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Abstract

Stochastic local search (SLS) algorithms for propo-
sitional satisfiability testing (SAT) have become
popular and powerful tools for solving suitably en-
coded hard combinatorial from different domains
like, e.g., planning. Consequently, there is a consid-
erable interest in finding SAT-encodings which fa-
cilitate the efficient application of SLS algorithms.
In this work, we study how two encodings schemes
for combinatorial problems, like the well-known
Constraint Satisfaction or Hamilton Circuit Prob-
lem, affect SLS performance on the SAT-encoded
instances. To explain the observed performance
differences, we identify features of the induces
search spaces which affect SLS performance. We
furthermore present initial results of a comparitive
analysis of the performance of the SAT-encoding
and -solving approach versus that of native SLS al-
gorithms directly applied to the unencoded problem
instances.

1 Introduction
In the past few years, the development of extremely fast
stochastic algorithms for the propositional satisfiability prob-
lem (SAT) have stirred considerable interest in the AI com-
munity. Modern stochastic local search algorithms, like
WalkSAT and its more recent variants[McAllester et al.,
1997], can solve hard instances with several thousand vari-
ables and ten thousands of clauses within minutes of comput-
ing time. While only a very few “real-world” problems come
as instances of SAT, many of these are combinatorial prob-
lems with quite natural CSP-like formulations, which can be
easily encoded into SAT. In practice, however, for solving
problems by encoding them into SAT and applying state-of-
the-art SAT solvers, one has to find encodings which cannot
only be efficiently generated, but which are also efficiently
solvable by the respective SAT-solvers. While recent suc-
cesses in solving SAT-encoded planning problems suggest
that such efficient encodings can be found, our understand-
ing of how encodings affect the performance of modern SAT
algorithms and how good encodings can be found is very lim-
ited. “Characterizing the computational properties of differ-
ent encodings of a real-world problem domain, and/or giv-
ing general principles that hold over a range of domains” has

therefore been proposed as a challenge for propositional rea-
soning at IJCAI’97[Selmanet al., 1997].

We approach this problem by studying the impact of en-
coding strategies on search space structure and the perfor-
mance of stochastic local search (SLS) algorithms. In par-
ticular, we investigate the following questions:

1. Does it pay off to minimise the number of propositional
variables, i.e., are compact encodings which achieve
small search spaces preferable to the bigger, but concep-
tually simpler sparse encodings?

2. Is the generic problem solving approach using SAT-
encodings and modern SLS algorithms for SAT compet-
itive with applying SLS algorithms to the un-encoded
problem instances?

Our investigation is based on two case-studies, covering
sets of hard instances of the NP-hard Constraint Satisfac-
tion Problem (CSP) and Hamilton Circuit Problem (HCP).
Building on earlier work on search space structure and SLS
performance[Clark et al., 1996; Yokoo, 1997; Franket al.,
1997] and SAT encodings[Ernst et al., 1997], we empiri-
cally analyse the impact of different encoding strategies on
SLS performance and provide explanations for our observa-
tions by identifying search space features correlated with the
observed SLS performance. Furthermore, we compare the
performance of SLS algorithms on the best SAT-encoding of
hard random binary CSP encodings with the performance of
the best known native CSP algorithm based on stochastic lo-
cal search.

As a preview of the results presented in the next sec-
tions, we briefly summarise our answers to the questions from
above — however, given the general nature of these ques-
tions and the limited scope of the underlying empirical evi-
dence these answers are tentative and should be understood
as testable hypotheses.

1. According to our results for CSP and HCP, it seems to be
much more advisable to use sparse rather than compact
encodings, as the search spaces produced by the com-
pact encodings are smaller but have characteristic fea-
tures which impede local search.

2. When comparing the performance of SLS algorithms for
CSP and SLS-based SAT algorithms applied to SAT-
encoded CSPs, we observe a surprisingly small ad-
vantage for the direct CSP solving approach, which is
outweighed by other advantages of the generic SAT-



encoding and solving approach such as the availability
of very efficient implementations.

The remainder of this paper is structured in the following
way. Section 2 gives some background on SLS algorithms for
SAT and introduces the problems classes and test-sets used
for our empirical analysis. Section 3 reviews previous work
on search space structure and its impact on SLS performance
and presents our approach to search space structure analysis.
Sections 4–6 present the empirical investigations of the three
questions from above, and Section 7 contains some conclu-
sions and points out directions for future research.

