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Abstract. Portfolio-based methods exploit the complementary
strengths of a set of algorithms and—as evidenced in recent
competitions—represent the state of the art for solving many NP-hard
problems, including SAT. In this work, we argue that a state-of-the-art
method for constructing portfolio-based algorithm selectors, SATzilla,
also gives rise to an automated method for quantifying the importance
of each of a set of available solvers. We entered a substantially improved
version of SATzilla to the inaugural “analysis track” of the 2011 SAT
competition, and draw two main conclusions from the results that
we obtained. First, automatically-constructed portfolios of sequential,
non-portfolio competition entries perform substantially better than the
winners of all three sequential categories. Second, and more importantly,
a detailed analysis of these portfolios yields valuable insights into
the nature of successful solver designs in the different categories. For
example, we show that the solvers contributing most to SATzilla were
often not the overall best-performing solvers, but instead solvers that
exploit novel solution strategies to solve instances that would remain
unsolved without them.

1 Introduction

The propositional satisfiability problem (SAT) is among the most widely stud-
ied NP-complete problems, with applications to problems as diverse as schedul-
ing [4], planning [15], graph colouring [30], bounded model checking [1], and
formal verification [25]. The resulting diversity of SAT instances fueled the de-
velopment of a multitude of solvers with complementary strengths.

Recent results, reported in the literature as well as in solver competitions, have
demonstrated that this complementarity can be exploited by so-called “algo-
rithm portfolios” that combine different SAT algorithms (or, indeed, algorithms
for solving other hard combinatorial problems). Such algorithm portfolios include
methods that select a single algorithm on a per-instance basis [21,7,10,31,24,26],
methods that make online decisions between algorithms [16,3,23], and methods
that run multiple algorithms independently on one instance, either in parallel or
sequentially [13,9,20,6,27,14,22,11].

To show that such methods work in practice as well as in theory—that de-
spite their overhead and potential to make mistakes, portfolios can outperform
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their constituent solvers—we submitted our SATzilla portfolio-based algorithm
selectors to the international SAT competition (www.satcompetition.org), start-
ing in 2003 and 2004 [18,19]. After substantial improvements [31], SATzilla won
three gold and two other medals (out of nine categories overall) in each of the
2007 and 2009 SAT competitions. Having established SATzilla’s effectiveness, we
decided not to compete in the main track of the 2011 competition, to avoid dis-
couraging new work on (non-portfolio) solvers. Instead, we entered SATzilla in a
new “analysis track”. However, other portfolio-based methods did feature promi-
nently among the winners of the main track: the algorithm selection and schedul-
ing system 3S [14] and the simple, yet efficient parallel portfolio ppfolio [22] won
a total of seven gold and 16 other medals (out of 18 categories overall).

One of the main reasons for holding a SAT competition is to answer the
question, What is the current state of the art (SOTA) in SAT solving?. The tra-
ditional answer to this question has been the winner of the respective category of
the SAT competition; we call such a winner a single best solver (SBS). However,
as clearly demonstrated by the efficacy of algorithm portfolios, different solver
strategies are (at least sometimes) complementary. This fact suggests a second
answer to the SOTA question: the virtual best solver (VBS), defined as the best
SAT competition entry on a per-instance basis. The VBS typically achieves much
better performance than the SBS, and does provide a useful theoretical upper
bound on the performance currently achievable. However, this bound is typi-
cally not tight: the VBS is not an actual solver, because it only tells us which
underlying solver to run after the performance of each solver on a given instance
has been measured, and thus the VBS cannot be run on new instances. Here, we
propose a third answer to the SOTA question: a state-of-the-art portfolio that
can be constructed in a fully automatically fashion from available solvers (using
an existing piece of code); we call such a portfolio a SOTA portfolio. Unlike the
VBS, a SOTA portfolio is an actual solver that can be run on novel instances.
We show how to build a SOTA portfolio based on an improved version of our
SATzilla procedure, and then demonstrate techniques for analyzing the extent
to which its performance depends on each of its component solvers. While (to
the best of our knowledge) SATzilla is the only fully automated and publicly
available portfolio construction method, our measures of solver contributions
may also be applied to other portfolio approaches, including parallel portfolios.

