1994: world champion
 - 2007: declared unbeatable

Search: Chess

 In 1997, Gary Kasparov, the chess grandmaster and reigning world champion played against Deep Blue, a program written by researchers at IBM

Source: IBM Research

Search: Chess

• Deep Blue's won 3 games, lost 2, tied 1

- 30 CPUs + 480 chess processors
- Searched 126.000.000 nodes per sec
- Generated 30 billion positions per move reaching depth 14 routinely

Course Map

Dimen- sions Course Modules	Deterministic vs. Stochastic	Static vs. Sequential	States vs. Features vs. Relations
1. Search	Deterministic	Static	States
2. CSPs	Deterministic	Static	Features
3. Planning	Deterministic	Sequential	States or Features
4. Logic	Deterministic	Static	Relations
5. Uncertainty	Stochastic	Static	Features
6. Decision Theory	Stochastic	Sequential	Features

CSP: Sudoku

Sudoku rules are extremely easy: Fill all empty squares so that the numbers 1 to 9 appear once in each row, column and 3x3 box.

9	3	6	2	8	1	4
6						5
3			1			9
5		8		2		7
4			7			6
8						3
1	7	5	9	3	4	2

Sudoku Puzzle

Sudoku Solution

2	7	1	9	5	4	6	8	3
5	9	3	6	2	8	1	4	7
4	6	8	1	3	7	2	5	9
7	3	6	4	1	5	8	9	2
1	5	9	8	6	2	3	7	4
8	4	2	3	7	9	5	6	1
9	8	5	2	4	1	7	3	6
6	1	7	5	9	3	4	2	8
3	2	4	7	8	6	9	1	5

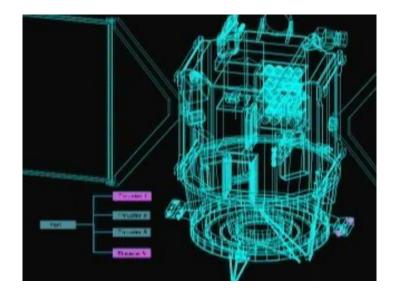
Constraint optimization

- Optimization under side constraints (similar to CSP)
- E.g. mixed integer programming (software: IBM CPLEX)
 - Linear program: max. linear objective subject to linear constraints
 - Mixed integer program: additional constraint::some variables integer
 - NP-hard, widely used in operations research and in industry

Transportation/Logistics: SNCF, United Airlines UPS, United States Postal Service, ...

Supply chain management software: Oracle, SAP,...

Production planning and optimization: Airbus, Dell, Porsche, Thyssen Krupp, Toyota, Nissan, ... 21


Course Map

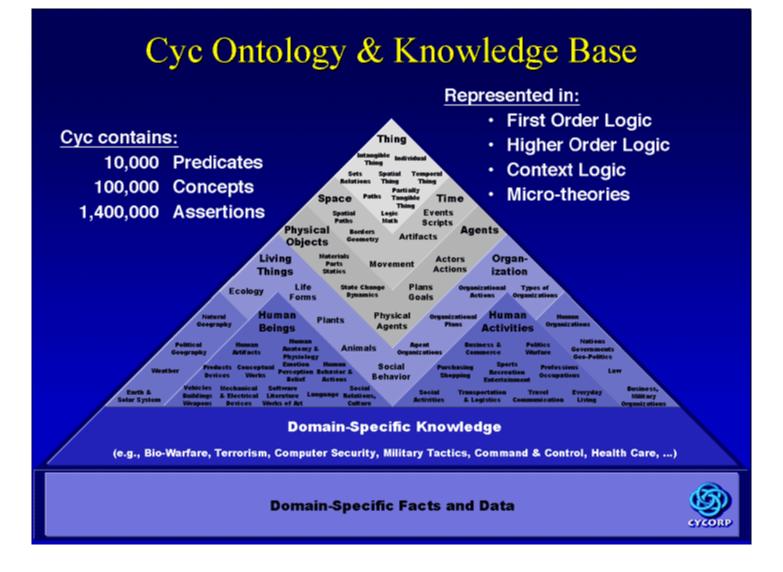

Dimen- sions Course Modules	Deterministic vs. Stochastic	Static vs. Sequential	States vs. Features vs. Relations
1. Search	Deterministic	Static	States
2. CSPs	Deterministic	Static	Features
3. Planning	Deterministic	Sequential	States or Features
4. Logic	Deterministic	Static	Relations
5. Uncertainty	Stochastic	Static	Features
6. Decision Theory	Stochastic	Sequential	Features