2 Background
Stochastic local search approaches for SAT became promi-
nent in 1992, when independently Selman, Levesque, and
Mitchell [Selmanet al., 1992] as well as Gu[Gu, 1992] in-
troduced algorithms based on stochastic local hill-climbing
which could be shown to outperform state-of-the-art sys-
tematic SAT algorithms on a variety of hard subclasses of
SAT. Since then, numerous other SLS schemes for SAT have
been proposed. To date, state-of-the-art SLS algorithms
can solve hard SAT problems up to several thousand vari-
ables, including SAT-encoded problems from other domains.
In the recent past, especially the successful applications of
SLS-based SAT algorithms for solving SAT-encoded plan-
ning problems, have stirred considerable interest in the AI
community [Kautz and Selman, 1996; Ernstet al., 1997;
Kautz and Selman, 1998].

The algorithms considered here are model finding algo-
rithms for CNF formulae. The underlying state space is al-
ways defined as the set of all assignments for the variables
appearing in the given formula. Local search steps modify at
most the value assigned to one of the propositional variables
appearing in the formula; such a move is called avariable flip.
The objective function is generally defined as the number of
clauses which are unsatisfied under a given variable assign-
ment; thus, the models of the given formula correspond to the
global minima of this function. The general idea for finding
these is to perform stochastic hill-climbing on the objective
function, starting from a randomly generated initial assign-
ment.

The main difference between the individual algorithms lies
in the strategy used to select the variable to be flipped next. In
this paper, we focus on the well-known WalkSAT family of
algorithms[McAllester et al., 1997], which provided a sub-
stantial driving force for the development of SLS algorithms
for SAT and have been extremely successful when applied to
a broad range of problems from different domains. WalkSAT
algorithms start from a randomly chosen variable assignment
and repeatedly select one of the clauses which are violated by
the current assignment. Then, according to some heuristic a
variable occurring in this clause is flipped using a greedy bias
to increase the total number of satisfied clauses. For the orig-
inal WalkSAT algorithm, in the following referred to simply
as WalkSAT, the following heuristic is applied. If in the se-
lected clause variables can be flipped without violating other
clauses, one of these is randomly chosen. Otherwise, with
a fixed probabilityp a variable is randomly chosen from the
clause and with probability1�p a variable is picked which
minimises the number of clauses which are currently satis-
fied but would become violated by the variable’s flip (number

of breaks). The walk probabilityp (also called thenoise pa-
rameter) has an important influence on the algorithms’ over-
all performance. In this paper, we always use approximately
optimal noise parameter settings for evaluating SLS perfor-
mance; these settings are experimentally determined such that
they minimise the expected number of flips for solving the
given problem instance.

For the empirical study presented here, we use two well-
known classes of combinatorial problems: Random bi-
nary Constrained Satisfaction Problems (CSPs) and Random
Hamilton Circuit Problems (HCPs). Both binary CSPs and
HCPs form NP-complete problem classes. Random binary
CSPs have been studied extensively by various researchers,
especially in the context of phase transition phenomena and
their impact on the performance of CSP algorithms[Smith
and Dyer, 1996; Prosser, 1996]. To obtain a test-set of hard
problem instances, CSP instances with 20 variables and do-
main size 10 were sampled from the phase transition region
characterised by a constraint graph density of� = 0:5 and a
constraint tightness of� = 0:38. Filtering out the insoluble
instances with a complete CSP algorithm, test-setcsp20-
10 , containing 100 soluble instances from this problem dis-
tribution, was generated.

For empirically investigating SLS performance for differ-
ent SAT-encodings of the HCP, we focussed on the Hamil-
ton Circuit Problem in directed random graphs. For a given
graph, the HCP is to find a cyclic tour (Hamilton Circuit) us-
ing the edges of the graph which visits every vertex exactly
once. In earlier work, when investigating the dependence of
the existence of Hamilton Circuits on the average connectiv-
ity (edges per vertex), a phase transition phenomenon was
observed[Cheesemanet al., 1991]. The associated peak in
hardness for backtracking algorithms was located between
� = e=(n logn) � 0:9 and1:2, wheren is the number of
vertices ande the number of edges[Frank and Martel, 1995].
Based on these results, we created a test-set by randomly sam-
pling soluble HCP instances from distributions of directed
random graphs withn = 10 and� = 1. The test-set was
generated using a HCP generator and solver developed and
provided by Joe Culberson; insoluble instances were filtered
out using the integrated systematic HCP solver, such that the
final test-sethcp10 contains 100 soluble instances.

