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Abstract. It has been widely observed that there is no “dominant”
SAT solver; instead, different solvers perform best on different instances.
Rather than following the traditional approach of choosing the best
solver for a given class of instances, we advocate making this decision
online on a per-instance basis. Building on previous work, we describe
a per-instance solver portfolio for SAT, SATzilla-07, which uses so-
called empirical hardness models to choose among its constituent solvers.
We leverage new model-building techniques such as censored sampling
and hierarchical hardness models, and demonstrate the effectiveness of
our techniques by building a portfolio of state-of-the-art SAT solvers
and evaluating it on several widely-studied SAT data sets. Overall, we
show that our portfolio significantly outperforms its constituent algo-
rithms on every data set. Our approach has also proven itself to be
effective in practice: in the 2007 SAT competition, SATzilla-07 won
three gold medals, one silver, and one bronze; it is available online at
http://www.cs.ubc.ca/labs/beta/Projects/SATzilla.

1 Introduction

The propositional satisfiability problem (SAT) is one of the most fundamental
problems in computer science. SAT is interesting for its own sake, but also be-
cause instances of other NP-complete problems can be encoded into SAT and
solved by SAT solvers. This approach has proven effective for planning, schedul-
ing, graph coloring and software/hardware verification problems. The conceptual
simplicity of SAT facilitates algorithm development, and significant research and
engineering efforts have led to sophisticated algorithms with highly-optimized
implementations. By now, many such high-performance SAT solvers exist. Al-
though there are some general patterns describing which solvers tend to be good
at solving certain kinds of instances, it is still often the case that one solver is
better than others at solving some problem instances from a given class, but
dramatically worse on other instances. Indeed, we know that no solver can be
guaranteed to dominate all others on unrestricted SAT instances [2]. Thus, prac-
titioners with hard SAT problems to solve face a potentially difficult algorithm
selection problem [26]: which algorithm(s) should be run in order to minimize
some performance objective, such as expected runtime?

The most widely-adopted solution to such algorithm selection problems is
to measure every candidate solver’s runtime on a representative set of problem
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instances, and then to use only the algorithm which offered the best (e.g., average
or median) performance. We call this the “winner-take-all” approach. Its use has
resulted in the neglect of many algorithms that are not competitive on average
but that nevertheless offer very good performance on particular instances. The
ideal solution to the algorithm selection problem, on the other hand, would be
to consult an oracle that tells us the amount of time that each algorithm would
take to solve a given problem instance, and then to select the algorithm with
the best performance.

Unfortunately, computationally cheap, perfect oracles of this nature are not
available for SAT or any other NP-complete problem, and we cannot precisely
determine an arbitrary algorithm’s runtime on an arbitrary instance without ac-
tually running it. Nevertheless, our approach to algorithm selection in this paper
is based on the idea of building approximate runtime predictors, which can be
seen as heuristic approximations to perfect oracles. Specifically, we use machine
learning techniques to build an empirical hardness model, a computationally in-
expensive way of predicting an algorithm’s runtime on a given problem instance
based on features of the instance and the algorithm’s past performance [24,19].
This approach has previously yielded effective algorithm portfolios for the win-
ner determination problem (WDP) in combinatorial auctions [18,17]; however,
there exist relatively few state-of-the-art solvers for WDP.

To show that algorithm portfolios based on empirical hardness models can
also effectively combine larger sets of highly-optimized algorithms, we consider
the satisfiability problem in this work. Specifically, we describe and analyze
SATzilla, a portfolio-based SAT solver that utilizes empirical hardness mod-
els for per-instance algorithm selection. SATzilla goes back to 2003, when its
original version was first submitted to the SAT competition. In that competition,
SATzilla placed 2nd in the random instances category, 2nd in the handmade in-
stances (satisfiable only) category, and 3rd in the handmade instances category.
Here, we describe a substantially improved version of SATzilla, which uses new
techniques, such as censored sampling and hierarchical hardness models, as well
as an updated set of solvers. This new solver, dubbed SATzilla-07, was entered
into the 2007 SAT competition and placed 1st in the handmade, handmade (un-
satisfiable only) and random categories, 2nd in the handmade (satisfiable only)
category, and 3rd in the random (unsatisfiable only) category. Here, we give a de-
tailed description and performance analysis for SATzilla-07, something which
was never published for the original of SATzilla.

