
Dynamic trees for online analysis of massive data.

Christoforos Anagnostopoulos
Statistical Laboratory, U. of Cambridge

Wilberforce Road, Cambridge CB3 0WB
canagnos@statslab.cam.ac.uk

Robert B. Gramacy
Booth Business School, U. of Chicago

Chicago, Illinois, 60637
rbgramacy@ChicagoBooth.edu

Abstract

Data collection at a massive scale is becoming ubiquitous in a wide variety of
settings, from vast offline databases to online real-time information. Learning
algorithms deployed in such contexts must rely on single-pass inference, where
the data history is never revisited. Although rapidly developing, online non-
parametric Bayesian inference remains challenged by massive, transient data, as
the complexity of such models will typically increase with the sample size. In this
work, we take steps to overcome these challenges by porting data discarding into
a fully Bayesian framework via the use of informative priors and active learning
heuristics. We showcase our methods by augmenting a modern non-parametric
modelling framework, dynamic trees, and illustrate its performance on a number
of practical examples. The end product is a powerful fully online regression and
classification tool, whose performance compares favorably to the state-of-the-art.

1 Introduction

In certain simple cases, online estimation without information loss is possible via exact recursive
update formulae, e.g., via conjugate Bayesian updating. In parametric dynamic modelling, approx-
imate samples from the filtering distribution for a variable of interest may be obtained online via
sequential Monte Carlo (SMC) techniques, under quite general conditions. In [13], SMC is use in
a non-parametric context, where a ‘particle cloud’ of trees are employed to track parsimonious re-
gression and classification surfaces as data arrive sequentially. However, the resulting algorithm is
not, strictly speaking, online, since local tree moves may revisit the partial data history depending
on how the process evolves. This complication arises as an essential by-product of non-parametric
modelling, wherein the complexity of the estimator is allowed to increase with the dataset size.
Consequently, maintaining constant operational cost per timestep will necessarily entail discarding
datapoints over time. Our concern in this paper is managing the information loss entailed in data
discarding. First, we propose datapoint retirement (Section 3), whereby discarded datapoints are
partially ‘remembered’ through conjugate informative priors, updated sequentially. This technique
is well-suited to trees, which combine non-parametric flexibility with simple parametric models with
conjugate priors by partitioning. Nevertheless, forming new partitions in the tree still requires ac-
cess to actual datapoints, and consequently data discarding comes at a cost of both information and
degrees of freedom. We show that this can be managed, to a surprising extent, by the right retire-
ment scheme even when discarding data randomly. We further show that borrowing active learning
heuristics to prioritise points for retirement, i.e., active retiring, leads to better performance still.

2 Dynamic Trees

Dynamic trees (DTs) [13] are a process–analog of Bayesian treed models [4]. The model specifica-
tion, and tree prior, are defined in a way that is amenable to fast sequential inference by SMC, and
that yields a predictive surface which organically increases in complexity as more data arrive. The

1

computations involved in sequential updates are local, and completely determined by the set of trees
{Tt} which are reachable from Tt−1 when a new predictor xt arrives, and the form of the model fit
in each leaf. The tree may stay, prune or grow local to the leaf node in Tt−1 where xt lands. The
new observation, yt, completes a stochastic rule for determining how the update Tt−1 → Tt chooses
amongst those three options, via p(yt|Tt,xt). To keep computations efficient, the leaf model, pa-
rameterised by a leaf-specific parameter θ, must be simple enough for the marginal likelihood to be
analytic, and will be equipped with (leaf-specific again) priors over θ. We therefore restrict our at-
tention to constant and linear models for regression, and multinomial models for classification [13].
As with all particle simulation methods, some Monte Carlo error will accumulate. Nevertheless,
DT out-of-sample performance compares favorably to other nonparametric methods, like Gaussian
processes (GPs), but at a fraction of the computational cost [13].

3 Datapoint retirement

At time t, the DT algorithm of [13] requires access to the entire data history to compute p(Tt |
Tt−1,xt) for each particle. To enable online operation, the covariate pool, xt = (x1, . . . ,xt) has
to be of size constant with t. This can only be achieved via data discarding. However, the ana-
lytic/parametric nature of DT leaves allows us to retain part of the discarded information in the form
of informative priors in the leaves, yielding in effect a soft implementation of data discarding, which
we refer to as datapoint retirement. Intuitively, the DT with retirement manages two types of infor-
mation: a non-parametric memory comprising an active data pool of constant size w, which forms
the leaf likelihoods; and a parametric memory consisting of possibly informative leaf priors.

