
Sequential Model-Based Optimization for
General Algorithm Configuration

Frank Hutter, Holger H. Hoos and Kevin Leyton-Brown

University of British Columbia, 2366 Main Mall, Vancouver BC, V6T 1Z4, Canada
{hutter,hoos,kevinlb}@cs.ubc.ca

Abstract. State-of-the-art algorithms for hard computational problems often ex-
pose many parameters that can be modified to improve empirical performance.
However, manually exploring the resulting combinatorial space of parameter set-
tings is tedious and tends to lead to unsatisfactory outcomes. Recently, automated
approaches for solving this algorithm configuration problem have led to substantial
improvements in the state of the art for solving various problems. One promising
approach constructs explicit regression models to describe the dependence of
target algorithm performance on parameter settings; however, this approach has
so far been limited to the optimization of few numerical algorithm parameters on
single instances. In this paper, we extend this paradigm for the first time to gen-
eral algorithm configuration problems, allowing many categorical parameters and
optimization for sets of instances. We experimentally validate our new algorithm
configuration procedure by optimizing a local search and a tree search solver for
the propositional satisfiability problem (SAT), as well as the commercial mixed
integer programming (MIP) solver CPLEX. In these experiments, our procedure
yielded state-of-the-art performance, and in many cases outperformed the previous
best configuration approach.

1 Introduction
Algorithms for hard computational problems—whether based on local search or tree
search—are often highly parameterized. Typical parameters in local search include
neighbourhoods, tabu tenure, percentage of random walk steps, and perturbation and
acceptance criteria in iterated local search. Typical parameters in tree search include
decisions about preprocessing, branching rules, how much work to perform at each
search node (e.g., to compute cuts or lower bounds), which type of learning to perform,
and when to perform restarts. As one prominent example, the commercial mixed integer
programming solver IBM ILOG CPLEX has 76 parameters pertaining to its search
strategy [1]. Optimizing the settings of such parameters can greatly improve performance,
but doing so manually is tedious and often impractical.

Automated procedures for solving this algorithm configuration problem are useful
in a variety of contexts. Their most prominent use case is to optimize parameters on a
training set of instances from some application (“offline”, as part of algorithm develop-
ment) in order to improve performance when using the algorithm in practice (“online”).
Algorithm configuration thus trades human time for machine time and automates a task
that would otherwise be performed manually. End users of an algorithm can also apply
algorithm configuration procedures (e.g., the automated tuning tool built into CPLEX
versions 11 and above) to configure an existing algorithm for high performance on
problem instances of interest.

The algorithm configuration problem can be formally stated as follows: given a
parameterized algorithm A (the target algorithm), a set (or distribution) of problem
instances I and a cost metric c, find parameter settings of A that minimize c on I . The
cost metric c is often based on the runtime required to solve a problem instance, or, in
the case of optimization problems, on the solution quality achieved within a given time
budget. Various automated procedures have been proposed for solving this algorithm
configuration problem. Existing approaches differ in whether or not explicit models are
used to describe the dependence of target algorithm performance on parameter settings.

Model-free algorithm configuration methods are relatively simple, can be applied
out-of-the-box, and have recently led to substantial performance improvements across
a variety of constraint programming domains. This research goes back to the early
1990s [2, 3] and has lately been gaining momentum. Some methods focus on optimizing
numerical (i.e., either integer- or real-valued) parameters (see, e.g., [4, 5]), while others
also target categorical (i.e., discrete-valued and unordered) domains [6, 7, 8, 9]. The
most prominent configuration methods are the racing algorithm F-RACE [5] and our
own iterated local search algorithm PARAMILS [7, 8]. A recent competitor is the genetic
algorithm GGA [9]. F-RACE and its extensions have been used to optimize various
high-performance algorithms, including iterated local search and ant colony optimization
procedures for timetabling tasks and the travelling salesperson problem [6, 5]. Our own
group has used PARAMILS to configure highly parameterized tree search [10] and local
search solvers [11] for the propositional satisfiability problem (SAT), as well as several
solvers for mixed integer programming (MIP), substantially advancing the state of the art
for various types of instances. Notably, by optimizing the 76 parameters of CPLEX—the
most prominent MIP solver—we achieved up to 50-fold speedups over the defaults and
over the configuration returned by the CPLEX tuning tool [1].

While the progress in practical applications described above has been based on
model-free optimization methods, recent progress in model-based approaches promises
to lead to the next generation of algorithm configuration procedures. Sequential model-
based optimization (SMBO) iterates between fitting models and using them to make
choices about which configurations to investigate. It offers the appealing prospects of
interpolating performance between observed parameter settings and of extrapolating to
previously unseen regions of parameter space. It can also be used to quantify importance
of each parameter and parameter interactions. However, being grounded in the “black-
box function optimization” literature from statistics (see, e.g., [12]), SMBO has inherited
a range of limitations inappropriate to the automated algorithm configuration setting.
These limitations include a focus on deterministic target algorithms; use of costly initial
experimental designs; reliance on computationally expensive models; and the assumption
that all target algorithm runs have the same execution costs. Despite considerable recent
advances [13, 14, 15], all published work on SMBO still has three key limitations that
prevent its use for general algorithm configuration tasks: (1) it only supports numerical
parameters; (2) it only optimizes target algorithm performance for single instances; and
(3) it lacks a mechanism for terminating poorly performing target algorithm runs early.

The main contribution of this paper is to remove the first two of these SMBO limita-
tions, and thus to make SMBO applicable to general algorithm configuration problems
with many categorical parameters and sets of benchmark instances. Specifically, we gene-
ralize four components of the SMBO framework and—based on them—define two novel
SMBO instantiations capable of general algorithm configuration: the simple model-free
Random Online Adaptive Racing (ROAR) procedure and the more sophisticated Sequen-
tial Model-based Algorithm Configuration (SMAC) method. These methods do not yet

implement an early termination criterion for poorly performing target algorithm runs
(such as, e.g., PARAMILS’s adaptive capping mechanism [8]); thus, so far we expect them
to perform poorly on some configuration scenarios with large captimes. In a thorough
experimental analysis for a wide range of 17 scenarios with small captimes (involving
the optimization of local search and tree search SAT solvers, as well as the commercial
MIP solver CPLEX), SMAC indeed compared favourably to the two most prominent
approaches for general algorithm configuration: PARAMILS [7, 8] and GGA [9].

