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Abstract. We investigate the composition of representative benchmark
sets for evaluating and improving the performance of robust Boolean
constraint solvers in the context of satisfiability testing and answer set
programming. Starting from an analysis of current practice, we isolate a
set of desiderata for guiding the development of a parametrized bench-
mark selection algorithm. Our algorithm samples a benchmark set from
a larger base set (or distribution) comprising a large variety of instances.
This is done fully automatically, in a way that carefully calibrates in-
stance hardness and avoids duplicates. We demonstrate the usefulness
of this approach by means of empirical results showing that optimizing
solvers on the benchmark sets produced by our method leads to better
configurations than obtained based on the much larger, original sets.

1 Introduction

The availability of representative sets of benchmark instances is of crucial im-
portance for the successful development of high-performance solvers for compu-
tationally challenging problems, such as propositional satisfiability (SAT) and
answer set programming (ASP). Such benchmark sets play a key role for as-
sessing solver performance and thus for measuring the computational impact of
algorithms and/or their vital parameters. On the one hand, this allows a solver
developer to gain insights on the strengths and weaknesses of features of inter-
est. On the other hand, representative benchmark instances are indispensable to
empirically underpin the claims of computational benefit of novel ideas.

A representative benchmark set is composed of benchmark instances stem-
ming from a variety of different benchmark classes. Such benchmark sets have
been assembled (manually) in the context of well-known solver competitions,
such as the SAT and ASP competitions, and then widely used in the research
literature. These sets of competition benchmarks are well-accepted, because
they have been constituted by an independent committee using sensible criteria.
Moreover, these sets evolve over time and thus usually reflect the capabilities
(and limitations) of state-of-the-art solvers; they are also publicly available and
well-documented.



However, instance sets from competitions are not always suitable for bench-
marking scenarios where the same runtime cutoff is used for all instances. For
example, in the last three ASP competitions, only ≈ 10% of all instances were
non-trivial (runtime over 9 second, i.e., 1% of the runtime cutoff) for the state-
of-the-art ASP solver clasp, while all other instances were trivial or unsolvable
for clasp within the time cutoff used in the competition. While benchmarking,
results of benchmarks are (typically) aggregated over all instances. But if the
percentage of interesting instances in the benchmark set is too small, the inter-
esting instances have small influence on the aggregated result and the overall
result is dominated by uninteresting, i.e., trivial or unsolvable, instances. Hence,
a significant change of the runtime behaviour of a new algorithm is harder to
identify on such degenerate benchmark sets. In addition, uninteresting instances
unnecessarily waste computational resources and thus cause avoidable delays in
the benchmarking process.

Moreover, in ASP, competition instances do not necessarily represent real
world applications. In the absence of a common modelling language, benchmark
instances are often formulated in the most basic common setting and thus bear
no resemblance to how real world problems are addressed (e.g., they are usu-
ally free of any aggregates).3 The situation is simpler in SAT, where a wide
range of benchmark instances stems from real-world applications and are quite
naturally encoded in a low-level format, without the modelling layer present in
ASP. Notably, SAT competitions place considerable emphasis on a public and
transparent instance selection procedure [1]. However, as we discuss in detail in
Section 3, competition settings may differ from other benchmarking contexts.

In what follows, we elaborate upon the composition of representative bench-
mark sets for evaluating and improving the performance of Boolean constraint
solvers in the context of ASP and SAT. Starting from an analysis of current prac-
tice of benchmark set selection in the context of SAT competitions (Section 2),
we isolate a set of desiderata for representative benchmark sets (Section 3). For
instance, sets with a large variety of instances are favourable when developing
a default configuration of a solver that is desired to perform well across a wide
range of instances. We rely on these desiderata for guiding the development of
a parametrized benchmark selection algorithm (Section 4).

Overall, our approach makes use of (i) a large base set (or distribution) of
benchmark instances; (ii) instance features; and (iii) a representative set of state-
of-the-art solvers. Fundamentally, it constructs a benchmark set with desirable
properties regarding difficulty and diversity by sampling from the given base
set. It achieves diversity of the benchmark set by clustering instances based on
their similarity w.r.t a given set of features, while ensuring that no cluster is
overrepresented. The difficulty of the resulting set is calibrated based on the
given set of solvers. Use of the benchmark sets thus obtained helps save com-
putational resources during solver development, configuration and evaluation,
while concentrating on interesting instances.