Updating the relevant leaf priors before discarding a datapoint proceeds via standard conjugate
Bayesian updating. Let us focus on a single leaf η, letting (xn, yn)n∈R denote the data retired
from η so far. The leaf prior π(θ) is then given by the posterior of θ given the retired data,
π(θ) =df P (θ | (xn, yn)n∈R) ∝ L (θ; (xn, yn)n∈R) π0(θ), where π0(θ) is a non-informative prior
employed initially. To retire one more datapoint, (xm, ym), we recursively update:

π(new)(θ) =df P
(
θ | (xn, yn)n∈R∪{m}

)
∝ L(θ;xm, ym)P (θ | (xn, yn)n∈R) (1)

The calculation in (1) is tractable whenever conjugate priors are employed. Take for instance the
linear regression model, y ∼ N(Xβ, σ2I), where y = (yn)n∈R is the retired response data, and
X the retired augmented design matrix, i.e., consisting of augmented covariate vectors [1,x′n]′, so
that β1 represents an intercept. With π0(β, σ2) ∝ 1

σ2 , we obtain πt(β, σ2) =df P (β, σ2 | y,X) =
NIG(ν/2, sν/2, β,A), where NIG stands for Normal-Inverse-Gamma, and,

A = (X′X)−1
, R = X′y, r = y′y, ν = n− p, β = AR, s2 =

1
ν

(r − β′Aβ) (2)

assuming X′X is invertible. Although the retired data (yn,xn)n∈R are unavailable, we can afford
to keep in memory the values of the above statistics, as their dimension does not grow with the size
of R. If we now wish to retire an additional datapoint (ym,xm), we perform the following updates:(

A(new))−1
= A−1 + X ′

mXm, R(new) = R + X′
mym, s(new) = s + y′mym, ν(new) = ν + 1. (3)

The DT with retirement algorithm will, at time t + 1, add the (t + 1)th datapoint to the active
pool, and update the model by SMC exactly as explained in Section 2. Once t exceeds w, the
algorithm will also select some datapoint, (xr, yr), to retire from the active pool: the associated
leaf prior for η(xr)(i) for each particle i is updated to incorporate the removed datapoint (xr, yr).
At this level, data retirement performs a shifting of information from the likelihood part of the
posterior to the prior that preserves, exactly, the posterior predictive distribution and the value of the
marginal likelihood calculation both locally at each node η(x)(i), as well as globally for each tree
T (i). Moreover, this predictive distribution is preserved for any future updates involving data points
that either belong to a different node, or belong to η(x)(i) which stochastically chose a stay move.
The retiring mechanism suggests a method for splitting and combining that information in ‘grow’
and ‘prune’ moves. Following a ‘prune’ move, retired datapoints from the pruned leaves are pooled
together to form the new leaf prior additivelty, as implied by conjugate updating. This does not
require access to the actual retired datapoints. Following a ‘grow’ move, we let both novel leaves
inherit the parent prior, but split its strength ν(P) between the two at proportions equal to the active
data proportions in the children. This preserves the total strength of retired information.

2

4 Active discarding

Ideally, we would rather retire datapoints that will be of “less” use to the model going forward. We
formulate the choice of which active data points to retire as an active retiring (AR) problem, borrow-
ing techniques from the active learning (AL) literature. Regression and classification must be treated
separately, as they require different AR techniques. We focus on the former due to space constraints,
but note that in either case AR is easier than AL for DTs due to thrifty analytic calculations.

Consider the regression active learning statistic due to Cohn [5, ALC] popularised in the modern
nonparametric regression literature [11] using GPs, and subsequently ported to DTs [13]. ALC
chooses x? to maximise the expected reduction in predictive variance averaged over the input space.
A drawback is that it isensitive to the choice of (and density of) a search and reference grid over
which the variance statistics are evaluated. Our first simplification when porting AL to AR is to
recognise that no grids are needed. The program is to evaluate the ALC statistic at each active data
location, and choose the smallest one for discarding. We focus on the linear case, as the constant
case may be derived as a special case. We have: ∆σ2

x(z|T) = ∆σ2
x(z|η) ≡ σ2(z|η) − σ2

x(z|η),
where the latter two terms represent the respective predictive variance at z with or without x. A

quick calculation shows that their difference equals
s2

η−Rη

|η|−m−3 ×
(1
|η|+z′G−1

η x)2

1+ 1
|η|+x′G−1

η x
, when both x and z

are in η ∈ LT , and zero otherwise. The s2
η is the leaf sum of squares, |η| is the number of data

points in the leaf, and Gη is the Grahm matrix for η for the active and retired data [13]. Integrating
over z, only (1/|η| + z′G−1