There exists a fair amount of work related to ours. Lobjois et al. studied the
problem of selecting between branch-and-bound algorithms [20] based on an es-
timate of search tree size due to Knuth. Gebruers et al. employed case-based
reasoning to select a solution strategy for instances of a CP problem [8]. One
problem with such classification approaches [12] is that they use a misleading
error metric, penalizing misclassifications equally regardless of their cost. For
the algorithm selection problem, however, using a sub-optimal algorithm is ac-
ceptable if the difference between its runtime and that of the best algorithm is
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small. (Our SATzilla approach can be considered to be a classifier with an error
metric that depends on the difference in runtime between algorithms.)

Further related work includes “online” approaches that switch between algo-
rithms during runtime. Gomes et al. built a portfolio of stochastic algorithms
for quasi-group completion and logistics scheduling problems [10]; rather than
choosing a single algorithm, their approach achieved performance improvements
by running multiple algorithms. Lagoudakis & Littman employed reinforcement
learning to solve an algorithm selection problem at each decision point of a
DPLL solver for SAT in order to select a branching rule [16]. Low-knowledge al-
gorithm control by Carchrae & Beck employed a portfolio of anytime algorithms,
prioritizing each algorithm according to its performance so far [3]. Gagliolo &
Schmidhuber learned dynamic algorithm portfolios that also support running
several algorithms at once [7], where an algorithm’s priority depends on its pre-
dicted runtime conditioned on the fact that it has not yet found a solution.

2 Building Portfolios with Empirical Hardness Models

The general methodology for building an algorithm portfolio we use in this work
follows that of Leyton-Brown et al. [18] in its broad strokes, but we have made
significant extensions here. Portfolio construction happens offline, as part of
algorithm development, and comprises the following steps:

1. Identify a target distribution of problem instances.
2. Select a set of candidate solvers that have relatively uncorrelated runtimes

on this distribution.
3. Use domain knowledge to identify features that characterize problem in-

stances.
4. On a training set of problem instances, compute these features and run each

algorithm to determine running times.
5. Optionally, identify one or more solvers to use for pre-solving instances, by

examining the algorithms’ runtimes. These pre-solvers will later be run for a
short amount of time before features are computed (step 9 below), in order
to ensure good performance on very easy instances.

6. Using a validation data set, determine which solver achieves the best average
runtime (i.e., is the winner-take-all choice) on instances that would not have
been solved by the pre-solvers.

7. Construct an empirical hardness model for each algorithm.
8. Choose the best subset of solvers to use in the final portfolio. We formalise

and automatically solve this as a simple subset selection problem: from all
given solvers, select a subset for which the respective portfolio (which uses
the empirical hardness models learned in the previous step) achieves the
lowest total runtime on the validation set.

Then, online, to solve a given instance, the following steps are performed:

9. Optionally, run each pre-solver for up to some fixed cutoff time.
10. Compute feature values. If feature computation cannot be finished for some

reason (error, timeout), select the solver identified in step 6 above.
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11. Otherwise, predict each algorithm’s runtime using the empirical hardness
models from step 7 above.

12. Run the algorithm predicted to be fastest. If one solver fails to finish its run
(e.g., it crashes), run the algorithm predicted to be next-fastest.

In this work, we apply this general strategy to SAT and consider two different
settings. In the first, discussed in Section 4, we investigate a problem distri-
bution based on SAT-encoded quasi-group completion instances, which we ob-
tained from an existing generator. On this fairly homogeneous distribution, we
attempt to minimize average runtime. In our second setting, discussed in Sec-
tion 5, we study several different distributions defined by sets of representative
instances: the different categories of the SAT competition. These distributions
are all highly heterogeneous. Our goal here is to maximize the SAT competi-
tion’s scoring function: Score(P, Si) = 1000 · SF(P, Si)/ΣjSF(P, Sj), where the
speed factor SF(P, S) = timeLimit(P )/(1 + timeUsed(P, S)) reflects the fraction
of the maximum time allowed for an instance S that was used by solver P .1

Notice that when minimizing average runtime it does not much matter which
solver is chosen for an easy instance on which all solvers are relatively fast, as
the overall average will remain essentially unchanged. Given the competition’s
scoring function, however, we must always strive to choose the fastest algorithm.

