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Abstract

A major advantage of Bayesian optimization is that it generally requires fewer
function evaluations than optimization methods that do not exploit the intrinsic
uncertainty associated with the task. The ability to perform well with fewer evalu-
ations of the target function makes the Bayesian approach to optimization particu-
larly compelling when that target distribution is expensive to evaluate. The notion
of expense, however, depends on the problem and may even depend on the loca-
tion in the search space. For example, we may be under a time deadline and the
experiments we wish to run may have varying duration, as when training neural
networks or finding the hyperparameters of support vector machines. In this pa-
per we develop a new idea for selecting experiments in this setting, that builds in
information about the opportunity cost of some experiments over others. Specif-
ically, we consider Bayesian optimization where 1) there are limited resources,
2) function evaluations vary in resource cost across the search space, and 3) the
costs are unknown and must be learned.

1 Introduction

The optimization of machine learning models frequently involves careful tuning of hyperparame-
ters. Unfortunately, however, this tuning is often a “black art”, requiring expert experience, rules of
thumb, or sometimes brute-force search. Bayesian optimization would seem to provide an elegant
approach to this “meta-learning” problem, as the hyperparameter-specific learning may be an expen-
sive procedure in time and other resources. Algorithms optimizing expected improvement (Mockus
et al., 1978) and the Gaussian process upper confidence bound (Srinivas et al., 2010) are appealing
in this setting as they have been shown to be efficient in the number of function evaluations required
to find the global optimum of many multimodal black-box functions (Bull, 2011).

An important real-world caveat in hyperparameter learning and other problems, however, is that the
cost of function evaluations may vary over the space. For example, in a neural network, the learning
algorithm will be trained to convergence, but how long this takes may change with the learning rate,
regularization strength, and number of hidden units. Even without considering duration, the advent
of cloud computing makes it possible to quantify economically the cost of requiring large-memory
machines for learning, changing the actual cost in dollars of an experiment with a different number
of hidden units. Finally, network communication between processes and in loading data may also
have direct costs, or may determine whether an experiment can be conducted using, e.g., a GPU.

Our framework for thinking about varying expenses under resource constraints is to model the op-
portunity cost associated with candidate experiments. We would like our Bayesian optimization
algorithm to consider running a larger number of cheap experiments, when the cost-ignorant algo-
rithm would otherwise only be able to run a few expensive ones. We examine two different ideas
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along these lines. When there is only a single constrained resource (e.g., time to a deadline), we
have found that a simple myopic variant of expected improvement performs well. As we will dis-
cuss, however, this approach does not generalize well when there are multiple resource constraints.
For this more general case, we develop a new algorithm that attempts to directly compute an ap-
proximation to the opportunity cost.

As our goal is to develop effective meta-learning algorithms, we also address the case where the
resource costs are unknown a priori. In keeping with the overall philosophy of Bayesian optimiza-
tion, we learn these costs and represent their associated uncertainty, enabling us to make choices
that incorporate our own ignorance appropriately. We use Gaussian process priors to model these
cost functions.

2 Expected Improvement

Bayesian optimization refers to a Bayesian motivated method for seeking the extrema of expensive
functions (Brochu et al., 2010). Intuitively, the Bayesian approach suggests that given a prior belief
over the form of a function and a finite number of observations, one can make an educated guess
about where the optima of such a function should be. Much of the Bayesian approach was introduced
and developed by Mockus et al. (1978); Mockus (1994, 1989). In particular, Mockus et al. (1978)
argued that when searching for the optima of a function, rather than assume this corresponds to the
optima of the estimated function (i.e. the predictive mean in the Gaussian case) one should search
where the expected improvement is greatest. Schonlau et al. (1998) derive an analytic form for the
case where a single next point is selected while an approximate approach is suggested for the less
myopic next n-point alternative.

2.1 Expected Improvement with a Deadline

Ginsbourger and Riche (2010) explored the scenario of optimization using the expected improve-
ment criterion when the number of available function evaluations is fixed and known. They demon-
strate that choosing the next experiment to run based on the standard myopic expected improvement
algorithm is inferior to choosing it based on the joint expected improvement of the available func-
tion evaluations. Computing the joint EI, however, is intractable in general. Therefore, we explore a
greedy algorithm and a monte carlo approximation.

Expected Improvement per Second We develop a baseline greedy approach where we modify
the acquisition function such that the next point to be chosen is the one for which the expected
improvement per second is highest. That is we greedily choose the experiment that will give us the
most efficiency in terms of improvement over time.

Monte Carlo Multi-Step Myopic EI (MCMS) Rather than evaluate the joint EI of each possible
subset of experiments that fits within the time horizon, which is intractable in general, we develop
a Monte Carlo approximation to running multiple steps of myopic EI optimization. That is, we
sample paths conditionally on each candidate point, recursively sampling function values for each
experiment, computing EI and adding the top EI candidate until the total estimated time taken to
evaluate the path exceeds the time deadline. The minimum function value observed along the path
is taken to be the improvement achieved by following that path. The expected improvement is then
taken to be the average improvement over multiple sampled paths. This algorithm is outlined in
Algorithm 1.