3 Search Space Structure and SLS
Performance

Obviously, the behaviour of SLS algorithms is determined by
the topology of the search space,i.e., the objective function
induced by a specific problem instance. Recently, a grow-
ing number of researchers have been investigating the nature
of this dependency for SLS-based SAT algorithms[Clark et
al., 1996; Yokoo, 1997; Franket al., 1997]. However, all of
the studies we are aware of are restricted to Random-3-SAT,
a widely used class of randomly generated SAT problems,
while SAT-encoded problems from other domains have not
been addressed. In[Clark et al., 1996], it has been shown
that for a given problem instance, its number of solutions is
strongly negatively correlated with the performance of some
SLS algorithms for SAT and CSP based on hill-climbing.
This confirms the intuition that instances with a high solution
density,i.e., a large number of solutions, tend to be much eas-
ier to solve for SLS algorithms than instances with very few



solutions. [Yokoo, 1997] explains the peak in local search
cost observed at the phase-transition region of Random-3-
SAT in terms of the number and size of local minima re-
gions in the search space. His analysis, however, relies on an
exhaustive analyses of the search space and is therefore re-
stricted to very small problem instances.[Franket al., 1997]
analyse the topology of search spaces induced by Random-
3-SAT formulae, but do not investigate the concrete impact
of these features (such as the size of local minima) on SLS
performance.

The approach taken here is to compare both the impact of
encoding strategies on SLS performance as well as to provide
explanations of the observed correlation in terms of search
space features induced by the different encodings. To be not
restricted to very small problem instances which possibly do
not reflect the typical situation as encountered for realistic
problems (i.e., instances which can be solved with state-of-
the art SLS algorithms), we restrict our analysis to features
with can be determined without exhaustive search of large
parts of the search space. The features we measure are:

� the solution density (number of solutions/search space
size);

� the standard deviation of the objective function
(sdnclu);

� the local minima branching along SLS trajectories
(blmin).

As the solution density is known to be an important factor for
SLS performance, it should be taken into account although
it is generally time-consuming to measure. For counting the
number of solutions of a given problem instance, we applied a
modified version of the ASAT algorithm[Duboiset al., 1993]
to the SAT-encoded instances. To our best knowledge, both
sdnclu andblmin have not been studied before in the context
of search space structure.

Intuitively, largesdnlcu values should indicate a rugged
search space structure for which SLS approaches based on
hill-climbing are more effective than for featureless, flat
search spaces with many plateaus. To measuresdnclu val-
ues, we determine the objective function value (number of
unsatisfied clauses) for a sample of 100,000 randomly chosen
assignments. To improve comparability of the results for dif-
ferent numbers of clauses, we scale objective function values
to the interval[0; 1] (by division by the number of clauses).
The sdnclu value is then computed as the empirical stan-
dard deviation over this sample. Although compared to the
search space sizes of our test instances the sample size is very
small, we get meaningful results — presumably because of
the global effects of the encoding strategies on search space
topology.

Since it is known that the number and size of local minima
plays an important role for SLS performance on Random-
3-SAT [Yokoo, 1997], we extended these results by study-
ing the structure of local minima regions. We do this by
measuring the average branching of local minima states,i.e.,
for a given variable assignment, the number of neighbouring
assignments1 with the same objective function value. The

1The neighbourhood relation is the same as used by all GSAT-
type algorithms,i.e., two assignments are neighbours if and only if
they differ in the truth value of exactly one variable.

underlying intuition is that highly branched local minima re-
gions are more difficult to escape from, as there are fewer es-
cape routes for random walk and similar plateau escape tech-
niques, but more possibilities for non-deterministic loops to
occur in the search trajectory. Local minima states are typi-
cally quite rare for the problem instances studied here; thus,
blmin cannot be measured by randomly sampling the search
space. Instead we sampled the local minima states along SLS
trajectories, using a sample size of 100,000. Again, to im-
prove comparability of the results between different problem
instances, we scale the values thus obtained to the interval
[0; 1] (by division by the number of variables).

