i

i B

Introduction to Active Learning

AL concerns designing learners that choose their training data.

Applications include: sensor placement, information extraction, speech recognition,
cognitive science, collaborative filtering, quantum tomography etc.

Referred to as ‘Optimal Experimental Design’ in statistics.

= We revisit the Information Theoretic approach.

Bayesian Information Theoretic AL

Latent parameters 8 € © govern dependence of y € ) on input & € X (discriminative model).
Observe data, D, Bayes rule yields the posterior distribution over parameters p(6|D).
Select x; (myopically) to minimize the posterior entropy:

Tnew = arg max H[@|D] — Eyp(y|2D) [H[8|y, x, D]|

Problems:
= Parameter space is often high dimensional, for GPs, it is infinite dimensional.

= Posterior updates required for all input/output combinations (O(NzNy)).

Solution: Rearrange to Dataspace

H[0|D] — Eymp(y|:z:D) [H[9|y7 Z, DH
=1y, 0|z, D]

= Hly|z, D] — Egpop) [H[y|x, 6]]

= Output space is often low dimensional and O(1) posterior updates required.
= We call this Bayesian Active Learning by Disagreement (BALD).

= Aside: equivalent to the Jensen-Shannon divergence.

Review of Gaussian Processes

GPs provide a prior over functions f: X — R:

|~ GP(u(x), k(z, z'))

For regression/classification define likelihood functions respectively:

ylx, f ~ N(f(x),0%), ylx, f~ Bernoulli(®(f(x))) ®(2) = /_;N(O, 1)dz

For classification, posterior is intractable, make a Gaussian approximation (Expectation Prop-
agation (EP), the Laplace approximation, Variational methods).
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Figure 1: Toy active GPC problem. True generating function is (===). 15 actively selected samples are drawn using
both BALD (X) and Maximum Entropy Sampling (O). The predictive distributions from BALD and MES are (=)

and (=) respectively.
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BALD for GPC

Two terms need to be computed:
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where:

h(p) = —plogp — (1 —p)log(l —p), C=

is a Gaussian approximation to intractable posterior.
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= The objective function is smooth and differentiable.

® Apply an approximate inference algorithm to get p, p and o, p for each point of
interest .

® Select & that maximises:
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Related Algorithms

The following algorithms are closely related, often approximating the BALD objective:

= Uncertainty Sampling [Lewis and Gale, 1994] / Maximum Entropy Sampling
[Sebastiani and Wynn, 2000].

= The Informative Vector Machine [Lawrence and Herbrich, 2001].
= Query by Committee [Freund et al., 1997].
= SVM-based active learning [Tong and Koller, 2001].

Extensions

Further work that we have performed:
= Comparison to decision theoretic algorithms.
= Hyperparameter learning (6,0~ = params of interest, nuisance parameters):
H [Epo+0-p) [yl®, 07,071 = Eporp) [H [Epo-j0+ 0[]z, 67, 67]]]
= Multiclass: combine criteria for K one-versus-all classifiers.
= Preference Learning: extend GP methods of [Chu and Ghahramani, 2005].

is a squared exponential approximation to h(®(f;)) (binary entropy of Normal cdf).
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Results

Experiments run on pool-based active learning. Test set accuracy plotted is against number of
queries.
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Figure 2: Top: Three 2D artificial datasets designed to test the algorithms in pathological scenarios. Middle: Results
for corresponding artificial datasets using BALD (===), random query (---), MES (---), IVM (---), QBC (---),

active SVM (---). Bottom: Results on three real-world datasets.
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