η x)2 features z in the expression above, and can be integrated over the
rectangular region η with an O(m2) implementation:

∫ b1

a1

· · ·
∫ bm

am

(
c +

m∑
i=1

z̃ixi

)2

dz1 · · · dzm = Aηc2 + c
∑

i

∏
k 6=i

(bk − ak)

xi(b2
i − a2

i)

+
∑

i

∏
k 6=i

(bk − ak)

 x2
i

3
(b3

i − a3
i) +

∑
i

∑
j<i

 ∏
k 6=i,j

(bk − ak)

 xixj

2
(b2

i − a2
i)(b

2
j − a2

j),

where the m-rectangle η is being described by {(ai, bi)}m, z̃ = z′G−1
η , and c = 1/|η|. The

rectangular leaf regions generated by the trees is key. In the case of other partition models (like
Voronoi tessellation models), this analytical integration would not be possible. Finally, the divide
and conquer nature of trees—whose posterior distribution is approximated by thrifty, local, particle
updates—allows AR statistics to be updated cheaply (O(m2N) for N particles) as long each leaf
node stores its own AR statistics. We leave the details to the full version of the paper.

In repeated applications of ALC for AR, the active points that remain tend to cluster near the bound-
aries of high posterior partitioning boundaries. The number of such locations depends crucially on
the number of active data points allowed, w. Consider the simple example with a parabolic response
that must be learned sequentially via x-data sampled uniformly in (−3, 2), with w = 25. The initial
25, before any retiring, are shown in the first panel of Figure 1. Each updating round then proceeds
with one retirement followed by one new pair, and subsequent SMC update. The active points in-
deed shift towards likely partition boundaries. By t = 150 (third panel) the ability to learn about the
mean with w = 25 is saturated, but the variance (errorbars) still improves for t = 300.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2

0
2

4
6

t=25

x

y

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

−3 −2 −1 0 1 2

0
2

4
6

t=75

x

y

●
●

●

●

●

●

●

●

●●
●●
●

●

●●

●

●
●

●

●

●

●

●

−3 −2 −1 0 1 2

0
2

4
6

t=150

x

y

●
●

●

●

● ●

●

●●

●

●

●
●●

●

●●
●

● ●

●

●

●

●

−3 −2 −1 0 1 2

0
2

4
6

t=300

x

y

Figure 1: Snapshots of active data (25 points) and predictive surfaces.

3

4.1 Empirical results

Here we explore the benefit of AR over simpler heuristics, like random discarding and subsetted data
estimators, by making predictive comparisons on benchmark datasets. To focus the discussion on our
key objective, we compare only to full-data versions of DTs, and assess the impact of data discarding
on performance. We emphasise however that discarding enables DTs to operate on arbitrarily long
datasets, where the original DTs, as well as their main GP-based competitors, simply cannot be used.
We first consider data originally used in [6], and then to demonstrate the competitiveness of DTs
relative to modern (batch) nonparametric models [13]. The response is 10 sin(πx1x2) + 20(x3 −
0.5)2 + 10x4 + 5x5 plus N (0, 1) additive error. Inputs x are random in [0, 1]5. We considered
four estimators: one based on 200 pairs (ORIG), one based 1800 more for 2000 total (FULL), and
two online versions [which saw the same stream of pairs] using either random (ORAND) or ALC
(OALC) retiring to keep the total active data set limited to w = 200. We repeated the experiment
100 times in a MC fashion, each with new random training sets, and random testing sets of size
1000. N = 1000 particles and a linear leaf model were used throughout. Similar results were
obtained for the constant model. From Figure 2 we can see that random retiring is better than
subsetting, but retiring by ALC is even better, and can be nearly as good as the full-data estimator.
In fact, it may be surprising to note that OALC was the best predictor 16% and 28% of the time
by average predictive density (APD) and residual mean squared error (RMSE), respectively. The
average time used by each estimator was approximately 1, 33, 45, and 67 seconds, respectively.
So random retiring on this modestly-sized problem is 2-times faster than using the full data. ALC
costs about 18% extra, time-wise, but leads to about a 35% reduction in RMSE relative to the full
estimator. Note that the time-demands of the full estimator grow roughly as t log t, whereas the
online versions stay constant. Now consider the Spambase data set of [1]. The data contains binary
classifications of 4601 emails based on 57 attributes (predictors). We do a similar experiment to
the Friedman/regression example, above, except with classification leaves and 5-fold CV to create
training and testing sets, repeated twenty times. We considered four estimators: one based on 1/10 of
the training fold (ORIG), one based on the full fold (FULL), and two online versions trained on the
same stream(s) using either random (ORAND) or entropy (OENT) retiring to keep the total active
data set limited to 1/10 of full. Figure 2 tells a similar story to the Friedman experiment: random
discarding is better than subsetting, but discarding by entropy is even better, and can be nearly as
good as the full-data estimator. Entropy retiring resulted the best predictor 15% and 5% of the time
by predictive probability and misclassification rate (MCR), respectively. While ORAND predicts
labels comparably to ORIG, it is much better at capturing the full predictive distribution.