The remainder of this paper is structured as follows. Section 2 describes the SMBO
framework and previous work on SMBO. Sections 3 and 4 generalize SMBO’s compo-
nents to tackle general algorithm configuration scenarios, defining ROAR and SMAC,
respectively. Section 5 experimentally compares ROAR and SMAC to the existing state
of the art in algorithm configuration. Section 6 concludes the paper.

2 Existing Work on Sequential Model-Based Optimization (SMBO)

Model-based optimization methods construct a regression model (often called a response
surface model) that predicts performance and then use this model for optimization.
Sequential model-based optimization (SMBO) iterates between fitting a model and gath-
ering additional data based on this model. In the context of parameter optimization, the
model is fitted to a training set {(θ1, o1), . . . , (θn, on)} where parameter configuration
θi = (θi,1, . . . , θi,d) is a complete instantiation of the target algorithm’s d parameters
and oi is the target algorithm’s observed performance when run with configuration θi.
Given a new configuration θn+1, the model aims to predict its performance on+1.

SMBO has its roots in the statistics literature on experimental design for global
continuous (“black-box”) function optimization. Most notable is the efficient global opti-
mization (EGO) algorithm by Jones et al. [12], which is, however, limited to optimizing
continuous parameters for noise-free functions (i.e., the performance of deterministic al-
gorithms). Bartz-Beielstein et al. [13] were the first to use the EGO approach to optimize
algorithm performance. Their sequential parameter optimization (SPO) toolbox—which
has received considerable attention in the evolutionary algorithms community—provides
many features that facilitate the manual analysis and optimization of algorithm parame-
ters; it also includes an automated SMBO procedure for optimizing numerical parameters
on single instances. We studied the components of this automated procedure, demon-
strated that its intensification mechanism mattered most, and improved it in our SPO+

algorithm [14]. In [15], we showed how to reduce the overhead incurred by construction
and use of response surface models via approximate GP models. We also eliminated the
need for a costly initial design by interleaving randomly selected parameters throughout
the optimization process, and by exploiting the fact that different algorithm runs take
different amounts of time. The resulting time-bounded SPO variant, TB-SPO, is the
first practical SMBO method for parameter optimization given a user-specified time
budget. Although it was shown to significantly outperform PARAMILS in certain cases, it
is still limited to the optimization of numerical algorithm parameters on single problem
instances.

In Algorithm Framework 1, we give pseudocode for the time-bounded SMBO
framework of which TB-SPO is an instantiation: in each iteration, it fits a model, selects
a list of promising parameter configurations and performs target algorithm runs on (a
subset of) these, until a given time bound is reached. This time bound is related to the
combined overhead due to fitting the model and selecting promising configurations. In
the following, we generalize the components of this algorithm framework, extending

Algorithm Framework 1: Sequential Model-Based Optimization (SMBO)
R keeps track of all target algorithm runs performed so far and their performances (i.e.,
SMBO’s training data {([θ1,x1], o1), . . . , ([θn,xn], on)}),M is SMBO’s model, ~Θnew

is a list of promising configurations, and tfit and tselect are the runtimes required to fit the
model and select configurations, respectively.

Input :Target algorithm A with parameter configuration spaceΘ; instance set
Π; cost metric ĉ

Output :Optimized (incumbent) parameter configuration, θinc
1 [R, θinc]← Initialize(Θ, Π)
2 repeat
3 [M, tfit]← FitModel(R)
4 [~Θnew, tselect]← SelectConfigurations(M, θinc,Θ)
5 [R,θinc]← Intensify(~Θnew, θinc,M, R, tfit + tselect, Π , ĉ)
6 until total time budget for configuration exhausted
7 return θinc

its scope to tackle general algorithm configuration problems with many categorical
parameters and sets of benchmark instances.

3 Random Online Aggressive Racing (ROAR)

In this section, we first generalize SMBO’s Intensify procedure to handle multiple
instances, and then introduce ROAR, a very simple model-free algorithm configuration
procedure based on this new intensification mechanism.

3.1 Generalization I: An Intensification Mechanism for Multiple Instances

A crucial component of any algorithm configuration procedure is the so-called in-
tensification mechanism, which governs how many evaluations to perform with each
configuration, and when to trust a configuration enough to make it the new current best
known configuration (the incumbent). When configuring algorithms for sets of instances,
we also need to decide which instance to use in each run. To address this problem,
we generalize TB-SPO’s intensification mechanism. Our new procedure implements a
variance reduction mechanism, reflecting the insight that when we compare the empirical
cost statistics of two parameter configurations across multiple instances, the variance in
this comparison is lower if we use the same N instances to compute both estimates.

Procedure 2 defines this new intensification mechanism more precisely. It takes as
input a list of promising configurations, ~Θnew, and compares them in turn to the current
incumbent configuration until a time budget for this comparison stage is reached.1
In each comparison of a new configuration, θnew, to the incumbent, θinc, we first
perform an additional run for the incumbent, using a randomly selected 〈instance, seed〉
combination. Then, we iteratively perform runs with θnew (using a doubling scheme)
until either θnew’s empirical performance is worse than that of θinc (in which case
we reject θnew) or we performed as many runs for θnew as for θinc and it is still at

1 If that budget is already reached after the first configuration in ~Θnew, one more configuration
is used; see the last paragraph of Section 4.3 for an explanation why.