3 Constructing Empirical Hardness Models

The success of an algorithm portfolio built using the methodology above depends
on our ability to learn empirical hardness models that can accurately predict a
solver’s runtime for a given instance using efficiently computable features. In
experiments presented in this paper, we use the same ridge regression method
(linear in a set of quadratic basis functions) that has previously proven to be
very successful in predicting runtime on uniform random k-SAT and on ombi-
natorial auction winner determination [24,19]. Other learning techniques (e.g.,
lasso regression, SVM regression, and Gaussian process regression) are also pos-
sible; it should be noted that our portfolio methodology is independent of the
method used for estimating an algorithm’s runtime.

Feature selection and ridge regression. To predict the runtime of an algo-
rithm A on an instance distribution D, we run algorithm A on n instances drawn
from D and compute for each instance i a set of features xi = [xi,1, . . . , xi,m].
We then fit a function f(x) that, given the features xi of instance i, yields a pre-
diction, yi, of A’s runtime on i. Unfortunately, the performance of learning algo-
rithms can suffer when some features are uninformative or highly correlated with
other features, and in practice both of these problems tend to arise. Therefore, we
first reduce the set of features by performing feature selection, in our case forward
selection. Next, we perform a quadratic basis function expansion of our feature
set to obtain additional pairwise product features xi,j · xi,k for j = 1 . . .m and
k = j + 1 . . .m. Finally, we perform another pass of forward selection on this

1 Please see http://www.satcompetition.org/2007/rules07.html for details.

http://www.satcompetition.org/2007/rules07.html
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extended set to determine our final set of basis functions, such that for instance i
we obtain an expanded feature vector φi = φ(xi) = [φ1(xi), . . . , φd(xi)], where
d is the number of basis functions. We then use ridge regression to fit the free pa-
rameters w of the function fw(x) as follows. Let ỹ be a vector with ỹi = log yi.
Let Φ be an n × d matrix containing the vectors φi for each instance in the
training set, and let I be the identity matrix. Finally, let δ be a (small) regular-
ization constant (to penalize large coefficients w and thereby increase numerical
stability). Then, we compute w = (δI + Φ�Φ)−1Φ�ỹ. Given a previously un-
seen instance j, a log runtime prediction is obtained by computing the instance
features xj and evaluating fw(xj) = w�φ(xj).

Accounting for Censored Data. As is common with heuristic algorithms for
solving NP-complete problems, SAT algorithms tend to solve some instances
very quickly, while taking an extremely long amount of time to solve other in-
stances. Indeed, this property of SAT solvers is precisely our motivation for
building an algorithm portfolio. However, this property has a downside: runtime
data can be very costly to gather, as individual runs can literally take weeks
to complete, even when other runs on instances of the same size take only mil-
liseconds. The common solution to this problem is to “censor” some runs by
terminating them after a fixed cutoff time.

The bias introduced by this censorship can be dealt with in three ways. (We
evaluate these three techniques experimentally in Section 4; here we discuss
them conceptually.) First, censored data points can be discarded. Since the role
of empirical hardness models in an algorithm portfolio can be seen as warning
us away from instance-solver pairs that will be especially costly, this approach is
highly unsatisfactory—the hardness models cannot warn us about parts of the
instance space that they have never seen.

Second, we can pretend that all censored data points were solved at exactly the
cutoff time. This approach is better, as it does record hard cases and recognizes
them as being hard. (We have used this approach in past work.) However, it
still introduces bias into hardness models by systematically underestimating the
hardness of censored instances.

The third approach is to build models that do not disregard censored data
points, but do not pretend that the respective runs terminated successfully at the
cutoff time either. This approach has been extensively studied in the “survival
analysis” literature in statistics, which originated in actuarial questions such as
estimating a person’s lifespan given mortality data and the ages and features of
other people still alive. (Observe that this problem is the same as ours, except
that for us data points are always censored at the same value. This subtlety
turns out not to matter.) Gagliolo et al. showed that censored sampling can
have substantial impact on the performance of restart strategies for solving SAT
[21]. Different from their solution, we chose the simple, yet effective method by
Schmee & Hahn [27] to deal with censored samples. In brief, this method consists
of repeating the following steps until convergence:

1. Estimate the runtime of censored instances using the hardness model, con-
ditioning on the fact that each runtime equals or exceeds the cutoff time.
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2. Train a new hardness model using true runtimes for the uncensored instances
and the predictions generated in the previous step for the censored instances.

