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Université Libre de Bruxelles, IRIDIA, CoDE
Av. F. Roosevelt 50 B-1050 Brussels, Belgium

stuetzle@ulb.ac.be

Abstract

The determination of appropriate values for free algorithm
parameters is a challenging and tedious task in the design of
effective algorithms for hard problems. Such parameters in-
clude categorical choices (e.g., neighborhood structure in lo-
cal search or variable/value ordering heuristics in tree search),
as well as numerical parameters (e.g., noise or restart tim-
ing). In practice, tuning of these parameters is largely carried
out manually by applying rules of thumb and crude heuris-
tics, while more principled approaches are only rarely used.
In this paper, we present a local search approach for algo-
rithm configuration and prove its convergence to the globally
optimal parameter configuration. Our approach is very ver-
satile: it can, e.g., be used for minimising run-time in de-
cision problems or for maximising solution quality in opti-
misation problems. It further applies to arbitrary algorithms,
including heuristic tree search and local search algorithms,
with no limitation on the number of parameters. Experi-
ments in four algorithm configuration scenarios demonstrate
that our automatically determined parameter settings always
outperform the algorithm defaults, sometimes by several or-
ders of magnitude. Our approach also shows better perfor-
mance and greater flexibility than the recent CALIBRA sys-
tem. Our ParamILS code, along with instructions on how to
use it for tuning your own algorithms, is available on-line at
http://www.cs.ubc.ca/labs/beta/Projects/ParamILS.

Introduction
The problem of setting an algorithm’s free parameters for
maximal performance on a class of problem instances is
ubiquitous in the design and empirical analysis of algo-
rithms. Examples of parameterised algorithms can be
found in tree search (Eén & Sörensson 2003) and local
search (Hoos & Stützle 2005); commercial solvers, such as
ILOG CPLEX1, also offer a plethora of parameter settings.
Considerable effort is often required to find a default param-
eter configuration that yields high and robust performance
across all or at least most instances within a given set or dis-
tribution (Birattari 2004; Adenso-Diaz & Laguna 2006).

The use of automated tools for finding performance-
optimising parameter settings has the potential to liberate al-
gorithm designers from the tedious task of manually search-
ing the parameter space. Notice that the task of constructing
an algorithm by combining various building blocks can be
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seen as a special case of algorithm configuration: Consider,
for example, two tree search algorithms for SAT that only
differ in their preprocessing and variable ordering heuristics
– in fact, these can be seen as a single algorithm with two
nominal parameters.

Algorithm configuration is commonly (either implicitly
or explicitly) treated as an optimisation problem, where
the objective function captures performance on a fixed set
of benchmark instances. Depending on the number and
type of parameters, the methods used to solve this op-
timisation problem include exhaustive enumeration, beam
search (Minton 1996), experimental design (Coyet al.
2001; Bartz-Beielstein 2006), genetic programming (Oltean
2005), the application of racing algorithms (Birattariet al.
2002; Birattari 2004), and combinations of fractional ex-
perimental design and local search (Adenso-Diaz & Laguna
2006).

Our work presented in the following offers three main
contributions:

• We define the first iterated local search (ILS) algorithm
for the algorithm configuration problem. Our approach
works for both, deterministic and randomised algorithms
and can be applied regardless of tuning scenario and opti-
misation objective.

• We study the effects of over-confidence and over-tuning
that occur when an algorithm is tuned based on a finite
number of training instances (the dominant approach in
the literature). While the possibility of these effects was
shown previously by Birattari (2004), we give the first
precise statistical arguments and experimental results for
the fact that cost estimates can be orders of magnitude too
optimistic, which leads to strongly impaired performance.

• We extend our basic ILS algorithm in order to avoid over-
confidence and over-tuning. A theoretical analysis of the
resulting algorithm proves its convergence to the optimal
parameter configuration.

In an empirical study comprising four tuning scenarios and
three algorithms, our automatically determined parameter
configurations always outperform the algorithms’ default
settings, sometimes by several orders of magnitude. In all
experiments, our approach reaches or exceeds the perfor-
mance of the recent CALIBRA system (Adenso-Diaz & La-
guna 2006), while also being more broadly applicable.