For a given problem instance, WalkSAT’s performance
(denoted aslsc — local search cost) is measured as the ex-
pected number of flips per solution, determined from 100–
1,000 runs per instance using an approximately optimal noise
setting (see above) and a cutoff parameter high enough to
guarantee that in every run a solution was found.2

4 Compact versus Sparse Encodings
Many combinatorial problems, such as Number Partitioning,
Bin Packing, or Hamilton Circuit, can be quite naturally for-
mulated as discrete constraint satisfaction problems. When
encoding such CSP formulations into SAT, perhaps the most
intuitive way is to encode each assignment of a value to a
CSP variable by a different propositional variable[de Kleer,
1989]. We call this thesparse encoding, since it results in rel-
atively sparse constraint graphs3 for the resulting CNF formu-
lae. This encoding strategy requiresjDj � n variables, where
jDj is the domain size andn the number of CSP variables.4

Given the intuition that high solution densities should fa-
cilitate local search (see above), it seems to be worthwhile
to consider encodings which minimise the number of propo-
sitional variables, and therefore the potential search space
size without affecting the number of solutions. One encod-
ing strategy which achieves that is thecompact encoding
obtained by representing each value assignment to a CSP
variable binarily using a set ofdlog2jDje propositional vari-
ables.Compared to the sparse encoding, this strategy signifi-
cantly reduces the search space by a factor ofO(n � (jDj �
logjDj)), while the number of clauses is usually similar, as it
is usually dominated by clauses encoding the constraint rela-
tions (the number of which is identical for both encodings).
The compact encoding is well-known from the literature; it
has been proposed in the context of SAT variable complexity
by [Iwama and Miyazaki, 1994] and is also used in the SAT-
based MEDIC planning system, where it is called “factored
representation”[Ernstet al., 1997].

To investigate the impact of these two encoding schemes
on SLS performance we measured WalkSAT’s performance

2Our actual experimental methodology is based on measuring
run-time distributions (RTDs) as outlined in[Hoos and St¨utzle,
1998]; the RTD data is not reported here, but can be obtained from
the author. A more detailed description of the empirical study and its
results can be found in[Hoos, 1998] and will be presented in more
detail in an extended version of this paper.

3The constraint graph consists of one node for each propositional
variable and edges between nodes corresponding to variables which
occur together in some clause of the given CNF formula.

4For simplicity’s sake we assume that the domain sizes for all
CSP variables are identical.



on the test-sets of Random Binary CSP and HCP instances
described above. The HCP instances are encoded as CSPs by
focussing on vertex permutations of the given graph as solu-
tion candidates (this idea has been proposed in[Iwama and
Miyazaki, 1994]); in particular, for each vertexv we intro-
duce a CSP variable the value of which representsv’s posi-
tion in the permutation. The constraint relations ensure that
each vertex appears exactly once (type 1 constraints),i.e., the
candidate solution corresponds to a valid permutation of the
vertices, and that each pair of neighbouring vertices in this
(cyclic) permutation is connected by an edge in the given
graph (type 2 constraints).

Figure 1 shows the correlation of the average local search
cost (lsc) between the different encodings across the test-
set csp20-10 ; each data point corresponds to thelsc for
the sparsevs the compact encoding for one problem instance
from the original test-set. As can be seen from the scatter
plot, there is a strong linear correlation between the loga-
rithm’s average local search cost for both encodings (corre-
lation coefficientr = 0:95), i.e.; instances which are rela-
tively hard for WalkSAT when sparsely encoded also tend to
be hard when using the compact encoding. But this analysis
also shows that the compact encoding results in instances for
which thelsc is generally ca. 7 times higher than for the cor-
responding sparsely encoded instances, although the compact
encoding requires less then half the number of variables and
significantly fewer clauses than the sparse encoding (cf. Ta-
ble 1). This confirms earlier observations[Ernstet al., 1997]
that the compact encoding generates problem instances which
are typically extremely hard for stochastic local search.

But what exactly makes this encoding so ineffective? Ta-
ble 1 shows the solution density,sdnclu, andblmin values
for the easiest, median, and hardest (w.r.t. theirlsc values
for WalkSAT) problem instance from the test-setcsp20-10 .
The data confirms that within the test-set, the solution density
is the predominant factor affecting local search cost, as ear-
lier observed for Random-3-SAT test-sets[Clarket al., 1996].
However, between the two encodings, this does not hold.
Instead, thesdcnlu and theblmin values indicate that the
compact encoding induces a flatter, featureless search space
topology characterised by considerably higher branched local
minima states. As argued above, intuitively this makes local
search more difficult, which is consistent with the consider-
ably higher local search cost observed for WalkSAT on the
correspondingly encoded CSP instances. Interestingly, this
explanation is also quite consistent with the (relatively big)
differences in local search cost within the corresponding test-
sets, although the relatively small differences insdcnlu and
blmin seem to confirm the predominant role of the solution
density.