Using Hierarchical Hardness Models. This section Summarizes Ideas from
a Companion paper [29]. Previous research on empirical hardness models for
SAT has shown that we can achieve better prediction accuracy and simpler
models than with models trained on mixed instance sets (“unconditional mod-
els”; Muncond) if we restrict ourselves to only satisfiable or unsatisfiable instances
[24]. Of course, in practice we cannot divide instances in this way; otherwise we
would not need to run a SAT solver in the first place. The idea of a hierarchical
hardness model is to first predict an instance’s satisfiability using a classification
algorithm, and then to predict its hardness conditioned on the classifier’s predic-
tion. We use the Sparse Multinomial Logistic Regression (SMLR) classifier [14],
but any classification algorithm that returns the probability of belonging to each
class could be used. We train empirical hardness models (Msat, Munsat) using
quadratic basis-function regression for both satisfiable and unsatisfiable training
instances. Then we train a classifier to predict the probability that an instance
is satisfiable. Finally, we build hierarchical hardness models using a mixture-of-
experts approach with clamped experts: Msat and Munsat. We evaluate both
models on test data, and weight each model’s prediction by the predicted useful-
ness of that model. (Further details can be found in the companion paper [29].)

4 Evaluating SATzilla-07 on the QCP Data Set

In the following, we will describe the design and empirical analysis of an al-
gorithm portfolio for solving relatively homogeneous QCP instances. The pri-
mary motivation for this part of our work was to demonstrate how our ap-
proach works in a relatively simple, yet meaningful, application scenario. At the
same time, we did not want to make certain aspects of this application, such as
solver selection, overly specific to the QCP instance distribution. The equally
important goal of a full-scale performance assessment is addressed in Section 5,
where we apply SATzilla-07 to a broad range of instances from past SAT
competitions.

1. Selecting Instances. In the quasi-group completion problem (QCP), the
objective is to determine whether the unspecified entries of a partial Latin square
can be filled to obtain a complete Latin square. QCP instances are widely used
in the SAT community to evaluate the performance of SAT solvers. We gen-
erated 23 000 QCP instances around the solubility phase transition, using the
parameters given by Gomes & Selman [9]. Specifically, the order n was drawn
uniformly from the interval [26, 43], and the number of holes H (open entries
in the Latin square) was drawn uniformly from [1.75, 2.3]× n1.55. We then con-
verted the respective QCP instances to SAT CNF format. On average, the SAT
instances in the resulting QCP data set have 3 784 variables and 37 755 clauses,
but there is significant variability across the set. As expected, there were almost
equal numbers of satisfiable and unsatisfiable instances (50.3% vs 49.7%).
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2. Selecting Candidate Solvers. In order to build a strong algorithm portfo-
lio, it is necessary to choose solvers whose runtimes are relatively uncorrelated.
We have tended to find that solvers designed for different problem domains
are less correlated than solvers designed for the same domain. On QCP, there
is very little runtime correlation (Pearson’s r = −0.055) between Eureka [23]
(INDUSTRIAL) and OKsolver [15] (RANDOM), which makes these two solvers per-
fect candidates for SATzilla-07. On the other hand, the runtime correlation be-
tween Eureka (INDUSTRIAL) and Zchaff Rand [22] (INDUSTRIAL) is much higher
(r = 0.81), though still low enough to be useful.

These solvers were chosen because they are known to perform well on various
types of SAT instances (as can be seen, e.g., from past SAT competition results).
It should be noted, however, that on QCP, they are dominated by other solvers,
such as Satzoo [5]; nevertheless, as previously explained, our goal in this eval-
uation was not to construct a highly QCP-specific portfolio, but to demonstrate
and validate our general approach.

3. Choosing Features. Instance features are very important for building accu-
rate hardness models. Good features should correlate well with (solver-specific)
instance hardness, and they should be cheap to compute, since feature compu-
tation time counts as part of SATzilla-07’s runtime.