In this paper, we first verify that our automatically constructed SATzilla 2011

portfolios yielded cutting-edge performance (they closed 27.7% to 90.1% of the
gap between the winners of each sequential category and the VBS). Next, we per-
form a detailed, quantitative analysis of the performance of SATzilla 2011’s com-
ponent solvers and their pairwise correlations, their frequency of selection and
success within SATzilla 2011, and their overall benefit to the portfolio. Overall,
our analysis reveals that the solvers contributing most to SATzilla 2011 were
often not the overall best-performing solvers (SBSs), but instead solvers that
exploit novel solution strategies to solve instances that would remain unsolved
without them. We also provide a quantitative basis for the folk knowledge that—
due to the dominance of MiniSAT-like architectures—the performance of most
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solvers for Application instances is tightly correlated. Our results suggest a shift
away from rewarding solvers that perform well on average and towards reward-
ing creative approaches that can solve instance types not solved well by other
solvers (even if they perform poorly on many other types of instances).

2 Improved Automated Construction of Portfolio-Based
Algorithm Selectors: SATzilla 2011

In this work, we use an improved version of the construction method underly-
ing the portfolio-based algorithm selection system SATzilla. We first describe
SATzilla’s automated construction procedure (which, at a high level, is un-
changed since 2008; see [31] for details) and then discuss the improvements to
its algorithm selection core we made in 2011.

How SATzilla Works. We first describe the automated SATzilla construction
procedure and then describe the pipeline that the resulting portfolio executes
on a new instance. First, SATzilla’s construction procedure uses a set of very
cheap features (e.g., number of variables and clauses) to learn a classifierM that
predicts whether the computation of a more comprehensive set of features will
succeed within a time threshold tf ; SATzilla also selects a backup solver B that
has the best performance on instances with large feature cost (> tf or failed).
Second, it chooses a set of candidate presolvers and candidate presolving time
cutoffs based on solver performance on the training set. Then, for all possible
combinations of up to two presolvers and given presolving time cutoffs, it learns
an algorithm selector based on all training instances with feature cost ≤ tf that
cannot be solved by presolvers. The final portfolio-based selector is chosen as the
combination of presolvers, presolving cutoffs, and the corresponding algorithm
selector with the best training performance.

When asked to solve a given instance π, SATzilla first inspects π to gather
very cheap features and uses them with M to predict feature computation time.
If this prediction exceeds tf , it runs solver B for the remaining time. Otherwise,
it sequentially runs its presolvers up to their presolving cutoffs. If a presolver
succeeds, SATzilla terminates. Otherwise, it computes features (falling back on
B if feature computation fails or exceeds tf ), uses them in its algorithm selector
to pick the most promising algorithm and runs that for the remaining time.

Improvements to SATzilla’s Algorithm Selection Core. For our entry to
the 2011 SAT competition analysis track, we improved SATzilla’s models by bas-
ing them on cost-sensitive decision forests, rather than linear or quadratic ridge
regression. (This improvement is described in [32].) Our new selection procedure
uses an explicit cost-sensitive loss function—punishing misclassifications in di-
rect proportion to their impact on portfolio performance—without predicting
runtime. Such an approach has never before been applied to algorithm selec-
tion: all existing classification approaches use a simple 0–1 loss function that
penalizes all misclassifications equally (e.g., [23,10,12]), whereas previous ver-
sions of SATzilla used regression-based runtime predictions. Our cost-sensitive
classification approach based on decision forests (DFs) has the advantage that it
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effectively partitions the feature space into qualitatively different parts; further-
more, in contrast to clustering methods, DFs take the response variable (here
“algorithm A performs better/worse than algorithm B”) into account when de-
termining that partitioning.