Problem Definition and Notation
In typical tuning scenarios, we are given an algorithmA,
whose parameters are to be optimised for a distribution (or
set) of problem instances,D. With each of the algorithm
parameters, a domain of possible values is associated, and
the parameter configuration space,Θ, is the cross-product
of these domains (or a subset thereof, if some combinations
of parameter values are excluded). The elements ofΘ are
calledparameter configurations, and we useA(θ) to denote
algorithmA with parameter configurationθ ∈ Θ. The ob-
jective of thealgorithm configuration problemis then to find
the parameter configurationθ ∈ Θ resulting in the best per-
formance ofA(θ) on distributionD.

The meaning of “best” performance depends on the appli-
cation scenario, which we deliberately leave open. The only
assumption we make is that it is possible to assign a scalar
cost,sc(A, θ, I, s), to any single run ofA(θ) on an instance
I, in the case of an randomised algorithm using seeds. This
cost could, for example, be run-time, approximation error
or the improvement achieved over an instance-specific ref-
erence cost. A distribution over instances and, in the case
of randomised algorithms, a distribution over random seeds
then induce a cost distributionCD(A, θ,D).

Thus, the formalised objective in algorithm configura-
tion is to minimise a statistic,c(θ), of this cost distribution,
such as the mean, median or some other quantile. This is
a stochastic optimisation problem, because the cost distri-
butionsCD(A, θ,D) are typically unknown, and we can
only acquire approximations of their statisticsc(θ) based
on a limited number of samples, that is, the cost of single
executions ofA(θ). We denote an approximation ofc(θ)
based onN samples bŷcN (θ). Birattari (2004) proved that
if the statistic of interest is expected cost, then the variance
of ĉN (θ) is minimised by samplingN instances and per-
forming a single run on each. We follow this approach here:
when our finite training set hasM ≥ N instances, we base
our approximation̂cN (θ) on one run each for the firstN in-
stances. For deterministic algorithms,ĉN is only of interest
for N ≤ M ; for randomised algorithms, ifN > M , we loop
through theM instances, using multiple runs per instance to
computêcN (θ).

Iterated Local Search
in Parameter Configuration Space

Depending on the number of algorithm parameters and their
type (categorical, ordinal, continuous), the task of finding
the best parameter configuration for an algorithm can be
easy or hard. If there are only very few parameters, param-
eter tuning tends to be easy. In this case, it is often most
convenient to allow a certain number of values for each pa-
rameter (discretization) and then to try each combination of
these parameter values; this approach is also known asfull
factorial design.

If an algorithm has too many parameters, one often reverts
to local optimisation, because full factorial design becomes
intractable as the number of possible configurations grows
exponentially with the number of parameters. In such situ-
ations, the manual optimisation process is typically started
with some parameter configuration, and then parameter val-
ues are modified one at a time, where new configurations
are accepted whenever they result in improved performance.

Algorithm 1: ParamILS
Outline of iterated local search in parameter configuration
space; the specific variants of ParamILS we study,BasicILS(N)
andFocusedILS, differ in the procedurebetter.

Input : Parameter configuration spaceΘ, neighbourhood
relationN , procedurebetter(comparesθ, θ′ ∈ Θ).

Output : Best parameter configurationθ found.
θ0 ← default parameter configurationθ ∈ Θ;1
for i← 1...R do2

θ ← randomθ ∈ Θ;3
if better(θ, θ0) then θ0 ← θ;4

θils ← IterativeFirstImprovement(θ0,N );5
while not TerminationCriterion()do6

θ ← θils;7

// ===== Perturbation
for i← 1...s do θ ← randomθ′ ∈ N (θ);8

// ===== LocalSearch
θ ← IterativeFirstImprovement(θ,N );9

// ===== AcceptanceCriterion
if better(θ, θils) then θils ← θ;10
with probability prestartdo θils ← randomθ ∈ Θ;11

return overall bestθ found;12

ProcedureIterativeFirstImprovement(θ,N )13
repeat14

θ′ ← θ;15

foreach θ′′ ∈ N (θ′) in randomised orderdo16
if better(θ′′, θ′) then θ ← θ′′; break;17

until θ′ = θ;18
return θ;19

These sequential modifications are typically continued un-
til no change of a single parameter yields an improvement
anymore.