Applying the same analysis to sparsely and compactly en-
coded versions of the HCP test-sethcp10 gives exactly anal-
ogous results (cf. Table 1); the correlation coefficient for the
correlation betweenlog(lsc) for -s and -c is0:85) and thus
confirms our observations and interpretation given above.
Apparently, the compact encoding induces rather flat, feature-
less search spaces which impede local search and local min-
ima escape to such an extent that WalkSAT’s performance is
significantly reduced despite the much higher solution den-
sity achieved by reducing the number of variables.

There is, however, another factor to be considered. The
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Figure 1: Correlation of average local search cost per instance
between sparse (horizontal) and compact SAT-encoding (ver-
tical) for CSP instances from test-setcsp20-10 when using
WalkSAT with approx. optimal noise.

CPU-time required for each single flip performed by Walk-
SAT is roughly constant for a given problem instance; it
depends, however, considerably on the syntactical features
of the given formula (especially number and length of
clauses). Comparing the CPU-time per variable flip between
the formulae generated by the sparse and compact encoding
schemes reveals that for the compact encoding also the CPU-
time per flip is significantly higher (for both,csp20-10-c
andhcp10-c instances approximately by a factor of3) than
for the sparse encoding. This can be explained by the fact that
the compact encoding produces longer and more tightly con-
nected clauses (in terms of number of clauses which share at
least one variable with any given clause), such that each vari-
able flip affects potentially more clauses (by breaking or fix-
ing them). So the compact encoding induces both, a syntac-
tic structure (the longer and more tightly connected clauses)
and a semantic structure (the search space features discussed
above) which reduce WalkSAT’s performance by increasing
the CPU-time per search step and decreasing the efficiency of
these search steps.

5 To Encode or Not to Encode?
The results presented in the preceeding sections suggest that
when solving combinatorial problems by encoding them into
SAT and applying powerful SLS algorithms, there might be a
tradeoff between the size of the representation and SLS per-
formance. Apparently compact encodings can be used to
generate formulae with small search spaces; however, these
have characteristic features which impede the performance of
WalkSAT and similar SAT algorithms. One obvious question
therefore is the following. Given a formulation of a combi-
natorial problem as a CSP, should we encode into SAT at all,
or rather apply SLS algorithms for CSP to directly solve the
unencoded problem?

Here, we present some initial results on this question.
Specifically, we analyse the correlation between the per-
formance of WalkSAT and an WMCH, an analogous algo-
rithm for CSP which is based on the Min Conflicts Heuristic
[Minton et al., 1992] and has been introduced in[Steinmann
et al., 1997]. Like WalkSAT, WMCH is a SLS algorithm



instance encoding variables clauses avg.lsc num sln sln density sdnclu blmin

csp20-10-s/easy sparse 200 3,661 775.80 37,2972:01 � 10
�56 0.0366 0.015

csp20-10-s/med sparse 200 4,367 11,162.69 63:73 � 10
�60 0.0361 0.017

csp20-10-s/hard sparse 200 4,412 134,777.38 21:24 � 10
�60 0.0356 0.017

csp20-10-c/easy compact 80 2,861 2,249.19 37,2973:09 � 10
�20 0.0011 0.131

csp20-10-c/med compact 80 3,555 77,883.52 64:96 � 10
�24 0.0011 0.157

csp20-10-c/hard compact 80 3,612 1,000,456.82 21:65 � 10
�24 0.0011 0.161

hc10-s/easy sparse 100 1,060 215.97 60 4.73�10
�29 0.0504 0.059

hc10-s/med sparse 100 1,060 781.28 20 1.58�10
�29 0.0502 0.056

hc10-s/hard sparse 100 1,060 2,562.18 20 1.58�10
�29 0.0502 0.047

hc10-c/easy compact 40 1,110 548.37 60 5.46�10
�11 0.0017 0.187

hc10-c/med compact 40 1,110 1,258.55 20 1.82�10
�11 0.0017 0.181

hc10-c/hard compact 40 1,110 3,294.71 20 1.82�10
�11 0.0016 0.172

Table 1: Easy, median, and hard problem instances from compactly and sparsely encoded CSP and HCP test-sets; the table
shows the size of the instances, the expected local search cost for WalkSAT (in steps/solution, using approx. optimal noise), as
well as the number of solutions, solution density, normalisedsdnclu and averageblmin value (for details, see text).
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Figure 2: Correlation of average local search cost per instance
for WalkSATvsWMCH applied to test-setcsp20-10 ; both
algorithms use approx. optimal noise, WalkSAT is used with
the sparse SAT-encoding.