Planning: Spacecraft Control

NASA: Deep Space One spacecraft

- operated autonomously for two days in May, 1999:
 - determined its precise position using stars and asteroids
 - despite a malfunctioning ultraviolet detector
 - planned the necessary course adjustment
 - fired the ion propulsion system make this adjustment

Source: NASA 23


Course Map

	Dimen- sions Course Modules	Deterministic vs. Stochastic	Static vs. Sequential	States vs. Features vs. Relations
	1. Search	Deterministic	Static	States
	2. CSPs	Deterministic	Static	Features
	3. Planning	Deterministic	Sequential	States or Features
\rangle	4. Logic	Deterministic	Static	Relations
	5. Uncertainty	Stochastic	Static	Features
	6. Decision Theory	Stochastic	Sequential	Features

Logic: Cyc

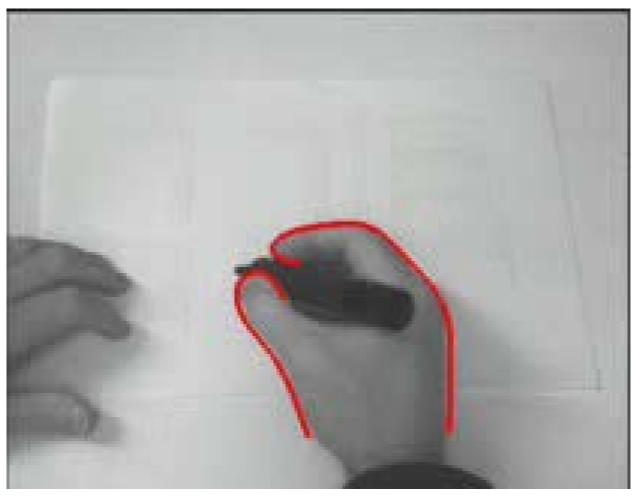
- Al project that started 1984 with the objective
 - to codify, in machine-usable form, millions of pieces of knowledge that comprise human common sense
- Logic reasoning procedures, e.g.
 - Every tree is a plant
 - Plants die eventually
 - Therefore, every tree dies eventually
- Criticisms include
 - Difficulty of adding knowledge manually
 - Non-scalability
 - Empirical evaluation no benchmarks

Logic: Cyc

CSP/logic: formal verification

Hardware verificationSoftware verification(e.g., IBM)(small to medium programs)

Most progress in the last 10 years based on: Encodings into propositional satisfiability (SAT)


Course Map

Dimen- sions Course Modules	Deterministic vs. Stochastic	Static vs. Sequential	States vs. Features vs. Relations
1. Search	Deterministic	Static	States
2. CSPs	Deterministic	Static	Features
3. Planning	Deterministic	Sequential	States or Features
4. Logic	Deterministic	Static	Relations
5. Uncertainty	Stochastic	Static	Features
6. Decision Theory	Stochastic	Sequential	Features

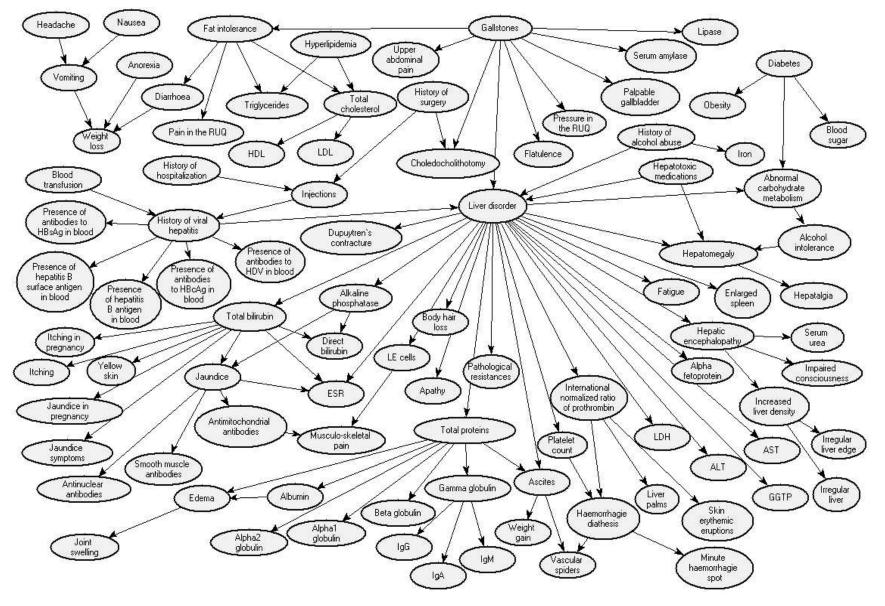
Reasoning Under Uncertainty

E.g. motion tracking: track a hand and estimate activity:

- drawing, erasing/shading, other

Source: *Kevin Murphy, UBC*

Reasoning under Uncertainty


Sample application: Microsoft Kinect

- Sensors: 3 cameras for depth perception
- Noise: no fixed reference points; movements in the background

Source: Microsoft & youtube

Uncertainty/Decision Theory: Diagnosis

Course Map

Dimen- sions Course Modules	Deterministic vs. Stochastic	Static vs. Sequential	States vs. Features vs. Relations
1. Search	Deterministic	Static	States
2. CSPs	Deterministic	Static	Features
3. Planning	Deterministic	Sequential	States or Features
4. Logic	Deterministic	Static	Relations
5. Uncertainty	Stochastic	Static	Features
6. Decision Theory	Stochastic	Sequential	Features

Decision Theory: Decision Support Systems

- E.g., Computational Sustainability
- New interdisciplinary field, AI is a key component
 - Models and methods for decision making concerning the management and allocation of resources
 - to solve most challenging problems related to sustainability
- Often constraint optimization problems. E.g.
 - Energy: when are where to produce green energy most economically?
 - Which parcels of land to purchase to protect endangered species?
 - Urban planning: how to use budget for best development in 30 years?

Source: http://www.computational-sustainability.org/ 33

Planning Under Uncertainty

Helicopter control: MDP, reinforcement learning

Source: Andrew Ng

Planning Under Uncertainty

Autonomous driving: DARPA Grand Challenge

Dr. Sebastian Thrun Stanford Racing Team Leader & Director Stanford Artificial Intelligence Lab

> Source: Sebastian Thrun

Military applications: ethical issues

- Robot soldiers
 - Existing: robot dog carrying heavy materials for soldiers in the field
 - The technology is there
- Unmanned airplanes
- Missile tracking
- Surveillance

Multiagent Systems: Robot Soccer

Source: *RoboCup web site*

AI Applications

CPSC 322 Lecture 3, Slide 37

Robot Soccer: Penalty Shooting

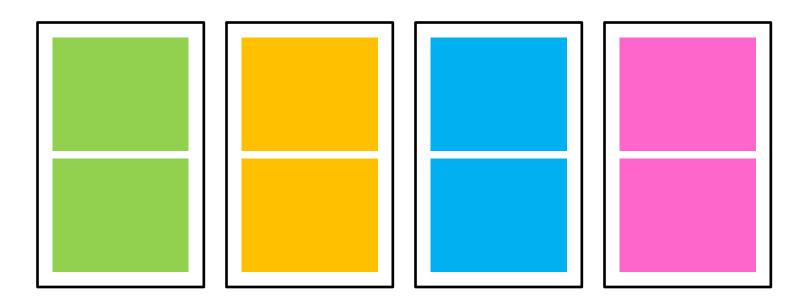
Robot Soccer: Goal of the Month

Summary(1)

We would like most general agents possible, but to start with we need to restrict scope:

- 4. Flat representations (vs. hierarchical)
- 5. Knowledge given (vs. knowledge learned)
- 6. Goals and simple preferences (vs. complex preferences)
- 7. Single-agent scenarios (vs. multi-agent scenarios)
- 8. Perfect rationality (vs. bounded rationality)

Extensions we will cover:


- 1. Deterministic versus stochastic domains
- 2. Static vs. Sequential domains
- 3. Representation: Explicit state or features or relations

Summary(2)

- Huge diversity of applications
- More than I could possibly show here
- We will focus on their common foundations

Coming up ...

- For Wednesday: Assignment 0
 - Available on WebCT
 - Section 1.5 & 1.6 in the textbook will be particularly helpful
- We'll start the search module: read Sections 3.0-3.4
- Please continue bringing coloured cards (didn't work today)

Reasoning Under Uncertainty

- Texture classification using SVMs
 - foliage, building, sky, water

Source: *Mike Cora, UBC*