This widely adopted procedure corresponds to a manually
executed local search in parameter configuration space:
the search space is the set of all possible configurations,
the objective function quantifies the performance achieved
when using a given configuration, the initial configuration
is the one used at the start of the manual search process,
the neighbourhood is a one-exchange neighbourhood (one
parameter is modified in each search step) and the search
strategy is iterative first improvement. Viewing this manual
procedure as a local search process is advantageous for
at least two reasons: it suggests an automation of the
procedure as well as improvements based on ideas from the
stochastic local search community.

Simple iterative improvement search terminates in the
first local optimum it encounters (i.e., in a parameter con-
figuration that cannot be improved by modifying a single
parameter value); to overcome this problem, in the follow-
ing we use iterated local search (ILS) (Lourenço, Martin,
& Stützle 2002) to search for performance-optimising para-
meter configurations. ILS is a stochastic local search method
that builds a chain of local optima by iterating through a
main loop consisting of, in this order, (i) a solution pertur-
bation to escape from local optima, (ii) a subsidiary local
search procedure and (iii) an acceptance criterion that is used
to decide whether to keep or reject a newly obtained candi-
date solution.

ParamILS (Algorithm 1) is an ILS method that searches



parameter configuration space. It uses a combination of de-
fault and random settings for initialisation, employs iterative
first improvement as a subsidiary local search procedure,
uses a fixed number,s, of random moves for perturbation,
and always accepts better or equally good parameter config-
urations, but re-initialises the search at random with prob-
ability prestart.2 Furthermore, it is based on a one-exchange
neighbourhood, that is, neighbouring parameter configura-
tions differ in one parameter value only.

In practice, many heuristic algorithms have a number of
parameters that are only relevant when some other “higher-
level” parameters take certain values; we call such parame-
tersconditional. (For example, SAT4J implements six dif-
ferent clause learning mechanisms, three of which are pa-
rameterised by conditional parameters governing percent-
ages or clause lengths.) ParamILS deals with these condi-
tional parameters by excluding all configurations from the
neighbourhood of a configurationθ which only differ in a
conditional parameter that is not relevant inθ.

In the basic variant of ParamILS,BasicILS(N ), procedure
better(θ1, θ2) compares cost approximationŝcN (θ1) and
ĉN (θ2) based on exactlyN samples from the respective
cost distributionsCD(A, θ1,D) and CD(A, θ2,D). For
each configurationθ, these sample costs are gathered by
executingA(θ) on the sameN instances and recording the
N costs; they are reused in later computations ofĉN (θ).

Over-confidence and Over-tuning
Like many other approaches in the literature (Minton 1996;
Adenso-Diaz & Laguna 2006), BasicILS employs an opti-
misation approach, trying to minimise cost approximations
ĉN (θ) based on a fixed number ofN samples. In analogy to
machine learning, we call theseN samples thetraining set;
thetest setconsists of additional samples, that is, the cost of
additional runs on independently sampled instances.

There are two main problems associated with a fixed-size
training set. We refer to the first one asover-confidence:
intuitively, this problem concerns the fact that the cost es-
timated for the best training configuration,θ∗train, under-
estimates the cost of the same configuration on the test
set. This essentially happens becauseθ∗train has the low-
est observed cost on the training set, that is,ĉN (θ∗train) =
min{ĉN (θ1), . . . , ĉN (θn)}, and this is a biased estimator of
c(θ∗), whereθ∗ ∈ argminθi

{c(θ1), . . . , c(θn)}. In fact,
E[min{ĉN(θ1), . . . , ĉN (θn)}] ≤ E[c(θ∗)] with equality
only holding in pathological cases (Birattari 2004). As a re-
sult, the optimisation typically “hallucinates” a much better
performance than it will achieve on an independent test set.