Nudelman et al. [24] described 84 features for SAT instances. These features
can be classified into nine categories: problem size, variable-clause graph, variable
graph, clause graph, balance features, proximity to Horn formulae, LP-based,
DPLL probing, and local search probing. For the QCP data set, we ignored all LP-
based features, because they were too expensive to compute. After eliminating
features that were constant across our instance set, we ended up with 70 raw
features. The computation time for the local search and DPLL probing features
was limited to 4 CPU seconds each.

4. Computing Features and Runtimes. All our experiments were performed
using a computer cluster consisting of 55 machines with dual Intel Xeon 3.2GHz
CPUs, 2MB cache and 2GB RAM, running Suse Linux 9.1. All runs of any solver
that exceeded 1 CPU hour were aborted (censored). The time for computing all
features of a given instance was 13 CPU seconds on average and never exceeded
60 CPU seconds.

We randomly split our data set into training, validation and testing sets at a
ratio of 70:15:15. All parameter tuning was performed on the validation set, and
the test set was used only to generate the final results reported here. Although
test and validation sets of 15% might seem small, we note that each of them
contained 3 450 instances.

5. Identifying Pre-solvers. Since in this experiment, our goal was simply to
minimize expected runtime, a pre-solving step was unnecessary.

6. Identifying the Winner-take-all Algorithm. We computed average run-
times for all solvers on the training data set, using the cutoff time of 3600 CPU
seconds for unsuccesful runs and discarding those instances that were not solved
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Fig. 1. Actual vs predicted runtime for OKsolver on selected (easy) instances from
QCP with cutoff time 10−0.5. Left: trained with complete data; right: censored data
points are discarded, RMSE for censored data: 1.713.
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Fig. 2. Actual vs predicted runtime for OKsolver on selected (easy) instances from
QCP with cutoff time 10−0.5. Left: set runtime for censored data points as cutoff time,
RMSE for censored data: 0.883; right: using the method of Schmee & Hahn [27], RMSE
for censored data: 0.608.

by any of the solvers (the latter applies to 5.2% of the instances from the QCP
instance set). The average runtimes were 546 CPU seconds for OKsolver, 566
CPU seconds for Eureka, and 613 CPU seconds for Zchaff Rand; thus, OKsolver
was identified as the winner-take-all algorithm.

7. Learning Empirical Hardness Models. We learned empirical hardness
models as described in Section 3. For each solver, we used forward selection to
eliminate problematic features and kept the model with the smallest validation
error. This lead to empirical hardness models with 30, 30 and 27 features for
Eureka, OKsolver and Zchaff Rand, respectively. When evaluating these mod-
els, we specifically investigated the effectiveness of our techniques for censored
sampling and hierarchical models.

Censored Sampling. We gathered OKsolver runtimes on a set of all-satisfiable
QCP instances of small order. The instances were chosen such that we could
determine true runtimes in all cases; we then artificially censored our runtime



720 L. Xu et al.

−2 0 2 4 6
−2

−1

0

1

2

3

4

5

6

Log predicted runtime [sec]

Lo
g 

ac
tu

al
 ru

nt
im

e 
[s

ec
]

satisfiable
unsatisfiable

−2 0 2 4 6
−2

−1

0

1

2

3

4

5

6

Log predicted runtime [sec]

Lo
g 

ac
tu

al
 ru

nt
im

e 
[s

ec
]

satisfiable
unsatisfiable

Fig. 3. Actual vs predicted runtime plots for Eureka on QCP. Left: model using a model
selection oracle, RMSE=0.630; right: unconditional model, RMSE=1.111.
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Fig. 4. Left: Performance of the SMLR classifier on QCP. Right: Actual vs predicted
runtime for Eureka on QCP using a hierarchical hardness model, RMSE=0.938.

data, using a cutoff time of 10−0.5 CPU seconds, and compared the various
methods for dealing with censored data surveyed in Section 3 on the resulting
data. Fig. 1 (left) shows the runtime predictions achieved by the hardness model
trained on ideal, uncensored data (RMSE=0.146). In contrast, Fig. 1 (right)
shows that throwing away censored data points leads to very noisy runtime
prediction for test instances whose true runtimes are higher than the cutoff
time (RMSE for censored data: 1.713). Fig. 2 (left) shows the performance of
a model trained on runtime data in which all censored points were labelled as
having completed at exactly the cutoff time (RMSE for censored data: 0.883).
Finally, Fig. 2 (right) shows that a hardness model trained using the method
of Schmee & Hahn [27] yields the best prediction accuracy (RMSE for censored
data: 0.608). Furthermore, we see good runtime predictions even for instances
where the solver’s runtime is up to half an order of magnitude (a factor of three)
greater than the cutoff time. When runtimes get much bigger than this, the
prediction becomes much noisier, albeit still better than we observed earlier.
(We obtained similar results for the two other solvers, Eureka and Zchaff Rand.