which iteratively repairs violated constraints following the
steepest gradient, but also allows to escape from local minima
of the objective function by allowing occasional, randomised
uphill moves (for details, see[Steinmannet al., 1997]). Like
for WalkSAT, the local search cost (lsc) for WMCH was mea-
sured as the expected number of local search steps to find a
solution, based on 100 runs of the algorithm for each given
problem instance. Generally, we always used approximately
optimal noise parameter settings and a cutoff parameter high
enough to guarantee that in every run a solution was found.

Analysing the correlation between the average local search
cost for WalkSAT (using the sparse encoding) and WMCH
across the test-setcsp20-10 reveals an extremely strong
linear correlation between the logarithms of the average lo-
cal search cost for both algorithms (cf. Figure 2; correlation
coefficientr = 0:98), i.e., instances which are relatively hard
for WalkSAT also tend to be hard for WMCH and vice versa.
A linear regression analysis of this data shows that WalkSAT
tends to require ca. 5 times more steps than WMCH for solv-
ing the problem instances from our test-set (the coefficients
of the regression analysis area = 0:98 andb = �0:57).

However, neither WalkSAT nor WMCH are the best known
SLS algorithms for SAT and CSP, respectively. We therefore
performed the same analysis for the best-performing SLS-
based SAT algorithm and the best SLS-based CSP algorithm
we are aware of — Novelty[McAllesteret al., 1997], one of
the most recent variants of WalkSAT, and the tabu search al-
gorithm by Galinier and Hao[Galinier and Hao, 1997]. 5 Us-
ing optimal noise parameters for both algorithms, we find that
when measuring the average number of local search steps per
solution, Galinier’s and Hao’s CSP algorithm has generally
only an advantage of a factor between 2 and 4 over Novelty.
The correlation between both algorithm’s performance is very
strong (cf. Figure 3; correlation coefficient= 0:96); however,
Novelty occasionally gets stuck in local optima which it can-
not escape (causing the outliers in the scatter plot 7 instances),
while the CSP algorithm shows no such behaviour. But this
happens only for 7 of our 100 instances and for these only
in a small number of the multiple tries we performed. We
conjecture that by exending Novelty with a stronger stochas-
tic escape mechanism, this phenomenon can be eliminated.
But except for these outliers, the regression analysis indicates
that both algorithms show approximately the same scaling be-
haviour w.r.t. instance hardness. This is somewhat surprising,
since Galinier’s and Hao’s algorithm and Novelty are con-
ceptually significantly less closely related than WMCH and
WalkSAT. When performing an exactly analogous analysis
for instances with 30 constraint variables and 10 values, we
find a similar situation; only now, the performance advantage
of the native CSP algorithm over Novelty is only a factor of
ca. 1:7 on average (comparing the number of local search
steps). Also, we observe no increased occurence of the out-
liers mentioned above. This suggests that when increasing
the problem size, the SAT-based approach might have a slight
scaling advantage over the native CSP algorithm.

Generally, our results from comparing the performance of
SLS-based algorithms for CSP and SAT indicate that when
measuring the average number of steps per solution, the dif-

5The considerably more complicated R-Novelty algorithm
[McAllesteret al., 1997] for SAT, which shows an even better per-
formance than Novelty on Random-3-SAT, is inferior to Novelty for
the random binary CSPs used here.
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Figure 3: Correlation of average local search cost per instance
for Novelty vs Galinier’s and Hao’s tabu search algorithm
for CSP applied to test-setcsp20-10 ; all algorithms use
approx. optimal noise, Novelty is used with the sparse SAT-
encoding.

ferences are rather surprisingly small. We deliberately re-
frained from comparing CPU-times for these algorithms, be-
cause the implementations for the SAT algorithms are signif-
icantly more optimised. The SAT algorithms generally have
the advantage that they are conceptually easier, which facil-
itates their efficient implementation, evaluation, and further
development. Of course, our analysis is too limited to give a
conclusive answer, but the results reported here suggest that
for solving hard CSP instances, encoding them into SAT and
using a state-of-the-art SLS algorithm for SAT to solve the
SAT-encoded instances might be very competitive compared
to using more specialised SLS-based CSP solvers.