Consider the following example. Let the objective be to
minimise average cost using a budget that only allows a
single run per configurationθ ∈ Θ, and assume an expo-
nential cost distributionCD(A, θ,D) for each configuration
θ ∈ Θ (an assumption which, in the case of run-time dis-
tributions, is often not far from reality – see, e.g., Hoos &
Stützle (2005)). Then, we can express the distribution of
ĉ1(θ

∗

train) in closed form due to the following Lemma.

2Our choices of〈R, s, prestart〉 = 〈10, 3, 0.01〉 are somewhat
arbitrary – we have not experimented with other settings butwould
expect performance to be fairly robust with respect to theirchoice.

Lemma 1 (Bias for exponential distributions). LetA be an
algorithm with parameter configuration spaceΘ, and for
eachθ ∈ Θ, let CD(A, θ,D) ∼ Exp(λθ) for someλθ.
Then,̂c1(θ

∗

train) ∼ Exp(
∑

θ∈Θ λθ).3

The training cost̂cN (θ∗train) of θ∗train can thus underes-
timate the real costc(θ∗train) by far. In the extreme case of
λθ1

= · · · = λθn
in Lemma 1, a cost approximation based

on N = 1 samples underestimates the true mean cost by a
factor ofn in expectation, wheren is the number of param-
eter configurations evaluated. This effect increases with the
number of configurations evaluated and the variance of the
cost distributions , and it decreases asN is increased.

Over-confidence has many undesirable effects on empir-
ical studies and algorithm development. One consequence
is that if algorithm costs are only reported for the best out
of many parameter configurations, then these results are
typically underestimates. Another issue is that there is a
high chance for the best training configuration to just be a
lucky one that resulted in a large cost underestimate; hence,
the best training configurationθ∗train often performs much
worse than the true best configurationθ∗.

This can lead to the second problem encountered by
typical parameter optimisation approaches, dubbedover-
tuning (Birattari 2004): the unfortunate situation where
additional tuning actually impairs test performance. This
is analogous to over-fitting in supervised machine learning,
which can lead to arbitrarily poor test results. In an earlier
study, Birattari (2004) could only demonstrate a very small
over-tuning effect using an extremely large number of109

pseudo-runs; his analysis was qualitative, and he did not
suggest a solution to the problem. We demonstrate that
over-confidence and over-tuning can in fact severely impair
the performance of parameter optimisation methods (see
Figures 1(a) and 1(b)) and introduce a variant of ParamILS
that provably does not suffer from these effects.

Our approach is based on the fact that whenĉN (θ) is a
consistent estimator ofc(θ),4 the cost approximation be-
comes more and more reliable asN approaches infinity,
eventually eliminating over-confidence and the possibility
of mistakes in comparing two parameter configurations (and
thus, over-tuning). This is captured in the following Lemma.
Lemma 2 (No mistakes). Letθ1, θ2 ∈ Θ be any two param-
eter configurations withc(θ1) < c(θ2). Then, for consistent
estimatorŝcN , limN→∞ P (ĉN (θ1) ≥ ĉN (θ2)) = 0.

In order to optimise with respect to the true objective
function, this Lemma suggests to base the cost approxima-
tion on a large number of samples,N . However, using large
sample sizesN has the disadvantage that the evaluation of a
parameter configuration’s cost becomes very expensive.

Focused ILS
In this section, we introduce FocusedILS, a variant of
ParamILS that moves through configuration space quickly
but avoids the problems of over-confidence and over-tuning.
It achieves this goal by focusing samples on promising pa-
rameter configurations. In the following, we denote the

3The straight-forward proofs of this and the following lemmata
are provided in a companion technical report.

4Recall that̂cN (θ) is a consistent estimator forc(θ) iff
∀ǫ > 0 : limN→∞ P (|ĉN(θ)− c(θ)| < ǫ) = 1.



number of samples used to approximate a cost distribution
CD(A, θ,D) by N(θ).