We construct cost-sensitive DFs as collections of 99 cost-sensitive decision
trees [29], following standard random forest methodology [2]. Given n training
data points with k features each, for each tree we construct a bootstrap sample
of n training data points sampled uniformly at random with replacement. During
tree construction, we sample a random subset of � log2(k) + 1� features at each
internal node to be considered for splitting the data at that node. Predictions are
based on majority votes across all trees. Given a set of m algorithms {A1, . . . ,
Am}, an n × k matrix holding the values of k features for each of n training
instances, and an n×m matrix P holding the performance of the m algorithms
on the n instances, we construct our selector based on m(m−1)/2 pairwise cost-
sensitive decision forests, determining the labels and costs as follows. For any
pair of algorithms (Ai, Aj), we train a cost-sensitive decision forest DF (i, j) on
the following weighted training data: we label an instance q as i if P (q, i) is better
than P (q, j), and as j otherwise; the weight for that instance is |P (q, i)−P (q, j)|.
For each test instance, we apply each DF (i, j) to vote for either Ai or Aj and
select the algorithm with the most votes as the best algorithm for that instance.
Ties are broken by only counting the votes from those decision forests that in-
volve algorithms which received equal votes; further ties are broken randomly.
Our implementation of SATzilla 2011, integrating cost-sensitive decision forests
based on Matlab R2010a’s implementation of cost-sensitive decision trees, is
available online at http://www.cs.ubc.ca/labs/beta/Projects/SATzilla. Our ex-
perimental results show that SATzilla 2011 always outperformed SATzilla 2009;
this gap was particularly substantial in the Application category (see Table 1).

3 Measuring the Value of a Solver

We believe that the SAT community could benefit from rethinking how the
value of individual solvers is measured. The most natural way of assessing the
performance of a solver is by means of some statistic of its performance over a
set (or distribution) of instances, such as the number of instances solved within
a given time budget, or its average runtime on an instance set. While we see
value in these performance measures, we believe that they are not sufficient
for capturing the value a solver brings to the community. Take, for example,
two solvers MiniSAT′++ and NewSAT, where MiniSAT′++ is based on MiniSAT [5]
and improves some of its components, while NewSAT is a (hypothetical) radi-
cally different solver that performs extremely well on a limited class of instances
and poorly elsewhere.1 While MiniSAT′++ has a good chance of winning medals

1 In the 2007 SAT competition, the solver closest to NewSAT was TTS: it solved 12
instances unsolved by all others and thus received a silver medal under the purse
scoring scheme [8] (discussed below), even though it solved many fewer instances than
the bronze medalist Minisat (39 instances vs 72). Purse scoring was abandoned for
the 2009 competition.

http://www.cs.ubc.ca/labs/beta/Projects/SATzilla
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in the SAT competition’s Application track, NewSAT might not even be sub-
mitted, since (due to its poor average performance) it would be unlikely even
to qualify for the final phase of the competition. However, MiniSAT′++ might
only very slightly improve on the previous (MiniSAT-based) incumbent’s per-
formance, while NewSAT might represent deep new insights into the solution of
instances that are intractable for all other known techniques.

One way of evaluating the value a solver brings to the community is through
the notion of state-of-the-art (SOTA) contributors [28]. It ranks the contribution
of a constituent solver A by the performance decrease of VBS when omitting A
and reflects the added value due to A much more effectively than A’s average
performance. A related method for scoring algorithms is the “purse score” [8],
which rewards solving instances that cannot be solved by other solvers; it was
used in the 2005 and 2007 SAT competitions. However, both of these methods
describe idealized solver contributions rather than contributions to an actual
executable method. Instead, we propose to measure the SOTA contribution of
a solver as its contribution to a SOTA portfolio that can be automatically con-
structed from available solvers. This notion resembles the prior notion of SOTA
contributors, but directly quantifies their contributions to an executable portfolio
solver, rather than to an abstract virtual best solver (VBS). Thus, we argue that
an additional scoring rule should be employed in SAT competitions to recognize
solvers (potentially with weak overall performance) for the contributions they
make to a SOTA portfolio.