6 Conclusions and Future Work
In this paper we presented an initial investigation of how SAT-
encoding strategies affect the topological structure of the in-
duced search spaces and SLS performance. Our empirical re-
sults show that for two well-known classes of NP-hard com-
binatorial problems, random binary CSPs and HCPs in ran-
dom directed graphs near the solubility phase transition, com-
pact SAT-encodings, which minimise the number of proposi-
tional variables for the encoded problem instances, exhibit
structural features which impede local search algorithms like
WalkSAT. This observation is consistent with earlier obser-
vations for planning problems and HCPs, that compact en-
codings are extremely hard to solve for SLS algorithms. At
the same time, it shows that the influence of solution den-
sity on SLS performance which has been observed for CSP
and SAT, is of minor significance compared to features like
the overall ruggedness of the search space (as measured by
the standard deviation of the objective function) or the lo-
cal minima branching. However, consistently with earlier re-
sults, it plays an important role in explaining the differences
in SLS performance observed across test-sets of randomly
generated instances, when using a fixed SAT-encoding. As
a consequence of these results, compact encodings should be
avoided in the context of using SLS algorithms for solving
SAT-encoded combinatorial problems.

Furthermore, when comparing the performance of SLS al-
gorithms directly applied to test-sets of random binary CSP

instances to with the performance of SLS-based algorithms
for SAT using the sparse encoding, we found that there is
a strong correlation of the expected number of search steps
required for finding a solution across the test-set. Although
when comparing the best known SLS algorithms for CSP and
SAT in this way, the direct CSP algorithm requires fewer
local search steps per solution, we feel that this might very
well be outweighed by other advantages of the SAT-encoding
and solving approach, like the availability of extremely fast
implementations or its conceptual simplicity. Also, due to
the restrictions of the implementatins of the SAT-based CSP
algorithms available for this preliminary study only binary
CSP instances could be analysed. For more structured, none-
binary CSP instance, one might encounter a different situa-
tion; although it is not clear that (a) existing CSP algorithms
can exploit this structure, and (b) even if they could, the same
would not also be possible without too much effort for the
SAT-encoded problem instances.

It should also be noted that, according to the results re-
ported here and elsewhere[Ernstet al., 1997; Kautz and Sel-
man, 1996], it seems that finding efficient SAT-encodings
could very well be significantly easier than developping spe-
cialised algorithms for the respective domains. We do not
believe that the generic problem solving approach based on
SAT-encodings and extremely optimised SAT-algorithms will
generally be competitive with specialised algorithms which
make use of domain knowledge. However, it is quite possi-
ble that it can be established as another generic method for
attacking problems for which domain-specific knowledge is
not (yet) available or which are too specific and limited in
their application to make the development of specialised al-
gorithms worthwhile. In this sense, the SAT-encoding and
-solving approach could be compared to other generic prob-
lem solving methods, like, e.g., Mixed Integer Programming
(MIP), which has become a standard generic solving tech-
nique for combinatorial problems in Operations Research.

The novel tools and techniques presented here can be eas-
ily applied to other hard combinatorial problems and SAT-
encoding schemes. Out investigation can be extended in var-
ious directions; in particular, it provides a basis for studying
the following research questions:

� Based on the knowledge of the search space structure
induced by specific encoding schemes, can we design
SAT algorithms which exploit these features?

� Given the knowledge about which features affect SLS
performance, can we devise efficient encoding strategies
which improve SLS performance?

� For which problem classes is the SAT-encoding and -
solving approach, using SLS algorithms for SAT, com-
petitive with analogous, generic SLS algorithms directly
applied to the unencoded problem instances?

Thus, while this study does certainly not provide the final
answers to the challenge or the more specific questions stated
in Section 1, it shows a way for systematically investigating
the relation between encodings, search space structure, and
SLS performance which will hopefully lead to improved en-
codings and SAT algorithms, as well as, in the long run, to a
realistic assessment of the generic SAT-encoding and -solving
approach for solving hard combinatorial problems.
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