3 In ASP competitions, this deficit is counterbalanced by a modelling track, in which
each participant can use its preferred modelling language.



We empirically demonstrate in Section 5 that optimizing solvers on the ob-
tained selection of benchmarks leads to better configurations than obtainable
from the vast original set of benchmark instances. We close with a final discus-
sion and some thoughts on future work in Section 6.

2 Current Practice

The generation or selection of benchmark sets is an important factor in the em-
pirical analysis of algorithms. Depending on the goals of the empirical study,
there are various criteria for benchmark selection. For example, in the field
of Boolean constraint solving, regular competitions are used to asses new ap-
proaches and techniques as well as to identify and recognize state-of-the-art
solvers. Over the years, competition organizers came up with sets of rules for
selecting subsets of submitted instances to assess solver performance in a fair
manner. To begin with, we investigate the rules used in the well-known and
widely recognized SAT Competition4, which try to achieve (at least) three over-
all goals. First, the selection should be broad, i.e., the selected benchmark set
should contain a large variety of different kinds of instances to assess the robust-
ness of solvers. Second, each selected instance should be significant w.r.t. the
ranking obtained from the competition. Third, the selection should be fair, i.e.,
the selected set should not be dominated by a set of instances from the same
source (either a domain or a benchmark submitter).

For the 2009 SAT Competition [2] and the 2012 SAT Challenge [1], instances
were classified according to hardness, as assessed based on the runtime of a set
of representative solvers. For instance, for the 2012 SAT Challenge, the orga-
nizers measured the runtimes of the best five SAT solvers from the Application
and Crafted tracks of the last SAT Competition on all available instances and
assigned each instance to one of the following classes: easy instances are solved
by all solvers under 10% of the runtime cutoff, i.e., 90 CPU seconds; medium
instances are solved by all solvers under 100% of the runtime cutoff; too hard
instances are not solved by any solver within 300% of the runtime cutoff; and
hard instances are solved by at least one solver within 300% of the runtime
cutoff but not by all solvers within 100% of the runtime cutoff. Instances were
then selected with the objective to have 50% medium and 50% hard instances
in the final instance set and, at the same time, to allow at most 10% of the final
instance set to originate from the same source.

While the easy instances are assumed to be solvable by all solvers, the
too hard instances are presumably not solvable by any solver. Hence, neither
class contributes to the solution count ranking used in the competition.5 On the
other hand, medium instances help to rank weaker solvers and to detect perfor-
mance deterioration w.r.t. previous competitions. The hard instances are most
useful for ranking the top-performing solvers and provide both a challenge and
a chance to improve state-of-the-art SAT solving.

4 http://www.satcompetition.org
5 Solution count ranking assesses solvers based on the number of solved instances.



Although using a large variety of benchmark instances is clearly desirable for
robust benchmarking, the rules used in the SAT Competition are not directly
applicable to our identified use cases. First, the hardness criteria and distribution
used are directly influenced by the use of the solution count ranking system. On
the other hand, ranking systems that also consider measured runtimes, like the
careful ranking6[3], might be better suited for differentiating solver performance.
Second, limiting the number of instances from one source to achieve fairness is
not needed in our setting. Furthermore, the origin of instances provides only an
indirect way of achieving a heterogeneous instance set, as certain instances of
different origin may in fact be more similar than other pairs of instances from
the same source.

3 Desirable Properties of Benchmark Sets

Before diving into the details of our selection algorithm, let us first explicate the
desiderata for a representative benchmark set (cf. [4]).

Large Variety of Instances. As mentioned, a large variety of instances is favourable
to assess the robustness of solver performance and to reduce the risk of general-
ising from results that only apply to a limited class of problems. Such large vari-
ety can include different types of problems, i.e., real-world applications, crafted
problems, and randomly generated problems; different levels of difficulty, i.e.,
easy, medium, and hard instances; different instance sizes; or instances with di-
verse structural properties. While the structure of an instance is hard to assess,
a qualitative assessment could be based on visualizing the structure [5], and
a quantitative assessment can be performed based on instance features [6, 7].
Such instance features have already proven useful in the context of algorithm
selection [7, 8] and algorithm configuration [9, 10].