Procedure 2: Intensify(~Θnew, θinc,M, R, tintensify , Π , ĉ)
ĉ(θ,Π ′) denotes the empirical cost of θ on the subset of instances Π ′ ⊆ Π , based on the
runs in R; maxR is a parameter, set to 2 000 in all our experiments

Input :Sequence of parameter settings to evaluate, ~Θnew; incumbent parameter setting,
θinc; model,M; sequence of target algorithm runs, R; time bound, tintensify;
instance set, Π; cost metric, ĉ

Output :Updated sequence of target algorithm runs, R; incumbent parameter setting, θinc

1 for i := 1, . . . , length(~Θnew) do
2 θnew ← ~Θnew[i]
3 if R contains less than maxR runs with configuration θinc then
4 Π ′ ← {π′ ∈ Π | R contains less than or equal number of runs using θinc and π′

than using θinc and any other π′′ ∈ Π}
5 π ← instance sampled uniformly at random from Π ′

6 s← seed, drawn uniformly at random
7 R← ExecuteRun(R, θinc, π, s)

8 N ← 1
9 while true do

10 Smissing ← 〈instance, seed〉 pairs for which θinc was run before, but not θnew

11 Storun ←random subset of Smissing of size min(N, |Smissing|)
12 foreach (π, s) ∈ Storun do R← ExecuteRun(R, θnew, π, s)
13 Smissing ← Smissing \ Storun

14 Πcommon ← instances for which we previously ran both θinc and θnew

15 if ĉ(θnew, Πcommon) > ĉ(θinc, Πcommon) then break
16 else if Smissing = ∅ then θinc ← θnew; break
17 else N ← 2 ·N
18 if time spent in this call to this procedure exceeds tintensify and i ≥ 2 then break

19 return [R,θinc]

least as good as θinc (in which case we change the incumbent to θnew). The 〈instance,
seed〉 combinations for θnew are sampled uniformly at random from those on which the
incumbent has already run. Similar to the FOCUSEDILS algorithm [7, 8], θinc and θnew
are always compared using only instances on which they have both been run. However,
every comparison in Procedure 2 is based on a different randomly selected subset of
instances and seeds, while FOCUSEDILS’s Procedure “better” uses a fixed ordering to
which it can be very sensitive.

3.2 Defining ROAR

We now define Random Online Aggressive Racing (ROAR), a simple model-free instanti-
ation of the general SMBO framework (see Algorithm Framework 1).2 This surprisingly
effective method selects parameter configurations uniformly at random and iteratively
compares them against the current incumbent using our new intensification mechanism.
We consider ROAR to be a racing algorithm, because it runs each candidate configuration
only as long as necessary to establish whether it is competitive. It gets its name because
the set of candidates is selected at random, each candidate is accepted or rejected online,

2 We previously considered random sampling approaches based on less powerful intensification
mechanisms; see, e.g., RANDOM∗ defined in [15].

and we make this online decision aggressively, before enough data has been gathered
to support a statistically significant conclusion. More formally, as an instantiation of
the SMBO framework, ROAR is completely specified by the four components Initial-
ize, FitModel, SelectConfigurations, and Intensify. Initialize performs a single run with
the target algorithm’s default parameter configuration (or a random configuration if
no default is available) on an instance selected uniformly at random. Since ROAR is
model-free, its FitModel procedure simply returns a constant model which is never used.
SelectConfigurations returns a single configuration sampled uniformly at random from
the parameter space, and Intensify is as described in Procedure 2.

4 Sequential Model-based Algorithm Configuration (SMAC)

In this section, we introduce our second, more sophisticated instantiation of the general
SMBO framework: Sequential Model-based Algorithm Configuration (SMAC). SMAC
can be understood as an extension of ROAR that selects configurations based on a model
rather than uniformly at random. It instantiates Initialize and Intensify in the same way
as ROAR. Here, we discuss the new model class we use in SMAC to support categorical
parameters and multiple instances (Sections 4.1 and 4.2, respectively); then, we describe
how SMAC uses its models to select promising parameter configurations (Section 4.3).

4.1 Generalization II: Models for Categorical Parameters

The models in all existing SMBO methods of which we are aware are limited to numerical
parameters. In this section, we discuss the new model class SMAC uses to also handle
categorical parameters.

SMAC’s models are based on random forests [16], a standard machine learning
tool for regression and classification.3 Random forests are collections of regression
trees, which are similar to decision trees but have real values (here: target algorithm
performance values) rather than class labels at their leaves. Regression trees are known to
perform well for categorical input data; indeed, they have already been used for modeling
the performance of heuristic algorithms (e.g., [18, 19]). Random forests share this benefit
and typically yield more accurate predictions [16]; they also allow us to quantify our
uncertainty in a given prediction. We construct a random forest as a set of B regression
trees, each of which is built on n data points randomly sampled with repetitions from
the entire training data set {(θ1, o1), . . . , (θn, on)}. At each split point of each tree, a
random subset of dd · pe of the d algorithm parameters is considered eligible to be split
upon; the split ratio p is a parameter, which we left at its default of p = 5/6. A further
parameter is nmin, the minimal number of data points required to be in a node if it is
to be split further; we use the standard value nmin = 10. Finally, we set the number of

3 In principle, other model families can also be used. Notably, one might consider Gaussian
processes (GPs), or the projected process (PP) approximation to GPs we used in TB-SPO [15].
Although GPs are canonically defined only for numerical parameters, they can be extended to
categorical parameters by changing the kernel function. We defined such a kernel function, based
on the weighted Hamming distance between two parameter configurations. However, there is a
more significant obstacle to using GPs to support general algorithm configuration: response
variable transformations distort the GP cost metric, which is particularly problematic for
multi-instance models. Further information, including the definition of the weighted Hamming
distance kernel function, can be found in the extended version of this paper [17].

trees to B = 10 to keep the computational overhead small.4 We compute the random
forest’s predictive mean µθ and variance σ2

θ for a new configuration θ as the empirical
mean and variance of its individual trees’ predictions for θ.

Model fit can often be improved by transforming the cost metric. In this paper, we
focus on minimizing algorithm runtime. Previous work on predicting algorithm runtime
has found that logarithmic transformations substantially improve model quality [20] and
we thus use log-transformed runtime data throughout this paper; that is, for runtime ri,
we use oi = ln(ri). (SMAC can also be applied to optimize other cost metrics, such
as the solution quality an algorithm obtains in a fixed runtime; other transformations
may prove more efficient for other metrics.) However, we note that in some models such
transformations implicitly change the cost metric users aim to optimize [17]. We avoid
this problem in our random forests by computing the prediction in the leaf of a tree by
“untransforming” the data, computing the user-defined cost metric, and then transforming
the result again.