We must still describe exactly how we should assess a solver A’s contribution
to a portfolio. We might measure the frequency with which the portfolio selects
A, or the number of instances the portfolio solves using A. However, neither of
these measures accounts for the fact that if A were not available other solvers
would be chosen instead, and might perform nearly as well. (Consider again
MiniSAT′++, and assume that it is chosen frequently by a portfolio-based selector.
However, if it had not been created, the set of instances solved might be the
same, and the portfolio’s performance might be only slightly less.) We argue
that a solver A should be judged by its marginal contribution to the SOTA:
the difference between the SOTA portfolio’s performance including A and the
portfolio’s performance excluding A. (Here, we measure portfolio performance
as the percentage of instances solved, since this is the main performance metric
in the SAT competition.)

4 Experimental Setup

Solvers. In order to evaluate the SOTA portfolio contributions of the SAT
competition solvers, we constructed SATzilla portfolios using all sequential,
non-portfolio solvers from Phase 2 of the 2011 SAT Competition as component
solvers: 9, 15, and 18 candidate solvers for the Random, Crafted, and Application

categories, respectively. (These solvers and their individual performance are
shown in Figures 1(a), 2(a), and 3(a); see [17] for detailed information.) We hope
that in the future, construction procedures will also be made publicly available
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for other portfolio builders, such as 3S [14]; if so, our analysis could be easily
and automatically repeated for them. For each category, we also computed the
performance of an oracle over sequential non-portfolio solvers (an idealized al-
gorithm selector that picks the best solver for each instance) and the virtual best
solver (VBS, an oracle over all 17, 25 and 31 entrants for the Random, Crafted and
Application categories, respectively). These oracles do not represent the current
state of the art in SAT solving, since they cannot be run on new instances; how-
ever, they serve as upper bounds on the performance that any portfolio-based
selector over these solvers could achieve. We also compared to the performance
of the winners of all three categories (including other portfolio-based solvers).

Features. We used 115 features similar to those used by SATzilla in the 2009
SAT Competition. They fall into 9 categories: problem size, variable graph,
clause graph, variable-clause graph, balance, proximity to Horn formula, local
search probing, clause learning, and survey propagation. Feature computation
averaged 31.4, 51.8 and 158.5 CPU seconds on Random, Crafted, and Application

instances, respectively; this time counted as part of SATzilla’s runtime budget.

Methods. We constructed SATzilla 2011 portfolios using the improved proce-
dure described in Section 2. We set the feature computation cutoff tf to 500 CPU
seconds (a tenth of the time allocated for solving an instance). To demonstrate
the effectiveness of our improvement, we also constructed a version of SATzilla
2009 (which uses ridge regression models), using the same training data.

We used 10-fold cross-validation to obtain an unbiased estimate of SATzilla’s
performance. First, we eliminated all instances that could not be solved by any
candidate solver (we denote this instance set as U). Then, we randomly parti-
tioned the remaining instances (denoted S) into 10 disjoint sets. Treating each of
these sets in turn as the test set, we constructed SATzilla using the union of the
other 9 sets as training data and measured SATzilla’s runtime on the test set.
Finally, we computed SATzilla’s average performance across the 10 test sets.

To evaluate how important each solver was for SATzilla, for each category
we quantified the marginal contribution of each candidate solver, as well as the
percentage of instances solved by each solver during SATzilla’s presolving (Pre1
or Pre2), backup, and main stages. Note that our use of cross-validation means
that we constructed 10 different SATzilla portfolios using 10 different subsets
(“folds”) of instances. These 10 portfolios can be qualitatively different (e.g.,
selecting different presolvers); we report aggregates over the 10 folds.