Adapted Instance Hardness. While easy problem instances are sometimes useful
for investigating certain properties of specific solvers, intrinsically hard or diffi-
cult to solve problem instances are better suited to demonstrate state-of-the-art
solving capabilities through benchmarking. However, in view of the nature of
NP-hard problems, it is likely that many hard instances cannot be solved ef-
ficiently. Resource limitations, such as runtime cutoffs or memory limits, are
commonly applied in benchmarking. Solver runs that terminated prematurely
because of violations of resource limits are not helpful in differentiating solver
performance. Hence, instances should be carefully selected so that such prema-
turely terminated runs for the given set of solvers are relatively rare. Therefore,
the distribution of instance hardness within a given benchmark set should be
adjusted based on the given resource limits and solvers under consideration. In
particular, instances that are too hard (i.e., for which there is a high probability
of a timeout) as well as instances that are too easy, should be avoided, where

6 Careful ranking compares pairs of solvers based on statistically significant perfor-
mance differences and ranks solvers based on the resulting ranking graph.



hardness is assessed using a representative set of state-of-the-art solvers, as is
done, for example, in the instance selection process of SAT competitions [2].

Since computational resources are typically limited, the number of bench-
mark instances should also be carefully calibrated. While using too few instances
can bias the results, using too many instances can cost computational resources
without improving the information gained from benchmarking. Therefore, we
propose to start with a broad base set of instances, e.g., generated by one or
more (possibly parametrized) generators or a collection of previously used com-
petition instance sets, and to select a subset of instances following our desiderata.

Free of Duplicates, Reproducible, and Publicly Available. Benchmark set should
be free of duplicates, because using the same instance twice does not pro-
vide any additional information about solver performance. Nevertheless, non-
trivially transformed instances can be useful for assessing the robustness of
solvers [11]. To facilitate reproducibility and comparability, both the problem
instances and the process of instance selection should be publicly available. Ide-
ally, problem instances should originate from established benchmark sets and/or
public benchmark libraries. To our surprise, these properties are not true for
all competition sets. For example, we found duplicates in the SAT Challenge
2012, ASP Competitions 2007 and 2009 (for example, 15-puzzle.init1.gz and
15puzzle_ins.lp.gz in the latter).

4 Benchmark Set Selection

Based on our analysis of solver competitions and the resulting desiderata, we
developed an instance selection algorithm. Its implementation is open source and
freely available at http://potassco.sourceforge.net. In addition, we present
a way to assess the relative robustness and quality of an instance set based on
the idea of Q-scores [1].

4.1 Benchmark Set Selection Algorithm

Our selection process starts from a given base set of instances I. This set can
be a benchmark collection or simply a mix of previously used instances from
competitions.

Inspired by past SAT competitions, a representative set of solvers S – e.g.,
best solvers of the last competition, the state-of-the-art (SOTA) contributors
identified in the last competition, or contributors to SOTA portfolios [12] – is
used to assess the hardness h(i) ∈ R of an instance i ∈ I. Typically, the runtime
t(i, s) (measured in CPU seconds) is used to assess the hardness of an instance
i ∈ I for solver s ∈ S. The aggregation of the runtimes of all solvers s ∈ S on
a given instance i can be carried out in several ways, e.g., by considering the
minimal (mins∈S t(i, s)) or the average runtime ( 1

|S| ·
∑

s∈S t(i, s)). The resulting

hardness metric is closely related to the intended ranking scheme for solvers.
For example, the minimal runtime is a lower bound of the portfolio runtime
performance and represents a challenging hardness metric appropriate in the



context of solution count ranking. In contrast, the average runtime would be
better suited for a careful ranking [3], which uses pairwise comparisons between
solvers for each instance, because the pairs of runtimes for two solvers are of
limited value if neither of them solved the given instance within the given cutoff
time. Since all solvers contribute to the average runtime per instance, this metric
will assess instances as hard even if only some solvers time out on time, and
selecting instances based on it (as explained in the following) can therefore be
expected to result in fewer timeouts overall.

After selecting a hardness metric, we have to choose how the instance hard-
ness should be distributed within the benchmark set. As stated earlier, and
under the assumption that the set to be created will not be used primarily in
the context of solution count ranking, the performance of solvers can be com-
pared better, if the incidence of timeouts is minimized. This is important, for
example, in the context of algorithm configuration (manual or automatic). The
incidence of timeouts can be minimized by increasing the runtime cutoff, but
this is infeasible or wasteful in many cases. Alternatively, we can ensure that
not too many instances on which timeouts occur are selected for inclusion in our
benchmark set. At the same time, as motivated previously, it is also undesir-
able to include too many easy instances, because they incur computational cost
and, depending on the hardness metric used, can also distort final performance
rankings determined on a given benchmark set.