4.2 Generalization III: Models for Sets of Problem Instances

There are several possible ways to extend SMBO’s models to handle multiple instances.
Most simply, one could use a fixed set of N instances for every evaluation of the target
algorithm run, reporting aggregate performance. However, there is no good fixed choice
for N : small N leads to poor generalization to test data, while large N leads to a
prohibitive N -fold slowdown in the cost of each evaluation. (This is the same problem
faced by the PARAMILS instantiation BASICILS(N) [7].) Instead, we explicitly integrate
information about the instances into our response surface models. Given a vector of
features xi describing each training problem instance πi ∈ Π , we learn a joint model that
predicts algorithm runtime for combinations of parameter configurations and instance
features. We then aggregate these predictions across instances.

Instance Features. Existing work on empirical hardness models [21] has demonstrated
that it is possible to predict algorithm runtime based on features of a given problem
instance. Most notably, such predictions have been exploited to construct portfolio-based
algorithm selection mechanisms, such as SATzilla [20]. For SAT instances in the form of
CNF formulae, we used 126 features including features based on graph representations
of the instance, an LP relaxation, DPLL probing, local search probing, clause learning,
and survey propagation. For MIP instances we computed 39 features, including features
based on graph representations, an LP relaxation, the objective function, and the linear
constraint matrix. Both sets of features are detailed in the extended version of this
paper [17]. To reduce the computational complexity of learning, we applied principal
component analysis (see, e.g., [22]), to project the feature matrix into a lower-dimensional
subspace spanned by the seven orthogonal vectors along which it has maximal variance.
For new domains, for which no features have yet been defined, SMAC can still be applied
with an empty feature set or simple domain-independent features, such as instance size
or the performance of the algorithm’s default setting (which, based on preliminary
experiments, seems to be a surprisingly effective feature). Note that in contrast to per-
instance approaches, instance features are only needed for the training instances: the end
result of algorithm configuration is a single parameter configuration that is used without
a need to compute features for test instances.

4 An optimization of these three parameters might improve performance further. We plan on
studying this in the context of an application of SMAC to optimizing its own parameters.

Predicting Performance Across Instances. So far, we have discussed models trained
on pairs (θi, oi) of parameter configurations θi and their observed performance oi.
Now, we extend this data to include instance features. Let xi denote the vector of
features for the instance used in the ith target algorithm run. Concatenating parameter
values, θi, and instance features, xi, into one input vector yields the training data
{([θ1,x1], o1), . . . , ([θn,xn], on)}. From this data, we learn a model that takes as input
a parameter configuration θ and predicts performance across all training instances. To
achieve this, we do not need to change random forest construction: all input dimensions
are handled equally, regardless of whether they refer to parameter values or instance
features. The prediction procedure changes as follows: within each tree, we first predict
performance for the combinations of the given configuration and each instance; next,
we combine these predictions with the user-defined cost metric (e.g., arithmetic mean
runtime across instances); finally, we compute means and variances across trees.

4.3 Generalization IV: Using the Model to Select Promising Configurations in
Large Mixed Numerical/Categorical Configuration Spaces

The SelectConfiguration component in SMAC uses the model to select a list of promising
parameter configurations. To quantify how promising a configuration θ is, it uses the
model’s predictive distribution for θ to compute its expected positive improvement
(EI(θ)) [12] over the best configuration seen so far (the incumbent). EI(θ) is large for
configurations θ with low predicted cost and for those with high predicted uncertainty;
thereby, it offers an automatic tradeoff between exploitation (focusing on known good
parts of the space) and exploration (gathering more information in unknown parts of the
space). Specifically, we use the E[Iexp] criterion introduced in [14] for log-transformed
costs; given the predictive mean µθ and variance σ2

θ of the log-transformed cost of a
configuration θ, this is defined as

EI(θ) := E[Iexp(θ)] = fminΦ(v)− e
1
2σ

2
θ+µθ · Φ(v − σθ), (1)

where v := ln(fmin)−µθ
σθ

, Φ denotes the cumulative distribution function of a standard
normal distribution, and fmin denotes the empirical mean performance of θinc.5

Having defined EI(θ), we must still decide how to identify configurations θ with
large EI(θ). This amounts to a maximization problem across parameter configuration
space. Previous SMBO methods [13, 14, 15] simply applied random sampling for this
task (in particular, they evaluated EI for 10 000 random samples), which is unlikely to
be sufficient in high-dimensional configuration spaces, especially if promising configu-
rations are sparse. To gather a set of promising configurations with low computational
overhead, we perform a simple multi-start local search and consider all resulting config-
urations with locally maximal EI.6 This search is similar in spirit to PARAMILS [7, 8],
but instead of algorithm performance it optimizes EI(θ) (see Equation 1), which can
be evaluated based on the model predictions µθ and σ2

θ without running the target algo-
rithm. More concretely, the details of our local search are as follows. We compute EI
for all configuations used in previous target algorithm runs, pick the ten configurations

5 In TB-SPO [15], we used fmin = µ(θinc) + σ(θinc). However, we now believe that setting
fmin to the empirical mean performance of θinc yields better performance overall.

6 We plan to investigate better mechanisms in the future. However, we note that the best problem
formulation is not obvious, since we desire a diverse set of configurations with high EI.

with maximal EI, and initialize a local search at each of them. To seamlessly handle
mixed categorical/numerical parameter spaces, we use a randomized one-exchange
neighbourhood, including the set of all configurations that differ in the value of exactly
one discrete parameter, as well as four random neighbours for each numerical parameter.
In particular, we normalize the range of each numerical parameter to [0,1] and then
sample four “neighbouring” values for numerical parameters with current value v from
a univariate Gaussian distribution with mean v and standard deviation 0.2, rejecting
new values outside the interval [0,1]. Since batch model predictions (and thus batch EI
computations) for a set of N configurations are much cheaper than separate predictions
for N configurations, we use a best improvement search, evaluating EI for all neighbours
at once; we stop each local search once none of the neighbours has larger EI. Since
SMBO sometimes evaluates many configurations per iteration and because batch EI com-
putations are cheap, we simply compute EI for an additional 10 000 randomly-sampled
configurations; we then sort all 10 010 configurations in descending order of EI. (The ten
results of local search typically had larger EI than all randomly sampled configurations.)