Hierarchical Hardness Models. Fig. 3 compares the runtime predictions made by
a model with access to a model selection oracle (Moracular), and an unconditional
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Fig. 5. Left: Average runtime for different solvers on QCP; the hollow box for
SATzilla-07 represents the time used for computing instance features (13 CPU sec
on average). Right: Empirical cumulative distribution functions (CDFs) for the same
runtime data.

model (Muncond) for the Eureka solver on the QCP instance set. Moracular defines an
upper bound on performance with the conditional model. Overall, Muncond tends
to make considerably less accurate predictions (RMSE= 1.111) than Moracular

(RMSE=0.630). We report the performance of the classifier and hierarchical hard-
ness models in Fig. 4. The overall classification accuracy is 89%; as shown in Fig. 4
(left), the classifier is nearly certain, and usually correct, about the satisfiability of
most instances. Although our hierarchicalhardnessmodel did not achieve the same
runtimepredictionaccuracyasMoracular, its performance is 36%closer to this ideal
than Muncond in terms of RMSE. (Note that hierarchical models are not guaran-
teed to achieve better performance than unconditional models, since the use of the
wrong conditional model on certain instances can cause large prediction errors.)
Similar results are obtained for the two other solvers, OKsolver and Zchaff Rand.

8. Solver Subset Selection. Using our automated subset selection procedure,
we determined that all three solvers performed strongly enough on QCP that
dropping any of them would lead to reduced portfolio performance.

9. Performance Analysis. We compare the average runtime of SATzilla-07,
an algorithm selection scheme based on a perfect oracle and all of SATzilla-07’s
component solvers in Fig. 5 (left). On the test data set, all component solvers
have runtimes of around 600 CPU seconds on average; OKsolver, the “winner-
take-all” choice, has an average runtime of 543 CPU seconds. SATzilla-07’s
average runtime, 205 CPU seconds, is much lower. Although SATzilla-07’s
performance is much better than any of its components, it still does significantly
worse than the oracle. In particular, it chooses the same solver as the oracle only
for 62% of the instances. However, in most of these cases, the runtimes of the
solvers picked by SATzilla-07 and the oracle are very similar, and only for 12%
of the QCP instances, the solver chosen by SATzilla-07 is more than 10 CPU
seconds slower.

A more nuanced view of the algorithms’ empirical performance is afforded by
the cumulative distribution functions (CDFs) of their runtimes over the given in-
stance set; these show the fraction of instances that would have been solved if
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runtime was capped at a given bound. As seen from Fig. 5 (right), for very short
runtimes, SATzilla-07 performs worse than its component solvers, because it
requires about 13 CPU seconds (on average) to compute instance features. For
higher runtimes, SATzilla-07 dominates all of its component solvers, and within
the 1 CPU hour cutoff, SATzilla-07 solves about 6% more instances.

5 SATzilla-07 for the 2007 SAT Competition

In this section, we describe the SATzilla-07 solvers entered into the 2007 SAT
competition and demonstrate that these achieve state-of-the-art performance on
a variety of real-world instance collections from past SAT competitions. The
purpose of the SAT competitions is to track the state of the art in SAT solving,
to assess and promote new solvers, and to identify new challenging benchmarks.
In 2007, more than 30 solvers entered the SAT competition. Solvers were scored
taking into account both speed and robustness. There were three main categories
of instances, RANDOM, HANDMADE (or CRAFTED), and INDUSTRIAL.

We submitted three different versions of SATzilla-07 to the 2007 SAT compe-
tition. Two versions specifically targeted the RANDOM and HANDMADE categories.2

In order to study an even more heterogeneous instance distribution, a third ver-
sion of SATzilla-07 attempted to perform well in all three categories of the
competition; we call this meta-category BIG-MIX.

Following our general procedure for portfolio construction (see Section 2), the
three versions of SATzilla-07 were obtained as follows.