One way to focus the selection process on the most useful instances w.r.t.
hardness, namely those that are neither too easy nor too hard, is to use an
appropriately chosen probability distribution to guide sampling from the given
base set of instances. For example, the use of a normal (Gaussian) distribution
of instance hardness in this context leads to benchmark sets consisting predom-
inantly of instances of medium hardness, but also include some easy and hard
instances. Alternatively, one could consider log-normal or exponential distribu-
tions, which induce a bias towards harder instances, as can be found in many
existing benchmark sets. Compared to the instance selection approach used in
SAT competitions [2, 1], this method does not require the classification of in-
stances into somewhat arbitrary hardness classes.

The parameters of the distribution chosen for instance sampling, e.g., mean
and variance in the case of a normal or log-normal distribution, can be deter-
mined based on the hardness metric and runtime limit; e.g., the mean could be
chosen as half the cutoff time. By modifying the mean, the sampling distribution
can effectively be shifted towards harder or easier benchmark instances.

As argued before, the origin of instances is typically less informative than
their structure, as reflected, e.g., in informative sets of instance features. Such
informative sets of instance features are available for many combinatorial prob-
lems, including SAT [7], ASP [13] and CSP [14], where they have been shown to
correlate with the runtime of state-of-the-art solvers and have been used promi-
nently in the context of algorithm selection (see, e.g., [7, 8]). To prevent the
inclusion of too many similar instances in the benchmark sets, we cluster the
instances based on their similarity in feature space. We then require that a clus-



Algorithm 1: Benchmark Selection Algorithm

Input : instance set I; desired number of instances n; representative set of
solvers S; runtimes t(i, s) with (i, s) ∈ I × S; instance features f(i) for
each instance i ∈ I; hardness metric h : I → R of instances; desired
distribution Dh regarding h; clustering algorithm ca; cutoff time tc;
threshold e for too easy instances;

Output : selected instances I∗

1 remove instances from I that are not solved by any s ∈ S within tc;
2 remove instances from I that are solved by all s ∈ S under e% of tc ;
3 cluster all instances i ∈ I in the feature space f(i) into clusters S(i) using

clustering algorithm ca;
4 while |I∗| < n and I 6= ∅ do
5 sample x ∈ R ∼ Dh;
6 select instance i∗ ∈ I with the nearest h(i∗) to x;
7 remove i∗ from I;
8 if S(i∗) is not over-represented then
9 add i∗ to I∗;

10 end

11 end
12 return I∗

ter must not be over-represented in the selected instance set; in what follows,
roughly reminiscent of the mechanism used in SAT competitions, we say that
a cluster is over-represented if it contributes more than 10% of the instances
to the final benchmark set. While other mechanisms are easily conceivable, the
experiments we report later demonstrate that this simple criterion works well.

Algorithm 1 implements these ideas with the precondition that the base in-
stance set I is free of duplicates. (This can be easily ensured by means of simple
preprocessing.) In Line 1, all instances are removed from the given base set that
cannot be solved by all solver from the representative solver set S within the se-
lection runtime cutoff tc (rejection of too hard instances). If solution count rank-
ing is to be used in the benchmarking scenario under consideration, the cutoff
in the instance selection process should be larger than the cutoff for benchmark-
ing, as was done in the 2012 SAT Challenge. In Line 2, all instances are removed
that are solved by all solvers under e% of the cutoff time (rejection of too easy
instances). For example, in the 2012 SAT Challenge [1], all instances were re-
moved which were solved by all solvers under 10% of the cutoff. Line 3 performs
clustering of the remaining instances based on their features. To perform this
clustering, the well-known k-means algorithm could be used, and the number of
clusters could be computed using G-means [15, 10] or by increasing the number of
clusters until the clustering optimization does not improve further under a cross
validation [16]. In our experiments, we used the latter, because the G-means al-
gorithm relies on a normality assumption that is not necessarily satisfied for the
instance feature data used here. Beginning with Line 4, instances are sampled
within a loop until enough instances are selected or no more instances are left



in the base set. To this end, x ∈ R is sampled from a distribution Dh induced
by instance hardness metric h, such that for each sample r from hardness distri-
bution Dh, the instance i∗ is selected whose hardness h(i∗) is closest to r. After
adding i∗ to I∗, the benchmark set under construction, it is removed from the
base instance set I. If the respective cluster S(i∗) is not already over-represented
in I∗, instance i∗ is added to I∗.