Having selected this list of 10 010 configurations based on the model, we interleave
randomly-sampled configurations in order to provide unbiased training data for future
models. More precisely, we alternate between configurations from the list and addi-
tional configurations sampled uniformly at random. Since Intensify always compares at
least two configurations against the current incumbent, at least one randomly sampled
configuration is evaluated in every iteration of SMBO. In finite configuration spaces,
thus, each configuration has a positive probability of being selected in each iteration.
In combination with the fact that Intensify increases the number of runs used to eval-
uate each configuration unboundedly, this allows us to prove that SMAC (and ROAR)
eventually converge to the optimal configuration when using consistent estimators of the
user-defined cost metric.7 The proof is very simple and uses the same arguments as a
previous proof about FocusedILS (see [8]); we omit it here and refer the reader to the
extended version of this paper [17].

5 Experimental Evaluation

We now compare the performance of SMAC, ROAR, TB-SPO [15], GGA [9], and
PARAMILS (in particular, FOCUSEDILS 2.3) [8] for a range of configuration scenarios that
involve minimizing the runtime of SAT and MIP solvers. In principle, our ROAR and
SMAC methods also apply to optimizing other cost metrics, such as the solution quality
an algorithm can achieve in a fixed time budget; we plan on studying their empirical
performance for this case in the near future.

5.1 Experimental Setup

Configuration scenarios. We considered a diverse set of 17 algorithm configuration
problem instances (so-called configuration scenarios) that had been used previously to
analyze PARAMILS [8, 1] and TB-SPO [15].8 These scenarios involve the configuration
of the local search SAT solver SAPS (4 parameters), the tree search solver SPEAR (26
parameters), and the most widely used commercial mixed integer programming (MIP)

7 This proof does not cover continuous parameters, since they lead to infinite configuration
spaces; in that case, we would require additional smoothness assumptions to prove convergence.

8 All instances we used are available at http://www.cs.ubc.ca/labs/beta/Projects/AAC.

solver, IBM ILOG CPLEX (76 parameters); references for these algorithms, as well as
details on their parameter spaces, are given in the extended version of this paper [17]. In
all 17 configuration scenarios, we terminated target algorithm runs at κmax = 5 seconds,
the same per-run captime used in previous work for these scenarios. In previous work, we
have also applied PARAMILS to optimize MIP solvers with very large per-run captimes
(up to κmax = 10 000s), and obtained better results than the CPLEX tuning tool [1]. We
believe that for such large captimes, an adaptive capping mechanism, such as the one
implemented in ParamILS [8], is essential; we are currently working on integrating such
a mechanism into SMAC.9 In this paper, to study the remaining components of SMAC,
we only use scenarios with small captimes of 5s. In order to enable a fair comparison
with GGA, we changed the optimization objective of all 17 scenarios from the original
PAR-10 (penalized average runtime, counting timeouts at κmax as 10 · κmax, which is
not supported by GGA) to simple average runtime (PAR-1, counting timeouts at κmax
as κmax). 10 However, one difference remains: we minimize the runtime reported by the
target algorithm, but GGA can only minimize its own measurement of target algorithm
runtime, including (sometimes large) overheads for reading in the instance.

Parameter transformations. Some numerical parameters naturally vary on a non-
uniform scale (e.g., a parameter θ with an interval [100, 1600] that we discretized
to the values {100, 200, 400, 800, 1600} for use in PARAMILS). We transformed
such parameters to a domain in which they vary more uniformly (e.g., log(θ) ∈
[log(100), log(1600)]), un-transforming the parameter values for each call to the target
algorithm.

Comparing configuration procedures. We performed 25 runs of each configuration
procedure on each configuration scenario. For each such run ri, we computed test
performance ti as follows. First, we extracted the incumbent configuration θinc at the
point the configuration procedure exhausted its time budget; SMAC’s overhead due
to the construction and use of models were counted as part of this budget. Next, in
an offline evaluation step using the same per-run cutoff time as during training, we
measured the mean runtime ti across 1 000 independent test runs of the target algorithm
parameterized by θinc. In the case of multiple-instance scenarios, we used a test set of
previously unseen instances. For a given scenario, this resulted in test performances
t1, . . . , t25 for each configuration procedure. We report medians across these 25 values,
visualize their variance in boxplots, and perform a Mann-Whitney U test to check
for significant differences between configuration procedures. We ran GGA through
HAL [23], using parameter settings recommended by GGA’s author, Kevin Tierney, in
e-mail communication: we set the population size to 70, the number of generations to
100, the number of runs to perform in the first generation to 5, and the number of runs
to perform in the last generation to 70. We used default settings for FOCUSEDILS 2.3,

9 In fact, preliminary experiments for configuration scenario CORLAT (from [1], with κmax =
10 000s) highlight the importance of developing an adaptive capping mechanism for SMAC:
e.g., in one of SMAC’s run, it only performed 49 target algorithm runs, with 15 of them timing
out after κmax = 10 000s, and another 3 taking over 5 000 seconds each. Together, these runs
exceeded the time budget of 2 CPU days (172 800 seconds), despite the fact that all of them
could have safely been cut off after less than 100 seconds. As a result, for scenario CORLAT,
SMAC performed a factor of 3 worse than PARAMILS with κmax = 10 000s. On the other
hand, SMAC can sometimes achieve strong performance even with relatively high captimes;
e.g., on CORLAT with κmax = 300s, SMAC outperformed PARAMILS by a factor of 1.28.

10 Using PAR-10 to compare the remaining configurators, our qualitative results did not change.

including aggressive capping. We note that in a previous comparison [9] of GGA and
FOCUSEDILS, capping was disabled in FOCUSEDILS; this explains its poor performance
there and its better performance here.

With the exception of FOCUSEDILS, all of the configuration procedures we study
here support numerical parameters without a need for discretization. We present results
both for the mixed numerical/categorical parameter space these methods search, and—to
enable a direct comparison to FOCUSEDILS—for a fully discretized configuration space.