1. Selecting Instances. In order to train empirical hardness models for any of
the above scenarios, we required instances that would be similar to those used
in the real competition. For this purpose we used instances from the respective
categories in all previous SAT competitions, as well as in the 2006 SAT Race
(which only featured industrial instances). Instances that were repeated in pre-
vious competitions were also repeated in our data sets. Overall, there are 4 811
instances (all of them used in BIG-MIX), 2 300 instances in category RANDOM and
1 490 in category HANDMADE. About 75% of these instances can be solved by at
least one solver within 1 800 CPU seconds on our reference machine.

2. Selecting Solvers. We considered a wide variety of solvers from previous SAT
competitions and the2006SATRace for inclusion inourportfolio.Wemanually an-
alyzed the results of these competitions, selecting all algorithms that yielded the
best performance on some subset of instances. Since our focus was on both sat-
isfiable and unsatisfiable instances, we did not choose any incomplete algorithms
(with the exception of SAPS as a pre-solver). In the end we selected seven high-
performance solvers as candidates for SATzilla-07: Eureka [23], Zchaff Rand
[22],Kcnfs2006 [4],Minisat2.0 [6],March dl2004 [11],Vallst [28], andRsat [25].
Since preprocessing has proven to be an important element for some algorithms in
previous SAT competitions, we considered seven additional solvers (labeled “+”

2 We built a version of SATzilla-07 for the INDUSTRIAL category after the submission
deadline and found its performance to be qualitatively similar to the results we
present here: on average, it is twice as fast as the best single solver, Eureka.
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in the following) that first run the Hyper preprocessor [1], followed by one of the
above algorithms on the preprocessed instance. This doubled the number of our
component solvers to 14.

3. Choosing features. In order to limit the additional cost for computing
features, we limited the total feature computation time per instance to 60 CPU
seconds. Again, we used the features of Nudelman et al. [24], but excluded a
number of computationally expensive features, such as clause graph and LP-
based features. The computation time for each of the local search and DPLL
probing features was limited to 1 CPU second. The number of raw features used
in SATzilla-07 is 48.

4. Computing features and runtimes. We collected feature and runtime
data using the same environment and process as for the QCP data set, but because
of time constraints and the large number of solvers, we reduced the cutoff time
to 1 800 CPU seconds.

5. Identifying pre-solvers. Since the scoring function used in the 2007 SAT
competition rewards quick algorithm runs, we cannot afford the feature com-
putation for very easy instances (for which runtimes greater than one second
are already too large). Thus, we have to solve easy instances before even com-
puting any features. Good algorithms for pre-solving solve a large proportion
of instances quickly; based on an examination of the training runtime data we
chose March dl2004 and the local search algorithm SAPS (UBCSAT implementa-
tion with the best fixed parameter configuration identified by Hutter et al. [13])
as pre-solvers. Within 5 CPU seconds on our reference machine, March dl2004
solved 32%, 30.5%, and 29.9% of the instances in our RANDOM, HANDMADE and
BIG-MIX data sets, respectively. For the remaining instances, we let SAPS run for
2 CPU seconds, because we found its runtime to be almost completely uncor-
related with March dl2004 (r = −0.014 for the 398 remaining instances solved
by both solvers). SAPS solved 12.0%, 6.9%, and 3.6% of the remaining RANDOM,
HANDMADE and BIG-MIX instances, respectively.

6. Identifying winner-takes-all algorithm. Each solver’s performance is
reported in Table 1; as can be seen from this data, the winner-take-all solvers
for BIG-MIX, RANDOM and HANDMADE happened always to be March dl2004.

7. Learning empirical hardness models. We learned empirical hardness
models as described in Section 3, using the Schmee & Hahn [27] procedure for
dealing with censored data as well as hierarchical empirical hardness models [29].

8. Solver subset selection. Based on the results of automatic exhaustive
subset search as outlined in Section 2, we obtained portfolios comprising the
following solvers for our three data sets:

– BIG-MIX: Eureka, kcnfs2006, March dl2004, Rsat;

– RANDOM: March dl2004, kcnfs2006, Minisat2.0+;

– HANDMADE: March dl2004, Vallst, March dl2004+, Minisat2.0+, Zchaff Rand+
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Table 1. Percentage of instances solved by each algorithm and average runtime over
these instances. “+” means with preprocessing; preprocessing is not carried out for
industrial instances as it would often time out.