●●

●

●●

orig orand oalc full

0.
15

0.
20

0.
25

pr
ed

ic
tiv

e
pr

ob
ab

ili
ty

●
●
●

●●

●●

●

●

orig orand oalc full

1.
0

1.
5

2.
0

2.
5

rm
se

APD RMSE
mean 5% 95%

ORIG .155 .133 .176 1.92 1.55 2.32
ORAND .230 .206 .254 1.19 .957 1.46
OALC .257 .239 .275 .896 .754 1.04
FULL .271 .254 .282 .844 .737 .963

●●

orig orand oent full

0.
76

0.
78

0.
80

0.
82

pr
ed

ic
tiv

e
pr

ob
ab

ili
ty

orig orand oent full

0.
10

0.
12

0.
14

0.
16

m
is

s−
ra

te

APD MCR
mean 5% 95%

ORIG .769 .752 .782 .143 .130 .161
ORAND .792 .778 .805 .143 .129 .155
OENT .801 .788 .817 .128 .114 .139
FULL .813 .804 .823 .112 .102 .121

Figure 2: Friedman data (top) comparisons by APD (higher is better) and RMSE (lower is better);
and spam data (bottom) by APD, and MCR (lower is better).

5 Conclusion

We rely on Bayesian machinery to facilitate fully online non-parametrics. The availability of
tractable predictive distributions allows us to combine active retirement heuristics with conjugate
updating to maintain a fixed budget of highly informative datapoints at minimum information loss.

4

References

[1] A. Asuncion and D.J. Newman. UCI machine learning repository, 2007.
[2] Carlos M. Carvalho, Michael Johannes, Hedibert F. Lopes, and Nicholas G. Polson. Particle

learning and smoothing. Statistical Science, 25:88–106, 2010.
[3] H.A. Chipman, E.I. George, and R.E. McCulloch. Bayesian CART model search (with discus-

sion). Journal of the American Statistical Association, 93:935–960, 1998.
[4] H.A. Chipman, E.I. George, and R.E. McCulloch. Bayesian treed models. Machine Learning,

48:303–324, 2002.
[5] D. A. Cohn. Neural network exploration using optimal experimental design. In Advances

in Neural Information Processing Systems, volume 6(9), pages 679–686. Morgan Kaufmann
Publishers, 1996.

[6] J. H. Friedman. Multivariate adaptive regression splines. Annals of Statistics, 19, No. 1:1–67,
March 1991.

[7] Robert B. Gramacy and Matt A. Taddy. dynaTree: Dynamic trees for learning and design,
2011. R package version 2.0.

[8] A.J. Joshi, F. Porikli, and N. Papanikolopoulos. Multi-class active learning for image classi-
fication. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009. to
appear.

[9] D. J. C. MacKay. Information–based objective functions for active data selection. Neural
Computation, 4(4):589–603, 1992.

[10] A. O’Hagan and J. Forster, editors. Kendall’s Advanced Theory of Statistics, Volume 2B,
Bayesian Inference. Arnold Publishers, 2004.

[11] S. Seo, M. Wallat, T. Graepel, and K. Obermayer. Gaussian process regression: Active data
selection and test point rejection. In Proceedings of the International Joint Conference on
Neural Networks, volume III, pages 241–246. IEEE, July 2000.

[12] R Development Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2010. ISBN 3-900051-07-0.

[13] M.A. Taddy, R.B. Gramacy, and N.G. Polson. Dynamic trees for learning and design. Journal
of the American Statistical Association, 106(493):109–123, 2011.

5