Data. Runtime data was provided by the organizers of the 2011 SAT competi-
tion. All feature computations were performed by Daniel Le Berre on a quad-core
computer with 4GB of RAM and running Linux, using our code. Four out of 1200
instances (from the Crafted category) had no feature values, due to a database
problem caused by duplicated file name. We treated these instances as timeouts
for SATzilla, thus obtaining a lower bound on SATzilla’s true performance.
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Table 1. Comparison of SATzilla 2011 to the VBS, an Oracle over its component
solvers, SATzilla 2009, the 2011 SAT competition winners, and the best single
SATzilla 2011 component solver for each category. We counted timed-out runs as
5000 CPU seconds (the cutoff). Because the construction procedure for 3S portfolios is
not publicly available, we used the original 2011 SAT-competition-winning version of
3S, which was trained on pre-competition data; it is likely that 3S would have achieved
better performance if we had been able to retrain it on the same data we used to train
SATzilla.

Solver Application Crafted Random

Runtime (Solved) Runtime (Solved) Runtime (Solved)

VBS 1104 (84.7%) 1542 (76.3%) 1074 (82.2%)
Oracle 1138 (84.3% ) 1667 (73.7%) 1087 (82.0%)
SATzilla 2011 1685 (75.3%) 2096 (66.0%) 1172 (80.8%)
SATzilla 2009 1905 (70.3%) 2219(63.0%) 1205 (80.3%)
Gold medalist Glucose2: 1856 (71.7%) 3S: 2602 (54.3%) 3S: 1836 (68.0%)
Best comp. Glucose2: 1856 (71.7%) Clasp2: 2996 (49.7%) Sparrow: 2066 (60.3%)

5 Experimental Results

We begin by assessing the performance of our SATzilla portfolios, to confirm that
they did indeed yield SOTA performance. Table 1 compares SATzilla 2011 to the
other solvers mentioned above. SATzilla 2011 outperformed all of its component
solvers in all categories . It also always outperformed SATzilla 2009, which in
turn was slightly worse than the best component solver on Application.

SATzilla 2011 also outperformed each category’s gold medalist (including
portfolio solvers, such as 3S and ppfolio). Note that this does not constitute a
fair comparison of the underlying portfolio construction procedures, as SATzilla
had access to data and solvers unavailable to portfolios that competed in the
competition. This finding does, however, give us reason to believe that SATzilla
portfolios either represent or at least closely approximate the best performance
reachable by current methods. Indeed, in terms of instances solved, SATzilla
2011 reduced the gap between the gold medalists and the (upper performance
bound defined by the) VBS by 27.7% on Application, by 53.2% on Crafted, and
by 90.1% on Random. The remainder of our analysis concerns the contributions
of each component solver to these portfolios. To substantiate our previous claim
that marginal contribution is the most informative measure, here we contrast it
with various other measures.

Random. Figure 1 presents a comprehensive visualization of our findings for
the Random category. (Table 2 in supplemental material at http://www.cs.ubc.ca/
labs/beta/Projects/SATzilla/SAT12-EvaluatingSolverContributions.pdf shows
the data underlying all figures.) First, Figure 1(a) considers the set of instances
that could be solved by at least one solver, and shows the percentage that each
component solver is able to solve. By this measure, the two best solvers were
Sparrow and MPhaseSAT M. The former is a local search algorithm; it solved 362
+ 0 satisfiable and unsatisfiable instances, respectively. The latter is a complete
search algorithm; it solved 255 + 104 = 359 instances. Neither of these solvers

http://www.cs.ubc.ca/
labs/beta/Projects/SATzilla/SAT12-EvaluatingSolverContributions.pdf
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Fig. 1. Visualization of results for category Random. In Figure 1(e), we used the original
2011SAT-competition-winningversion of 3S, whichwas trained onpre-competition data;
thus, this figure is not a fair comparison of the SATzilla and 3S portfolio-building strate-
gies. The data underlying this figure can be found in Table 2 of the supplemental material
at http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/SAT12-EvaluatingSolverContributions.pdf.
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won medals in the combined SAT + UNSAT Random category, since all medals
went to portfolio solvers that combined local search and complete solvers.