In FocusedILS, procedurebetter(θ1, θ2) is somewhat
more complicated than in BasicILS. We say thatθ1

dominatesθ2 if, and only if, N(θ1) ≥ N(θ2) and the per-
formance ofA(θ1) using the firstN(θ2) samples is better
than that ofA(θ2); formally, ĉN(θ2)(θ1) < ĉN(θ2)(θ2).5

Procedurebetter(θ1, θ2) starts by acquiring one sample for
the configuration with smallerN(θi) (one each in the case
of ties). Then, it iteratively acquires samples for the configu-
ration with smallerN(θi) until one configuration dominates
the other and returns true if, and only if,θ1 dominatesθ2.

We also keep track of the total numberB of samples
acquired since the last improving step (the last time proce-
durebetter returned true). Wheneverbetter(θ1, θ2) returns
true, we acquireB “bonus” samples ofCD(A, θ1,D) and
resetB. This mechanism ensures that we acquire many
samples of good configurations, and that the error made in
every comparison of two configurationsθ1 andθ2 decreases
in expectation. Following Lemma 2, eventually the truly
betterθi will be preferred; based on this fact, we can prove
convergence to the true best parameter configuration.

Lemma 3(Unbounded number of evaluations). LetN(J, θ)
denote the number of samples used by FocusedILS at the
end of iterationJ to approximatec(θ). Then, for any
constantK and configurationθ ∈ Θ (with finite Θ),
limJ→∞ [P (N(J, θ)) ≥ K] = 1.

The proof of this lemma essentially exploits the proba-
bilistic random restarts performed within ParamILS, which
have the effect that the number of samples for any config-
uration grows arbitrarily large as the number of iterations
approaches infinity.

Theorem 4 (Convergence of FocusedILS). As the number
of iterations approaches infinity, FocusedILS converges to
the true optimal parameter configurationθ∗.

Proof. According to Lemma 3,N(θ) grows unboundedly
for eachθ ∈ Θ. For eachθ1, θ2, asN(θ1) andN(θ2) ap-
proach infinity, Lemma 2 states that in a pairwise compar-
ison, the truly better configuration will be preferred. The
theorem follows from the fact that eventually, FocusedILS
visits all finitely many parameter configurations and prefers
the best one over all others with probability one.

Empirical evaluation
We report computational experiments for tuning three differ-
ent algorithms: SAT4J (http://www.sat4j.org), a tree search
solver for SAT; SAPS (Hutter, Tompkins, & Hoos 2002), a
local search algorithm for SAT; and GLS+, a local search
algorithm for solving the Most Probable Explanation (MPE)
problem (Hutter, Hoos, & Stützle 2005). Their respective
parameters are summarised in Table 1 (for details, see the
original publications). For discretisation, we picked lower
and upper bounds for each parameter (same as for CALI-
BRA) and discretised the interval uniformly or uniformly

5Note that some of the samples forCD(A, θ1,D) are not used
in this comparison, because for heterogeneous instance distribu-
tions,D, it is more robust to base the comparison only on the first
N(θ2) sampled instances for which both configurations have been
evaluated.

Parameter Default value Values considered for tuning

SAPS: 74 = 2 401 parameter configurations

α 1.3 1.01, 1.066, 1.126, 1.189, 1.256, 1.326, 1.4
ρ 0.8 0, 0.17, 0.333, 0.5, 0.666, 0.83, 1

Psmooth 0.05 0, 0.033, 0.066, 0.1, 0.133, 0.166, 0.2
wp 0.01 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06

GLS+: 2 × 6 × 5 × 4 × 7 = 1 680 parameter configurations

init MB-w(105) random, MB-w(105)
ρ 0.9 0.7, 0.8, 0.9, 0.99, 0.999, 1.00

Nρ 200 50, 200,103, 104, ∞
w 104 102, 103, 104, 105

b 102 0,102, 3 × 102, 103, 3 × 103, 104, 105

SAT4J: (5+1×5)×(3+3×5)×6×3×5×7×5 = 567 000 conf.