4.2 Benchmark Set Quality

We would like to ensure that our benchmark selection algorithm produces in-
stance sets that are in some way better than the respective base sets. At the
same time, any benchmark set I∗ it produces should be representative of the
underlying base set I in the sense that if an algorithm performs better than a
given baseline (e.g., some prominent solver) on I∗ it should also be better on I.
However, the converse may not hold, because specific kinds of instances may
dominate I but not I∗, and excellent performance on those instances can lead
to a situation where an algorithm that performs better on I does not necessarily
perform better on I∗.

Bayless et al. [17] proposed a quantitative assessment of instance set utility.
Their use case is the performance assessment of (new) algorithms on an instance
set I1 that has practical limitations, e.g., the instances are too large, too hard
to solve, or not enough instances are available. Therefore, a second instance
set I2 without these limitations is assessed as to whether it can be regarded
as a representative proxy for the instance set I1 during solver development or
configuration. The key idea is that any I2 that is a representative proxy for I1
can be used in lieu of I1 to assess performance of a solver, with the assurance
that good performance on I2 (which is easier to demonstrate or achieve) implies,
at least statistically, good performance on I1.

To assess the utility of an instance set, they use algorithm configuration [18, 9,
10]. An algorithm configurator is used to find a configuration c := s(cI) of solver
s on instance set I by optimizing, e.g., the runtime of s. If I2 is a representative
proxy for I1, the algorithm configuration s(cI2) should perform on I1 as well as
a configuration optimized directly on I1, i.e. s(cI1). The Q-score Q(I1, I2, s,m)
defined in Equation (1) is the performance ratio of s(cI1) and s(cI2) on I1 with
respect to a given performance metric m. A large Q-score means I2 is a good
proxy for I1. The short form of Q(I1, I2, s,m) is QI1(I2).

To compare both sets, I1 and I2, we want to know whether I2 is a better
proxy for I1 than vice versa. To this end, we extended the idea in [17] and
propose the Q∗-score of I1 and I2 by computing the ratio of QI1(I2) and QI2(I1)
as per Equation (2). If I1 is a better proxy for I2 than vice versa, the Q∗-score
Q∗(I1, I2) is larger than 1.

Q(I1, I2, s,m) =
m(s(cI1), I1)

m(s(cI2), I1)
(1)

Q∗(I1, I2) =
QI1(I2)

QI2(I1)
(2)



We use the Q∗-score to assess the quality of the sets I∗ obtained from our
benchmark selection algorithm in comparison to the respective base sets I. Based
on this score, we can assess the degree to which our benchmark selection algo-
rithm succeeded in producing a set that is representative of the given base set
in the way motivated earlier. Thereby, a Q∗-score (Q∗(I1, I2)) and a Q-score
(QI1(I2)) of larger than 1.0 indicates that I2 is better proxy for I1 than vice
versa and I2 is a good proxy for I1.

5 Evaluation

We evaluated our benchmark set selection approach by means of the Q∗-score
criterion on widely studied instance sets from SAT and ASP competitions.

Instance Sets. We used three base instance sets to select our benchmark set:
SAT-Application includes all instances of the application tracks from the 2009
and 2011 SAT Competition and 2012 SAT Challenge; SAT-Crafted includes
instances of the crafted tracks (resp. hard combinatorial track) of the same com-
petitions; and ASP includes all instances of the 2007 ASP Competition (SLparse
track), the 2009 ASP Competition (with the encodings of the Potassco group [19]),
the 2011 ASP Competition (decision NP-problems from the system track), and
several instances from the ASP benchmark collection platform asparagus7. Du-
plicates were removed from all sets, resulting in 649 instances in SAT-Application,
850 instances in SAT-Crafted, and 2589 instances in ASP.

Solvers. In the context of the two sets of SAT instances, the best two solvers
of the application track, i.e., Glucose [20] (2.1) and SINN [21], and of the hard
combinatorial track, i.e., clasp [19] (2.0.6) and Lingeling [22] (agm), and the
best solver of the random track, i.e., CCASAT [23], of the 2012 SAT Challenge
were chosen as representative state-of-the-art SAT solvers. clasp [19] (2.0.6),
cmodels [24] (3.81) and smodels [25] (2.34) were selected as competitive and
representative ASP solvers capable of reading the smodels-input format [26].