Figure 1(b) shows a correlation matrix of component solver performance: the
entry for solver pair (A,B) is computed as the Spearman rank correlation coef-
ficient between A’s and B’s runtime, with black and white representing perfect
correlation and perfect independence respectively. Two clusters are apparent:
six local search solvers (EagleUP, Sparrow, Gnovelty+2, Sattime11, Adaptg2wsat11,
and TNM), and two versions of the complete solver March, which achieved almost
identical performance. MPhaseSAT M performed well on both satisfiable and un-
satisfiable solvers; it was strongly correlated with local search solvers on the
satisfiable instance subset and very strongly correlated with the March variants
on the unsatisfiable subset.

Figure 1(c) shows the frequency with which different solvers were selected in
SATzilla 2011. The main solvers selected in SATzilla 2011’s main phase were
the best-performing local search solver Sparrow and the best-performing com-
plete solver March. As shown in Figure 1(d), the local search solver EagleUP was
consistently chosen as a presolver and was responsible for more than half (51.3%)
of the instances solved by SATzilla 2011 overall. We observe that MPhaseSAT M

did not play a large role in SATzilla 2011: it was only run for 2 out of 492 in-
stances (0.4%). Although MPhaseSAT M achieved very strong overall performance,
its versatility appears to have come at the price of not excelling on either satisfi-
able or unsatisfiable instances, being largely dominated by local search solvers on
the former and by March variants on the latter. Figure 1(e) shows that SATzilla
2011 closely approximated both the Oracle over its component solvers and the
VBS, and stochastically dominated the category’s gold medalist 3S.

Finally, Figure 1(f) shows the metric that we previously argued is the most
important: each solver’s marginal contribution to SATzilla 2011’s performance.
The most important portfolio contributor was Sparrow, with a marginal contribu-
tion of 4.9%, followed by EagleUP with a marginal contribution of 2.2%. EagleUP’s
low marginal contribution may be surprising at first glance (recall that it solved
51.3% of the instances SATzilla 2011 solved overall); however, most of these
instances (49.1% out of 51.3%) were also solvable by other local search solvers.
Similarly, both March variants had very low marginal contribution (0% and 0.2%,
respectively) since they were essentially interchangeable (correlation coefficient
0.9974). Further insight can be gained by examining the marginal contribution
of sets of highly correlated solvers. The marginal contribution of the set of both
March variants was 4.0% (MPhaseSAT M could still solve the most instances), while
the marginal contribution of the set of six local search solvers was 22.5% (nearly
one-third of the satisfiable instances were not solvable by any complete solver).

Crafted. Overall, sufficiently many solvers were relatively uncorrelated in the
Crafted category (Figure 2) to yield a portfolio with many important contribu-
tors. The most important of these was Sol, which solved all of the 13.7% of the
instances for which SATzilla 2011 selected it; without it, SATzilla 2011 would
have solved 8.1% fewer instances! We observe that Sol was not identified as an
important solver in the SAT competition results, ranking 11th of 24 solvers in
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Fig. 3. Visualization of results for category Application. The data underlying
this figure can be found in Table 2 of the supplemental material, available at
http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/SAT12-EvaluatingSolverContributions.pdf.

http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/SAT12-EvaluatingSolverContributions.pdf
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the SAT+UNSAT category. Similarly, MPhaseSAT M, Glucose2, and Sattime each
solved a 3.6% fraction of instances that would have gone unsolved without them.
(This is particularly noteworthy for MPhaseSAT M, which was only selected for 5%
of the instances in the first place.) Considering the marginal contributions of
sets of highly correlated solvers, we observed that {Clasp1, Clasp2} was the
most important at 6.3%, followed by {Sattime, Sattime11} at 5.4%. {QuteRSat,
CryptoMiniSat} and {PicoSAT, JMiniSat, Minisat07, RestartSAT, SApperloT} were
relatively unimportant even as sets, with marginal contributions of 0.5% and
1.8% respectively.