Variable order OrderHeap 6 categorical values, 1 of them parameterised
Learning strategy Minisat 6 categorical values, 3 of them parameterised

Data structure mixed 6 categorical values
Clause minimisation expensive 3 cat. values: none, simple, expensive

Variable decay 0.95 0.8, 0.85, 0.9, 0.95, 1.0
First restart 100 100, 200, 500, 1000, 5000, 30000, 100000

Restart multiplication 1.5 1.1, 1.3, 1.5, 1.7, 2.0

Table 1:Algorithms, their parameters and parameter values con-
sidered for tuning. For SAT4J, “X of them parameterised” forvari-
able order and learning strategy means that for X values of that
parameter, a conditional continuous parameter becomes relevant;
we consider five values for each such conditional parameter.

on a log scale. For SAT4J, the algorithm developer provided
a discretisation.

We carried out experiments for tuning SAT4J and SAPS
for a variety of instance distributions, including instances
from previous SAT competitions; an instance mix from
SATLIB; a single “quasi-group with holes” instance,QWH;
and a set of20 000 graph colouring instances based on
small-world graphs,SW-GCP(Gentet al. 1999). Due to
space limitations, we only report results for QWH (a fairly
easy instance allowing us to perform many runs) and SW-
GCP. We constructed two subclasses of SW-GCP:SW-GCP-
sat4j, containing all2 202 instances for which SAT4J takes
between five and ten seconds; andSW-GCP-saps, contain-
ing all 213 satisfiable instances with median SAPS run-time
between five and ten seconds.6

For GLS+, we optimise performance for instance set
GRID, a set of 100 grid-structured Bayesian networks with
25× 25 binary variables, random conditional probability ta-
bles and 10 evidence variables. GLS+ is the best-performing
algorithm for these instances (Hutter, Hoos, & Stützle 2005).
Each instance set with the exception of QWH is split into in-
dependent training and test sets; for QWH, test performance
is computed from independent runs on the same instance.

We consider four parameter optimisation scenarios:
• SAT4J-SW: Minimise SAT4J median run-time for set

SW-GCP-sat4j, using a cutoff of ten seconds.
• SAPS-SW: Minimise SAPS median run-time for set SW-

GCP-saps, using a cutoff of ten seconds.
• SAPS-QWH: Minimise the median run-length of SAPS

on the single instance QWH, using a cutoff of one second.
• GLS-GRID : Maximise the average probability GLS+

finds for the networks in GRID within 10 seconds, relative
to the best solution GLS+ finds with its default settings in

6All experiments were carried out on a cluster of 50 dual
3.2GHz Intel Xeon PCs with 2MB cache and 2GB RAM, running
OpenSuSE Linux 10.1. Reported runtimes are CPU times.



Scenario Default CALIBRA(100) BasicILS(100) FocusedILS p-value

GLS-GRID ǫ = 1.81
1.240 ± 0.469 0.965 ± 0.006 0.968 ± 0.002

1.234 ± 0.492 0.951 ± 0.004 0.949 ± 0.0001 .0016

SAPS-QWH
85.5K 8.6K ± 0.7K 8.7K ± 0.4K 10.2K ± 0.4K

steps 10.7K ± 1.1K 10.9K ± 0.6K 10.6K ± 0.5K .52

SAPS-SW
5.60 0.044 ± 0.005 0.040 ± 0.002 0.043 ± 0.005

seconds 0.053 ± 0.010 0.046 ± 0.01 0.043 ± 0.005 .0003

SAT4J-SW
7.02 N/A (too many 0.96 ± 0.59 0.62 ± 0.21

seconds parameters) 1.19 ± 0.58 0.65 ± 0.2 .00007

Table 2:Performance of CALIBRA(100), BasicILS(100) and Fo-
cusedILS in four tuning scenarios. For each scenario and approach,
we list training and test performance in the top and bottom row,
respectively (mean± stddev over 25 independent repetitions); “p-
value” refers to the p-value of a Wilcoxon signed rank test for test-
ing the null hypothesis “there is no difference between CALIBRA
and FocusedILS results” (BasicILSvsFocusedILS for SAT4J).

one hour. We equivalentlyminimisethe reciprocal value
ǫ; valuesǫ < 1 mean that tuned parameters find better
solutions in 10 seconds than the default finds in one hour.