Computational environment. We conducted all experiments on a cluster of 55 dual
3.2GHz Intel Xeon PCs with 2MB cache and 2GB RAM, running OpenSuSE Linux
11.1. We measured runtimes as CPU time on these reference machines.

5.2 Experimental Results for Single Instance Scenarios

In order to evaluate our new general algorithm configuration procedures ROAR and
SMAC one component at a time, we first evaluated their performance for optimizing
the continuous parameters of SAPS and the mixed numerical/categorical parameters
of SPEAR on single SAT instances; multi-instance scenarios are studied in the next
section. To enable a comparison with our previous SMBO instantiation TB-SPO, we
used the 6 configuration scenarios introduced in [15], which aim to minimize SAPS’s
runtime on 6 single SAT-encoded instances, 3 each from quasigroup completion (QCP)
and small world graph colouring (SWGCP). We also used 5 similar new configuration
scenarios, which aim to minimize SPEAR’s runtime for 5 single SAT-encoded instances,
2 from a hard distribution of IBM bounded model checking (IBM) and 3 from software
verification (SWV). For more information and references for these instances, please
see [17]. The time budget for each algorithm configuration run was 30 CPU minutes,
exactly following [15].

The model-based approaches SMAC and TB-SPO performed best in this comparison,
followed by ROAR, FOCUSEDILS, and GGA. Table 1 shows the results achieved by
each of the configuration procedures, for both the full parameter configuration space
(which includes numerical parameters) and the discretized version we made for use with
FOCUSEDILS. For the special case of single instances and a small number of all-numerical
parameters, SMAC and TB-SPO are very similar, and both performed best.11 While TB-
SPO does not apply in the remaining configuration scenarios, our more general SMAC
method achieved the best performance in all of them. ROAR performed well for small
but not for large configuration spaces: it was among the best (i.e., best or not significantly
different from the best) in most of the SAPS scenarios (4 parameters) but only for one of
the SPEAR scenarios (26 parameters). Both GGA and FOCUSEDILS performed slightly
worse than ROAR for the SAPS scenarios, and slightly (but statistically significantly)
worse than SMAC for most SPEAR configuration scenarios. Figure 1 visualizes each
configurator’s 25 test performances for all scenarios. We note that SMAC and ROAR
often yielded more robust results than FOCUSEDILS and GGA: for many scenarios some
of the 25 FOCUSEDILS and GGA runs did very poorly.

11 In fact, in 1 of the 6 scenarios for which TB-SPO is applicable, it performed better than
SMAC. This is because for all-numerical parameters, projected process (PP) models performed
better than random forest (RF) models. In further experiments (not reported here, see [17]), we
evaluated a version of SMAC based on PP instead of RF models; its median performance was
slightly better than TB-SPO’s, but the two were statistically indistinguishable in all 6 scenarios.
With categorical parameters, SMAC performed better with the RF models we use here.

Scenario Unit
Full configuration space Discretized configuration space

SMAC TB-SPO ROAR F-ILS GGA SMAC TB-SPO ROAR F-ILS GGA
SAPS-QCP-MED [·10−2s] 4.70 4.58 4.72 — 6.28 5.27 — 5.25 5.50 6.24

SAPS-QCP-Q075 [·10−1s] 2.29 2.22 2.34 — 2.74 2.87 — 2.92 2.91 2.98
SAPS-QCP-Q095 [·100s] 1.37 1.35 1.55 — 1.75 1.51 — 1.57 1.57 1.95

SAPS-SWGCP-MED [·10−1s] 1.61 1.63 1.70 — 2.48 2.54 — 2.58 2.57 2.71

SAPS-SWGCP-Q075 [·10−1s] 2.11 2.48 2.32 — 3.19 3.26 — 3.38 3.55 3.55

SAPS-SWGCP-Q095 [·10−1s] 2.36 2.69 2.49 — 3.13 3.65 — 3.79 3.75 3.77

SPEAR-IBM-Q025 [·10−1s] 6.24 — 6.31 — 6.33 6.21 — 6.30 6.31 6.30
SPEAR-IBM-MED [·100 s] 3.28 — 3.36 — 3.35 3.16 — 3.38 3.47 3.84

SPEAR-SWV-MED [·10−1s] 6.04 — 6.11 — 6.14 6.05 — 6.14 6.11 6.15

SPEAR-SWV-Q075 [·10−1s] 5.76 — 5.88 — 5.83 5.76 — 5.89 5.88 5.84

SPEAR-SWV-Q095 [·10−1s] 8.38 — 8.55 — 8.47 8.42 — 8.53 8.58 8.49

Table 1. Comparison of algorithm configuration procedures for optimizing parameters on single
problem instances. We performed 25 independent runs of each configuration procedure and report
the median of the 25 test performances (mean runtimes across 1 000 target algorithm runs with
the found configurations). We bold-faced entries for configurators that are not significantly worse
than the best configurator for the respective configuration space, based on a Mann-Whitney U
test. The symbol “—” denotes that the configurator does not apply for this configuration space.
Typo in the original: SAPS-QCP-Q095 had a wrong scale (10−1 instead of 100).

S T R F G

0.05

0.1

0.15

QCPmed
S T R F G

0.2

0.25

0.3

0.35

QCP−q075
S T R F G

1

1.5

2

2.5

QCP−q095
S T R F G

0.15

0.2

0.25

0.3

0.35

0.4

SWGCP−med
S T R F G

0.2

0.4

0.6

0.8

SWGCP−q075
S T R F G

0.2

0.4

0.6

0.8

SWGCP−q095

(a) SAPS (4 continuous parameters)

S R F G

0.62

0.64

0.66

0.68

IBMq025
S R F G

3

3.5

4

4.5

IBMmed
S R F G

0.6

0.61

0.62

0.63

SWVmed
S R F G

0.5

1

1.5

2

2.5

SWVq075
S R F G

1

1.5

2

2.5

3

3.5

SWVq095

(b) SPEAR (26 parameters; 12 of them continuous and 4 integral)
Fig. 1. Visual comparison of configuration procedures’ performance for setting SAPS and
SPEAR’s parameters for single instances. For each configurator and scenario, we show box-
plots for the 25 test performances underlying Table 1, for the full configuration space (discretized
for FOCUSEDILS). ‘S’ stands for SMAC, ‘T’ for TB-SPO, ‘R’ for ROAR, ‘F’ for FOCUSEDILS,
and ‘G’ for GGA.