BIG-MIX RANDOM HANDMADE
Solvers Avg. Time Solved [%] Avg. Time Solved [%] Avg. Time Solved [%]

Eureka 319 42 310 28 335 42
Kcnfs2006 287 37 257 56 428 26

March dl2004 200 52 200 57 226 55
Minisat2.0 328 52 302 44 361 53

Rsat 318 52 318 45 333 52
Vallst 334 41 369 30 220 47

Zchaff Rand 295 38 241 25 258 40
Eureka+ 320 29 352 43

Kcnfs2006+ No preprocessing 251 56 403 27
March dl2004+ carried out 200 57 220 54
Minisat2.0+ for industrial 313 44 355 53

Rsat+ instances 310 44 365 52
Vallst+ 366 30 191 48

Zchaff Rand+ 272 26 233 41
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Fig. 6. Left: Average runtime, right: runtime CDF for different solvers on BIG-MIX; the
average feature computation time was 6 CPU seconds

9. Performance analysis. For all three data sets we obtained excellent results:
SATzilla-07 always outperformed all its constituent solvers in terms of average
runtime and instances solved at any given time. The SAT/UNSAT classifierwas
surprisingly effective in predicting satisfiability of RANDOM instances, where it
reached a classification accuracy of 93%. For HANDMADE and BIG-MIX, the clas-
sification accuracy was still at a respectable 78% and 83% (i.e., substantially
better than random guessing).

For BIG-MIX, the frequencies with which each solver was selected by a per-
fect oracle and SATzilla-07 were found to be similar. However, this does not
mean that our hardness models made perfect predictions. Only for 27% of the in-
stances, SATzilla-07 picked exactly the same solver as the oracle, but it selected
a “good solver” (no more than 10 CPU seconds slower) for 66% of the instances.
This indicates that many of the mistakes made by our models occur in situations
where it does not matter much, because the selected and the best algorithms
have very similar runtimes. Although the runtime predictions were not perfect,
SATzilla-07 achieved very good performance (see Fig. 6). Its average runtime
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Fig. 7. Left: Average runtime, right: runtime CDF for different solvers on RANDOM; the
average feature computation time was 3 CPU seconds
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Fig. 8. Left: Average runtime, right: runtime CDF for different solvers on HANDMADE;
the average feature computation time was 3 CPU seconds

(272 CPU seconds) was half that of the best single solver, March dl2004 (530
CPU seconds), and it solved 17% more instances than any single solver within
the given time limit.

For data set RANDOM, Fig. 7 (left) shows that SATzilla-07 performed better
than the best solver, March dl2004, with an average runtime that was 36%
lower. However, this difference is not as large as for the QCP and BIG-MIX data
sets, which is not surprising since even the oracle cannot improve much upon
March dl2004 in the RANDOM case. The runtime CDF plot (Fig. 7, right) shows
that the performance of both, SATzilla-07 and March dl2004, was close to that
of the oracle, but SATzilla-07 dominated March dl2004; in particular, for the
same overall cutoff time, SATzilla-07 solved 5% more instances.

The performance results for HANDMADE were even better. Using five component
solvers, SATzilla-07was more than twice as fast on average than the best single
solver (see Fig. 8, left). TThe CDF plot in Fig. 8 (right) shows that SATzilla-07
dominated all its components and solved 11% more instances than the best
single solver; overall, its performance was found to be very close to that of the
oracle.
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6 Conclusions

Algorithms can be combined into portfolios to build a whole greater than the
sum of its parts. In this work, we have significantly extended earlier work on
algorithm portfolios for SAT that select solvers on a per-instance basis using
empirical hardness models for runtime prediction. We have demonstrated the
effectiveness of our new portfolio construction method, SATzilla-07, on a large
set of SAT-encoded QCP instances as well as on three large sets of SAT com-
petition instances. Our own experiments show that our SATzilla-07 portfolio
solvers always outperform their components. Furthermore, SATzilla-07’s excel-
lent performance in the recent 2007 SAT competition demonstrates the practical
effectiveness of our portfolio approach. SATzilla is an open project. We believe
that with more solvers and training data added, SATzilla’s performance will
continue to improve. SATzilla-07 is available online at
http://www.cs.ubc.ca/labs/beta/Projects/SATzilla.
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