We compare the results of BasicILS and FocusedILS
to the algorithms’ default parameters as well as to the
parameter configurations found by the recent CALIBRA
system (Adenso-Diaz & Laguna 2006). For each optimi-
sation scenario, we perform multiple independent training
repetitions of CALIBRA, BasicILS and FocusedILS; each
repetition consisted of an independent execution of the algo-
rithm to be tuned. Test performance for each approach and
repetition was computed on the same independent test set.

CALIBRA(100) and BasicILS(100) both use a cost ap-
proximation based onN = 100 samples for each configu-
ration. Each repetition is terminated aftern = 200 configu-
rations have been visited (which is the CALIBRA default).
This leads to a total ofn × N = 20 000 algorithm execu-
tions per repetition, which took about 10h for SAPS-SW, 1h
for SAPS-QWH and 55h for GLS-GRID; the same cutoff
times were used for FocusedILS. For SAT4J-SW, we chose
a cutoff time of 10h.

Table 2 shows that CALIBRA(100) and BasicILS(100)
both lead to large improvements over the algorithm defaults,
with a slight edge for BasicILS, whose main advantage over
CALIBRA is that it supports arbitrary numbers and types of
parameters. In contrast, CALIBRA is limited to a total of
five continuous or integer parameters, rendering it inappli-
cable for tuning SAT4J.

Even for cost approximations based onN = 100 samples,
we notice a significant difference between training and test
performance for both CALIBRA and BasicILS. FocusedILS
judges its progress more realistically, showing more similar
training and test performance, and more importantly, always
the best test performance.

In practical applications, one typically cannot afford as
many as20 000 algorithm executions (each of which may
take hours), and may thus be tempted to use a lower value
of N for CALIBRA or BasicILS. We now demonstrate that
using small values ofN can lead to very poor behaviour due
to over-confidence and over-tuning; for this, we employed
tuning scenario SAPS-QWH and BasicILS(1). In each
repetition of BasicILS(1), we evaluated each visited con-
figurationθ by a single run of SAPS(θ) on instance QWH,
keeping track of the incumbent configurationθinc(t) with
the shortest run-length across the configurations visited up
to time t – this constitutes training performance. Off-line,
at every time stept, we then computed test performance

c(θinc(t)) using1 000 independent runs of SAPS on QWH.
We repeated this process100 times with different runs used
for training, leading to100 training and100 test perfor-
mance measurements for each time step; Figure 1(a) shows
the median, 10% and 90% quantiles of these. Training and
test performance diverge, and especially in the 90% quantile
of test performance we see evidence for over-tuning. The
same over-tuning effect occurs for CALIBRA(1).

FocusedILS avoids the problem of over-tuning gracefully
by performing more runs for promising parameter configura-
tions: after ten seconds, its training performance for SAPS-
QWH is virtually identical to its test performance. One may
expect this to come at the cost of slow movement through
configuration space, but as we demonstrate in Figure 1(b),
this is not the case: FocusedILS starts its progress as quickly
as BasicILS(1), but also always performs better than Basic-
ILS(10) and BasicILS(100).

We further studied whether a parameter setting tuned for
an easy subclass (SW-GCP-saps) of a fairly homogeneous
problem class (SW-GCP) can lead to good performance on
the entire class. Figure 1(c) shows that in our particular
example, automatically tuned parameters for SW-GCP-saps
(found by FocusedILS in one hour) drastically outperform
the SAPS default setting for the entire set, with speedups up
to four orders of magnitude. This is an extremely encourag-
ing result for automatic parameter tuning on homogeneous
instance classes.

