
Opportunity Cost in Bayesian Optimization 
Jasper Snoek, Hugo Larochelle & Ryan Prescott Adams 

 

Abstract 
A major advantage of Bayesian optimization is that it generally requires fewer function 
evaluations than optimization methods that do not exploit the intrinsic uncertainty 
associated with the task. The ability to perform well with fewer evaluations of the target 
function makes the Bayesian approach to optimization particularly compelling when 
that target distribution is expensive to evaluate. The notion of expense, however, 
depends on the problem and may even depend on the location in the search space. 
For example, we may be under a time deadline and the experiments we wish to run 
may have varying duration, as when training neural networks or finding the 
hyperparameters of support vector machines. In this paper we develop a new idea for 
selecting experiments in this setting, that builds in information about the opportunity 
cost of some experiments over others. Specifically, we consider Bayesian optimization 
where 1) there are limited resources, 2) function evaluations vary in resource cost 
across the search space, and 3) the costs are unknown and must be learned.  
 
Opportunity Cost in Bayesian Optimization 
•  Myopic EI is efficient in the number of function evaluations required (Bull, 2011) 

•  What if there are input dependent costs associated with evaluating the 
function? 

•  With a fixed budget we can consider the opportunity cost of evaluating a set of 
inputs 

•  Evaluating joint EI is prohibitively expensive (Ginsbourger & Riche, 2010) 
•  We develop a monte carlo approximation and a simple greedy algorithm that 

significantly improve on standard EI in this scenario 

Expected Improvement with a Deadline 
•  We consider the case where running time is input dependent and we have a 

deadline 
•  Many machine learning models exhibit this behavior – e.g. neural nets and 

SVMs 
 
Expected Improvement per Second 
•  A myopic baseline greedy approach where the next point to be chosen is the one for 

which the expected improvement per second is highest 

Monte Carlo Multi-Step Myopic EI (MCMS) 
•  Rather than evaluate joint EI of each possible subset of experiments fitting within 

the deadline, we develop a Monte Carlo approximation to running multiple steps of 
myopic EI optimization 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Simple Branin-Hoo Example 
•  The Branin-Hoo function is common Bayesian optimization benchmark 

•  defined over 0 ≤ x1 ≤ 15 and −5 ≤ x2 ≤ 10 

•  We assume that half of the search space (x2 < 2.5) takes ten times longer (10 
seconds) to evaluate than the other half (1 second) and we have a deadline of 50 
seconds 

•  It’s easy to see that EI will not behave optimally in this setting 
•  We assume the time is known (noiseless) and compare the behavior of EI vs 

our algorithms 

•  Results are shown in Figure 1 
•  Clearly, one can find a better optimum in less time when taking the time into 

account 
 

Multiple Kernel Learning with Support Vector 
Machines  
•  A natural application for Bayesian optimization is the optimization of 

hyperparameters within multiple kernel support vector machines 
•  Traditionally, these are optimized using cross-validation 
•  In a multiple kernel learning setting, however, exhaustive grid search becomes 

computationally infeasible 

•  We use EI to optimize the parameters of a support vector machine with multiple 
kernels (the sum of an rbf and linear kernel) 

•  The parameters to be optimized are kernel scale parameters, rbf kernel width, 
the slack penalty, C, and the convergence tolerance parameter 

•  Experiments were conducted on four binary classification datasets from the UCI 
data repository 

•  Results are presented in Table 1 and Figure 2 
•  Under a deadline, one can find a better solution in the same time when taking 

the algorithm running time into account  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Training a Neural Network  
•  We use EI to optimize the hyperparameters of a neural network 

•  This scenario is borrowed from an undergraduate course assignment at the 
University of Toronto, where students are given neural network code and are asked 
to tune the hyperparameters to reach a validation classification error of 500 

•  This is challenging for a non-expert 
•  We compare to EI and our algorithms 
•  The parameters required to tune are the number of hidden units to use, the 

number of epochs of unsupervised RBM pretraining, a weight decay for 
pretraining, the learning rate for stochastic gradient descent, the number of 
epochs of backpropagation, and the weight decay during backpropagation 

•  Results are presented in Figure 3 
•  MCMS outperforms EI and EI per second 

Figure 1: Each algorithm was used to optimize the Branin-Hoo function with fantasized time 
costs and a deadline of 50 seconds. (a) shows an example sequence of points evaluated 
within the deadline by standard EI and (b) MCMS EI. Inputs less than 2.5 on the horizontal 
axis are ten times more expensive to evaluate. Thus, the time-aware algorithms spend most 
of their evaluations in the cheaper half. (c) shows the average time taken per experiment by 
each algorithm and (d) shows the average minimum found within the deadline. 