Application. All solvers in the Application category (Figure 3) exhibited rather
highly correlated performance. It is thus not surprising that in 2011, no medals
went to portfolio solvers in the sequential Application track, and that in 2007
and 2009, SATzilla versions performed worst in this track, only winning a sin-
gle gold medal in the 2009 satisfiable category. As mentioned earlier, SATzilla
2011 did outperform all competition solvers, but here the margin was only 3.6%
(as compared to 12.8% and 11.7% for Random and Crafted, respectively). All
solvers were rather strongly correlated, and each solver could be replaced in
SATzilla 2011 without a large decrease in performance; for example, dropping
the competition winner only decreased SATzilla 2011’s percentage of solved in-
stances by 0.4%. The highest marginal contribution across all 18 solvers was
four times larger: 1.6% for MPhaseSAT64. Like MPhaseSAT in the Crafted cate-
gory, it was selected infrequently (only for 3.6% of the instances) but was the
only solver able to solve about half of these instances. We conjecture that this
was due to its unique phase selection mechanism. Both MPhaseSAT64 and Sol (in
the Crafted category) thus come close to the hypothetical solver NewSAT men-
tioned earlier: they showed outstanding performance on certain instances and
thus contributed substantially to a portfolio, but achieved unremarkable rank-
ings in the competition (9th of 26 for MPhaseSAT64, 11th of 24 for Sol). We did
observe one set of solvers that achieved a larger marginal contribution than that
of MPhaseSAT64: 2.3% for {Glueminisat, LR GL SHR}. The other three highly cor-
related clusters also gave rise to relatively high marginal contributions: 1.5% for
{CryptoMiniSat, QuteRSat}, 1.5% for {Glucose1,Glucose2,EBGlucose}, and 1.2%
for {Minisat,EBMiniSAT, MiniSATagile}.

6 Conclusions

In this work, we investigated the question of assessing the contributions of indi-
vidual SAT solvers by examining their value to SATzilla, a portfolio-based algo-
rithm selector. SATzilla 2011 is an improved version of this procedure based on
cost-based decision forests, which we entered into the new analysis track of the
2011 SAT competition. Its automatically generated portfolios achieved state of
the art performance across all competition categories, and consistently outper-
formed its constituent solvers, other competition entrants, and our previous ver-
sion of SATzilla. We observed that the frequency with which a component solver
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was selected is a poor measure of that solver’s contribution to SATzilla 2011’s
performance. Instead, we advocate assessing solvers in terms of their marginal
contributions to the state of the art in SAT solving.

We found that the solvers with the largest marginal contributions to SATzilla

were often not competition winners (e.g., MPhaseSAT64 in Application SAT+

UNSAT; Sol in Crafted SAT+UNSAT). To encourage improvements to the state
of the art in SAT solving and taking into account the practical effectiveness of
portfolio-based approaches, we suggest rethinking the way future SAT competi-
tions are conducted. In particular, we suggest that all solvers that are able to solve
instances not solved by any other entrant pass Phase 1 of the competition, and
that solvers contributing most to the best-performing portfolio-based approaches
be given formal recognition, for example by means of “portfolio contributor” or
“uniqueness” medals. We also recommend that portfolio-based solvers be evalu-
ated separately—and with access to all submitted solvers as components—rather
than competing with traditional solvers. We hope that our analysis serves as an
encouragement to the community to focus on creative approaches to SAT solving
that complement the strengths of existing solvers, even though they may (at least
initially) be effective only on certain classes of instances.
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