3 Experiments

3.1 Simple Branin-Hoo Example

To illustrate the advantage of our approach, we first present a simple toy example. The Branin-Hoo
function is a common benchmark for Bayesian optimization techniques (Jones, 2001) that is defined
over x ∈ R2 where 0 ≤ x1 ≤ 15 and −5 ≤ x2 ≤ 15. Rather than assume that each function
evaluation is equally expensive, we assume that half of the search space is exactly ten times more
expensive to evaluate than the other half, i.e. function evaluations in the expensive half, x2 < 2.5,
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Algorithm 1 A Monte Carlo Algorithm for computing the next experiment to run given a bounded
amount of time:
1: maxtot← 0
2: for m = 1→M do
3: bestm← max(y) [Initialize to current maximum.]
4: timeleft← T [Initialize to total time left.]
5: zcur ← zj [Starting point is the next-step candidate.]
6: while timeleft > 0 do
7: Sample ycur = f(zcur) [Sample the function from the GP, given history.]
8: if ycur > bestm then
9: bestm = ycur [Update the maximum.]

10: end if
11: timeleft = timeleft− g(zcur) [Subtract the runtime of this expt.]
12: Update the GP posterior for this path.
13: zcur = arg maxz(EI(z)) [Choose next point with myopic EI.]
14: end while
15: maxtot = maxtot + bestm [Accumulate for later sample average.]
16: end for
17: Ψ(zj) = maxtot/M [Divide to get average.]
Return max(Ψ)

take ten fantasy seconds rather than one. We further assume that there is a deadline of 50 seconds to
complete the optimization. The halves are split in such a way that equally good optima exist in either
half. Thus, with knowledge of the time it would take to evaluate each candidate point, an algorithm
that is aware of the time required to evaluate each point should prefer running cheaper experiments
and reach a better optimum than a time agnostic algorithm. Each algorithm was evaluated on this
toy scenario and the results are presented in Figure 1. Notice that the MCMS algorithm is capable
of running many more experiments in the same amount of time, and therefore is able to find a better
optimum than standard EI.
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Figure 1: An example sequence of points evaluated within the 50 second deadline by (a) standard EI
and (b) MCMS EI. Note that inputs less than 2.5 on the horizontal axis are ten times more expensive
to evaluate. Thus, the time-aware algorithms spend most of their evaluations in the cheaper half.
Each algorithm was used to optimize the Branin-Hoo function with fantasized time costs with a
deadline of 50 seconds. (c) shows the average time taken per experiment by each algorithm and (d)
shows the average minimum found within the deadline.

3.2 Multiple Kernel Learning with Support Vector Machines

A natural application for Bayesian optimization is the optimization of hyperparameters within mul-
tiple kernel support vector machines. Traditionally, the hyperparameters of support vector machines
are optimized using cross-validation. For a small number of parameters a grid search over parame-
ter values is feasible. However, in a multiple kernel learning setting, where potentially many kernel
hyperparameters must be set, exhaustive grid search becomes computationally infeasible. In this
example, expected improvement is used to to optimize the parameters of a support vector machine
with multiple kernels. In this case, we use the sum of an rbf and a linear kernel, each scaled by a
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Data Set MCMS EI/S EI Deadline(s)

Ionosphere 10.4± 0.74 9.40± 1.27 13.7± 0.96 10
w1a 2.36± 0.14 2.20± 0.08 2.61± 0.06 150
Australian 30.8± 1.50 30.0± 0.44 32.0± 0.04 250
Sonar 12.8± 0.19 13.0± 0.18 13.8± 0.21 2

Table 1: Minimum cross-validation error values in percent found by the optimization routine for var-
ious Bayesian optimization algorithms performing hyperparameter optimization on multiple kernel
svms applied to standard UCI datasets.

scale parameter. The parameters to be optimized are kernel scale parameters, rbf kernel width, the
slack penalty, C, and the convergence tolerance parameter. Experiments were conducted on four
binary classification datasets from the UCI data repository, where we use EI to find the hyperpa-
rameter settings that minimize ten-fold cross validation error. Results are presented in Table 1 and
curves demonstrating the average minumum function value found by each algorthm vs the amount
of time are presented in Figure 2.
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Figure 2: Example optimization curves for opti-
mization performed on the w1a data demonstrat-
ing the minumum function values found by each
algorithm as a function of time. In this case, the
optimization deadline was chosen to be 150 sec-
onds.
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Figure 3: A comparison of the minimum error
achieved before the deadline by the various al-
gorithm on the neural network problem. The er-
ror values are averaged over twenty evaluations
and the errorbars are standard error. In this case
MCMS outperforms both algorithms.

3.3 Training a Neural Network

As a final experiment, we use Bayesian optimization to optimize the hyperparameters of a neural
network. This scenario is borrowed from an undergraduate course assignment at the University of
Toronto, where students are given neural network code and are asked to tune the hyperparameters to
reach a validation classification error of 500. Thus, the idea is that this is a challenge for someone
with introductory knowledge of neural networks. The parameters required to tune are the number of
hidden units to use, the number of epochs of unsupervised pretraining, a weight decay for pretrain-
ing, the learning rate for stochastic gradient descent, the number of epochs of backpropagation, and
the weight decay during backpropagation. All algorithms were run on this problem 20 times, with
a deadline chosen such that the algorithms could run approximately between 10 to 40 evaluations,
and the results are presented in Figure 3.
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