Our new SMAC and ROAR methods were able to explore the full configuration
space, which sometimes led to substantially improved performance compared to the
discretized configuration space PARAMILS is limited to. Comparing the left vs the right
side of Table 1, we note that the SAPS discretization (the same we used to optimize
SAPS with PARAMILS in previous work [7, 8]) left substantial room for improvement
when exploring the full space: roughly 1.15-fold and 1.55-fold speedups on the QCP
and SWGCP instances, respectively. GGA did not benefit as much from being allowed
to explore the full configuration space for the SAPS scenarios; however, in one of the
SPEAR scenarios (SPEAR-IBM-MED), it did perform 1.15 times better for the full space
(albeit still worse than SMAC).

Scenario Unit
Default CPLEX Full configuration space Discretized configuration space

Tuning Tool SMAC ROAR F-ILS GGA SMAC ROAR F-ILS GGA
SAPS-QCP [·10−1s] 11.8 — 7.05 7.52 — 7.84 7.65 7.65 7.62 7.59

SAPS-SWGCP [·10−1s] 25.0 — 1.77 1.8 — 2.82 2.94 3.01 2.91 3.04

SPEAR-QCP [·10−1s] 3.27 — 1.65 1.84 — 2.21 1.93 2.01 2.08 2.01
SPEAR-SWGCP [·100 s] 1.62 — 1.16 1.16 — 1.17 1.16 1.16 1.18 1.18

CPLEX-REGIONS100 [·10−1s] 7.40 8.60 3.45 6.67 — 4.37 3.50 7.23 3.23 3.98
CPLEX-MIK [·100 s] 4.87 3.56 1.20 2.81 — 3.42 1.24 3.11 2.71 3.32

Table 2. Comparison of algorithm configuration procedures for benchmarks with multiple in-
stances. We performed 25 independent runs of each configuration procedure and report the median
of the 25 test performances (mean runtimes across 1 000 target algorithm runs with the found
configurations on a test set disjoint from the training set). We bold-face entries for configurators
that are not significantly worse than the best configurator for the respective configuration space. We
also list performance of the default configuration, and of the configuration found by the CPLEX
tuning tool (see [1]); note that on the test set this can be worse than the default.

5.3 Experimental Results for General Multi-Instance Configuration Scenarios

We now compare the performance of SMAC, ROAR, GGA, and FOCUSEDILS on six
general algorithm configuration tasks that aim to minimize the mean runtime of SAPS,
SPEAR, and CPLEX for various sets of instances. These are the 5 BROAD configuration
scenarios used in [8] to evaluate PARAMILS’s performance, plus one further CPLEX
scenario, and we used the same time budget of 5 hours per configuration run.

Overall, SMAC performed best in this comparison: as shown in Table 2 its perfor-
mance was among the best (i.e., statistically indistinguishable from the best) in all 6
configuration scenarios, for both the discretized and the full configuration spaces. Our
simple ROAR method performed surprisingly well, indicating the importance of the
intensification mechanism: it was among the best in 2 of the 6 configuration scenarios for
either version of the configuration space. However, it performed substantially worse than
the best approaches for configuring CPLEX—the algorithm with the largest configuration
space; we note that ROAR’s random sampling approach lacks the guidance offered by
either FOCUSEDILS’s local search or SMAC’s response surface model. GGA performed
slightly better for optimizing CPLEX than ROAR, but also significantly worse than either
FOCUSEDILS or SMAC. Figure 2 visualizes the performance each configurator achieved
for all 6 scenarios. We note that—similarly to the single instance cases—the results of
SMAC were often more robust than those of FOCUSEDILS and GGA.

Although the performance improvements achieved by our new methods might not
appear large in absolute terms, it is important to remember that algorithm configuration
is an optimization problem, and that the ability to tease out the last few percent of
improvement often distinguishes good algorithms. We expect the difference between
configuration procedures to be clearer in scenarios with larger per-instance runtimes. In
order to handle such scenarios effectively, we believe that SMAC will require an adaptive
capping mechanism similar to the one we introduced for PARAMILS [8]; we are actively
working on integrating such a mechanism with SMAC’s models.

As in the single-instance case, for some configuration scenarios, SMAC and ROAR
achieved much better results when allowed to explore the full space rather than FOCUSED-
ILS’s discretized search space. Speedups for SAPS were similar to those observed in the
single-instance case (about 1.15-fold for SAPS-QCP and 1.65-fold for SAPS-SWGCP),
but now we also observed a 1.17-fold improvement for SPEAR-QCP. In contrast, GGA
actually performed worse for 4 of the 6 scenarios when allowed to explore the full space.

S R F G

0.6

0.7

0.8

0.9

SAPS−QCP
S R F G

0.2

0.3

0.4

SAPS−SWGCP
S R F G

0.15

0.2

0.25

0.3

SPEAR−QCP
S R F G

1.15

1.2

1.25

1.3

1.35

SPEAR−SWGCP
S R F G

0.3

0.4

0.5

0.6

0.7

0.8

CPLEX−regions100
S R F G

1

2

3

4

CPLEX−MIK

Fig. 2. Visual comparison of configuration procedures for general algorithm configuration scenar-
ios. For each configurator and scenario, we show boxplots for the runtime data underlying Table
2, for the full configuration space (discretized for FOCUSEDILS). ‘S’ stands for SMAC, ‘R’ for
ROAR, ‘F’ for FOCUSEDILS, and ‘G’ for GGA.