Finally, ParamILS was used by Thachuk et al. to tune a
replica exchange Monte Carlo algorithm for protein struc-
ture prediction (Thachuk, Shmygelska, & Hoos 2007) and
achieved performance improvements of about 50%. It was
also applied to several solvers submitted to the 2007 SAT
Competition, where it achieved a speedup of about an order
of magnitude for SAPS on random instances and a 50-fold
speedup for tuning a new state-of-the-art tree search algo-
rithm on SAT-encoded software verification problems (Hut-
teret al. 2007).

Related Work
There already exist several approaches for automatic algo-
rithm configuration for a given problem distribution (Minton
1996; Coy et al. 2001; Adenso-Diaz & Laguna 2006;
Oltean 2005). Like BasicILS, these techniques are all sub-
ject to over-tuning. The only methods of which we are aware
that would avoid over-tuning if given enough time are racing
algorithms (Birattariet al. 2002; Birattari 2004); however,
these are limited to tuning tasks with a fairly small number
of configurations.

Recent work on finding the best parameter configuration
on a per instance basis (see, e.g., the work by Hutter et
al. (2006) and the references therein) is in principle more
powerful than the per distribution approach we follow, but it
is much less general since it requires instance features and
makes various assumptions about the shape of run-time dis-
tributions. Orthogonal to our off-line tuning approach is
the idea of tuning algorithm parameters online, at execu-
tion time. This strategy is followed by so-called reactive
search methods (Battiti & Brunato 2005). On-line and off-
line strategies can be seen as complementary: even reactive
search methods tend to have a number of parameters that
remain fixed during the search and can hence be tuned by
off-line approaches.
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(a) Over-tuning for BasicILS(1) and SAPS-QWH.
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(c) SAPS speedup on SW-GCP.

Figure 1: (a) and (b): Over-confidence and over-tuning effects in tuning scenario SAPS-QWH. The over-tuning in (a) causes BasicILS(1)
to perform very poorly in (b). At each time point, we plot training and test performance of the incumbent (training) parameter configuration
found so far. FocusedILS dominates all versions of BasicILS. (c) Performance of SAPS,〈α, ρ,Psmooth, wp〉 = 〈1.189, 0.666, 0.066, 0.01〉
(tuned on SW-GCP-saps)vs 〈1.3, 0.8, 0.05, 0.01〉 (SAPS defaults) on 500 randomly sampled satisfiable instances from data set SW-GCP.
The average speedup is between three and four orders of magnitude: average run-time 0.43vs263 seconds, median 0.09vs33 seconds.

Conclusion and Future Work
ParamILS is a powerful, new method for the automated
configuration and tuning of parameterised algorithms. Its
underlying principles are easy to understand, and it is a
versatile tool that can be applied to effectively configure a
wide variety of algorithms, including those that have many
parameters (some of which can be conditional). One partic-
ular variant of this method, FocusedILS, provably converges
to the true optimal parameter configuration and effectively
avoids the problems of over-confidence and over-tuning.

We have demonstrated the practical usefulness of Param-
ILS in a number of tuning scenarios, in all of which it
outperforms the algorithm defaults, sometimes by orders of
magnitude. It also performs better than or on par with the
recent CALIBRA system and is, in contrast to CALIBRA,
directly applicable in tuning scenarios involving a large
number of parameters. ParamILS proved to be very helpful
in various recent parameter tuning tasks in the development
of new algorithms for SAT and protein structure prediction.

There are a number of avenues for further research. By
integrating statistical testing procedures into our algorithm,
unnecessary evaluations of poorly performing configura-
tions can be avoided. Furthermore, it would be interesting
to consider other ways of searching the neighbourhood and
to investigate specialised local search methods for continu-
ous parameters. The need for discretisation is a limitationof
ParamILS, and we will investigate how this limitation can
be overcome by using response surface models.

Overall, we are convinced that the increasingly effective
tools produced by this line of research will allow researchers
to focus on the essential and scientifically valuable tasks in
designing algorithms for solving hard problems, and help
practitioners to solve application problems more effectively.
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