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AI is driven by applications

I AI is everywhere

– AI in space: e.g., Mars rovers
– AI in homes: e.g.,automatic vacuum cleaners
– AI in mobile devices: e.g.,face detection in digital cameras
– AI in industry: e.g., software and hardware verification
– ...

I Gap between theory and practice

– E.g. “NP-hard → hopeless”
– But we solve SAT-encoded verification instances with 100000s

of variables in seconds

I Need good research in theory

– Average case analysis
– Identify tractable subclasses
– Approximation algorithms
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Few theoretical results → need solid
experiments

I Almost every AI paper has some empirical component to it

– SAT solving, machine learning, NLP, computer vision, you
name it

I We are not well prepared for this

– Course in empirical methods/how to do experiments?
– Learning by doing/indirect feedback from reviewers
– Very different from e.g. life sciences
– Paul Cohen’s book: Empirical Methods for Artificial

Intelligence
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Simple problems to avoid

I Reporting results on problem instances used to develop
algorithm

– Report test set performance instead
– Watch out for overtuning to a benchmark

I Doing a few experiments and reporting their mean

– Do enough experiments to gain confidence in your results
– Also report measures of variation (stddev/quantiles)
– Perform statistical tests

I “I didn’t have time to do more experiments”

– Automate the experimental setup
(so it’s just CPU time, not your time)

– Run it on a compute cluster
(ask your supervisor, it should be free)
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Once you have automated your experiments

I Easy to study variants of the algorithm

– Does performance improve when you change an algorithm
component?

– Does performance improve with different parameter settings?

– Computer can try out many possible variants
 My thesis topic
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Outline

1. My PhD in a nutshell

2. Some general points
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Motivation for my PhD thesis

Most algorithms have parameters

I Decisions that are left open during algorithm design

– Numerical parameters (e.g., real-valued thresholds)
– Categorical parameters (e.g., which heuristic to use)

I Set to maximize empirical performance

I Can we use AI techniques to set these parameters?
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Real-world example for algorithm configuration:

Tree search for SAT-encoded software verification

I New DPLL-type SAT solver (Spear)

– Variable/value heuristics, clause learning, restarts, ...

– 26 user-specifiable parameters:
10 categorical, 12 continuous, 4 integer parameters

I Minimize expected run-time

I Problems:

– Good performance on a few instances does not generalise well
– Many possible configurations (8.34× 1017 after discretization)

I High-dimensional discrete optimization problem
I Often performed manually
I Humans are not good at this!
 Automate!
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Outline

1. My PhD in a nutshell
Iterated Local Search in Configuration Space
Sequential Model-Based Search in Configuration Space

2. Some general points
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Simple manual approach for configuration

Start with some parameter configuration;

repeat
Modify a single parameter;
if results on benchmark set improve then

keep new configuration;

until no more improvement possible (or “good enough”);

 Manually-executed local search

ParamILS [Hutter, Hoos & Stützle, AAAI ’07]:
Iterated local search: biased random walk over local optima
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Configuration of Spear for Verification
[Hutter, Babić, Hoos & Hu; FMCAD ’07]

I Spear, tree search solver for industrial SAT instances
– Developed by Domagoj Babić at UBC
– 26 parameters, 8.34× 1017 configurations
– Competitive with the state of the art

I Ran ParamILS for 2 days on 10 machines
I Results (on test instances)
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Configuration of MIP Solvers

[Hutter, Hoos & Leyton-Brown; CP-AI-OR ’10]

MIP (mixed integer programming)

– NP-hard optimization problem

– Highly relevant in industry

MIP Solvers
– Cplex (76 parameters)

– Gurobi (25 parameters)

– lpsolve(47 parameters)

Comparison against default algorithm configurations

“A great deal of algorithmic development effort has been
devoted to establishing default ILOG CPLEX parameter
settings that achieve good performance on a wide variety of
MIP models.” [Cplex 12.1 user manual, page 478]
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Configuration of MIP Solvers

I Ran ParamILS for 2 days on 10 machines

I Speedups (on test instances)

– Cplex 2x to 52x
– Gurobi 1.2x to 2.3x
– lpsolve 1x (no speedup) to 150x
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Other Successful Applications of ParamILS

I Probabilistic Reasoning [Hutter, Hoos & Stützle, ’07]

I Protein Folding [Thatchuk, Shmygelska & Hoos ’07]

I Time-tabling [Fawcett, Hoos & Chiarandini ’09]

I Local Search for SAT [Khudabukhsh, Xu, Hoos, & Leyton-Brown ’09]

I ...
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Outline

1. My PhD in a nutshell
Iterated Local Search in Configuration Space
Sequential Model-Based Search in Configuration Space

2. Some general points
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Why Model-Based Approaches?

Model-free techniques are limited

I Only return a good parameter setting
I Do not provide additional information

– How important is each of the parameters?
– Which parameters interact?
– For which types of instances is a parameter setting good?

Model-based approaches can help

I Construct predictive model of algorithm performance

I Use model to answer the questions above

I Use model in sequential approach for algorithm configuration
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Challenges

I Technique from statistics literature on black-box function
optimization

I Wanted to use for algorithm configuration

I Issues

– Computational complexity
– Scaling to many dimensions (parameters)
– Handling categorical parameters
– Handling configuration for benchmark set
– ...
 Did not work right away
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Mistake: tried to tackle all issues at once

I Wanted to wrap up
(German funding for the “regular” PhD duration of 3 years)

I Trying to rush it did not help

– 2008: didn’t even submit a single paper

I New years resolution 2008/09: be more scientific

– Broke problem into pieces
– Rapid progress, published on one issue at a time
– Got things working in the end
– But still some unsolved problems to date; that’s ok!
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Outline

1. My PhD in a nutshell

2. Some general points
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Choosing a topic (Finding your niche)

I Am I excited about it?

I Will it have impact?
I Am I the right person to do it?

– Do I have the skill sets needed?
– Are there others who could do this much easier than me?

I Do I have the right people to do this with?
– Supervisor should

+ know more about the topic/methods than me
(in the beginning)

+ be excited about the topic

– Other collaborators (PhD/MSc students, industry,
collaborating groups, etc)
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Build your tool box

I Empirical algorithmics: do your experiments right

I Machine learning comes in handy all the time

– General concepts are important
– E.g. standard regression/classification
– Average user does not need to know every detail

I Discrete optimization: local search is very general

I ...
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Try to add to others’ tool boxes

I Put your code on the web !

– Reproducibility of experiments
– Much (!) more impact
– Papers are only one mode of scientific progress

I Automated algorithm configuration now one of those tools:
http://www.cs.ubc.ca/labs/beta/Projects/AAC/

– Don’t waste your time tuning parameters manually anymore...
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Conclusion

I Importance of good empirical work

I My thesis: automated algorithm configuration

I Find your niche!

I Everybody goes through tough times
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