6 Conclusion

In this paper, we extended a previous line of work on sequential model-based optimiza-
tion (SMBO) to tackle general algorithm configuration problems. SMBO had previously
been applied only to the optimization of algorithms with numerical parameters on single
problem instances. Our work overcomes both of these limitations, allowing categorical
parameters and configuration for sets of problem instances. The four technical advances
that made this possible are (1) a new intensification mechanism that employs blocked
comparisons between configurations; an alternative class of response surface models,
random forests, to handle (2) categorical parameters and (3) multiple instances; and (4)
a new optimization procedure to select the most promising parameter configuration in a
large mixed categorical/numerical space.

We presented empirical results for the configuration of two SAT algorithms (one
local search, one tree search) and the commercial MIP solver CPLEX on a total of 17
configuration scenarios with small per-run captimes for each target algorithm run. Over-
all, our new SMBO procedure SMAC yielded statistically significant—albeit sometimes
small—improvements over all of the other approaches on several configuration scenarios,
and never performed worse. In contrast to FOCUSEDILS, our new methods are also able
to search the full (non-discretized) configuration space, which led to further substantial
improvements for several configuration scenarios. We note that our new intensifica-
tion mechanism enabled even ROAR, a simple model-free approach, to perform better
than previous general-purpose configuration procedures in many cases; ROAR only
performed poorly for optimizing CPLEX, where good configurations are sparse. SMAC
yielded further improvements over ROAR and—most importantly—also state-of-the-art
performance for the configuration of CPLEX.

In future work, we plan to improve SMAC to better handle configuration scenarios
with large per-run captimes for each target algorithm run; specifically, we plan to integrate
PARAMILS’s adaptive capping mechanism into SMAC, which will require an extension
of SMACs models to handle the resulting partly censored data. While in this paper we
aimed to find a single configuration with overall good performance, we also plan to use
SMAC’s models to determine good configurations on a per-instance basis. Finally, we
plan to use these models to characterize the importance of individual parameters and
their interactions, and to study interactions between parameters and instance features.

Acknowledgements
We thank Kevin Murphy for many useful discussions on the modelling aspect of this work. Thanks
also to Chris Fawcett and Chris Nell for help with running GGA through HAL, to Kevin Tierney

for help with GGA’s parameters, and to James Styles and Mauro Vallati for comments on an earlier
draft of this paper. We gratefully acknowledge support from a postdoctoral research fellowship by
the Canadian Bureau for International Education (FH), support from NSERC through HH’s and
KLB’s respective discovery grants, and from the MITACS NCE through a seed project grant.

References
[1] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Automated configuration of mixed integer

programming solvers. In Proc. of CPAIOR-10, pages 186–202, 2010.
[2] S. Minton, M. D. Johnston, A. B. Philips, and P. Laird. Minimizing conflicts: A heuristic

repair method for constraint-satisfaction and scheduling problems. AIJ, 58(1):161–205,
1992.

[3] J. Gratch and G. Dejong. Composer: A probabilistic solution to the utility problem in
speed-up learning. In Proc. of AAAI-92, pages 235–240, 1992.

[4] B. Adenso-Diaz and M. Laguna. Fine-tuning of algorithms using fractional experimental
design and local search. Operations Research, 54(1):99–114, Jan–Feb 2006.

[5] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle. Empirical Methods for the Analysis of
Optimization Algorithms, chapter F-race and iterated F-race: an overview. Springer, Berlin,
Germany, 2010.

[6] M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp. A racing algorithm for configuring
metaheuristics. In Proc. of GECCO-02, pages 11–18, 2002.

[7] F. Hutter, H. H. Hoos, and T. Stützle. Automatic algorithm configuration based on local
search. In Proc. of AAAI-07, pages 1152–1157, 2007.

[8] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle. ParamILS: an automatic algorithm
configuration framework. JAIR, 36:267–306, October 2009.

[9] C. Ansótegui, M. Sellmann, and K. Tierney. A gender-based genetic algorithm for the
automatic configuration of algorithms. In Proc. of CP-09, pages 142–157, 2009.

[10] F. Hutter, D. Babić, H. H. Hoos, and A. J. Hu. Boosting Verification by Automatic Tuning of
Decision Procedures. In Proc. of FMCAD’07, pages 27–34, 2007.

[11] A. KhudaBukhsh, L. Xu, H. H. Hoos, and K. Leyton-Brown. SATenstein: Automatically
building local search SAT solvers from components. In Proc. of IJCAI-09, 2009.

[12] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive black
box functions. Journal of Global Optimization, 13:455–492, 1998.

[13] T. Bartz-Beielstein, C. Lasarczyk, and M. Preuss. Sequential parameter optimization. In
Proc. of CEC-05, pages 773–780. IEEE Press, 2005.

[14] F. Hutter, H. H. Hoos, K. Leyton-Brown, and K. P. Murphy. An experimental investigation
of model-based parameter optimisation: SPO and beyond. In Proc. of GECCO-09, 2009.

[15] F. Hutter, H. H. Hoos, K. Leyton-Brown, and K. P. Murphy. Time-bounded sequential
parameter optimization. In Proc. of LION-4, pages 281–298, 2010.

[16] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
[17] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for

general algorithm configuration (extended version). Technical Report TR-2010-10, UBC
Computer Science, 2010. Available online: http://www.cs.ubc.ca/∼hutter/papers/10-TR-SMAC.pdf.

[18] T. Bartz-Beielstein and S. Markon. Tuning search algorithms for real-world applications: A
regression tree based approach. In Proc. of CEC-04, pages 1111–1118, 2004.

[19] M. Baz, B. Hunsaker, P. Brooks, and A. Gosavi. Automated tuning of optimization software
parameters. Technical Report TR2007-7, Univ. of Pittsburgh, Industrial Engineering, 2007.

[20] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. SATzilla: portfolio-based algorithm
selection for SAT. JAIR, 32:565–606, June 2008.

[21] K. Leyton-Brown, E. Nudelman, and Y. Shoham. Empirical hardness models: Methodology
and a case study on combinatorial auctions. Journal of the ACM, 56(4):1–52, 2009.

[22] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statistical Learning. Springer
Series in Statistics. Springer Verlag, 2nd edition, 2009.

[23] C. Nell, C. Fawcett, H. H. Hoos, and K. Leyton-Brown. HAL: A framework for the automated
analysis and design of high-performance algorithms. In LION-5, page (to appear), 2011.