Instance Features. We used efficiently computable, structural features to cluster
instances. The fifty-four base features of the feature extractor of SATzilla [7]
(2012) were utilized for analysing SAT instances. The seven structural features
of claspfolio [13] were considered for ASP instances, namely, tightness (0 or 1),
number of atoms, all rules, basic rules, constraint rules, choice rules, and weight
rules of the grounded program. For feature computation, a runtime limit of 900
CPU seconds per instance was used. Any instance for which the complete set
of features could not be computed within 900 seconds was removed from the
set of candidate instances. This led to the removal of 52 instances from the
SAT-Application set, 2 from the SAT-Crafted set, and 3 from the ASP set.

Execution Environment and Solver Settings. All our experiments were per-
formed on a computer cluster with dual Intel Xeon E5520 quad-core processors
(2.26 GHz, 8192 KB cache) and 48 GB RAM per node, running Scientific Linux

7 http://asparagus.cs.uni-potsdam.de/



(2.6.18-308.4.1.el5). Each solver run was limited to a runtime cutoff of 900 CPU
seconds. Furthermore, we set parameter e in our benchmark selection procedure
to 10, i.e., instances solved by all solvers within 90 CPU seconds were discarded,
and the number of instances to select (n) to 200 for SAT (because of the rela-
tively small base sets) and 300 for ASP. After filtering out too hard instances
(Line 1 of Algorithm 1), 404 instances remained in SAT-Application, 506 in-
stances in SAT-Crafted and 2190 instances in ASP; after filtering out too easy
instances (Line 2), we obtained sets of size 393, 425, and 1431, respectively.

Clustering. To cluster the instances based on their features (Line 3), we applied
k-means 100 times with different randomised initial cluster centroids. To find
the optimal number of clusters, we gradually increased the number of clusters
(starting with 2) until the quality of the clustering, assessed via 10-fold cross
validation and 10 randomised repetitions of k-means for each fold, did not im-
prove any further [16]. This resulted in 13 clusters for each of the two SAT sets,
and 25 clusters for the ASP set.

Selection. To measure the hardness of a given problem instance, we used the
average runtime over all representative solvers. We considered a cluster to be
over-represented (Line 8) if more than 20% of the final set size (n) were selected
for SAT, and more than 5% in case of ASP; the difference in threshold was
motivated by the fact that substantially more clusters were obtained for the ASP

set than for SAT-Application and SAT-Crafted.

Algorithm Configuration. After generating the benchmark sets SAT-Application∗,
SAT-Crafted∗ and ASP∗ using our automated selection procedure, these sets
were evaluated by assessing their Q∗-scores. To this end, we used the freely
available, state-of-the-art algorithm configurator ParamILS [18] to configure the
SAT and ASP solver clasp (2.0.6). clasp is a competitive solver in several ar-
eas of Boolean constraint solving8 that is highly parameterized, exposing 46
performance-relevant parameters for SAT and 51 for ASP. This makes it par-
ticularly well suited as a target for automated algorithm configuration methods
and hence for evaluating our instance sets. Following standard practice, for each
set, we performed 10 independent runs of ParamILS of 2 CPU days each and
selected from these the configuration with the best training performance as the
final result of the configuration process for each instance set.

Sampling Distributions. One of the main input parameters of Algorithm 1 is the
sampling distribution. With the help of our Q∗-score criterion, three distribu-
tions are assessed: a normal (Gaussian) distribution, a log-normal distribution,
and an exponential distribution. The parameters of these distributions were set
to the empirical statistics (e.g., empirical mean and variance) of the hardness
distribution over the base sets. The log-normal and exponential distributions
have fat right tails and typically reflect better the runtime behaviour of solvers
for NP problems than the normal distribution. However, when using the average
runtime as our hardness metric, the instances sampled using a normal distribu-
tion are not necessarily atypically easy. For instance, an instance i, on which

8 clasp won several first places in previous SAT, PB and ASP competitions.



Sampling- PAR10 on I PAR10 on I∗ Q∗-score
Distribution cdef cI cI∗ cdef cI cI∗

SAT-Application

Normal 4629 4162 3997 3410 2667 1907 1.46
Log-Normal 4629 4162 4683 3875 2601 3487 0.66
Exponential 4629 4162 4192 2969 2380 2188 1.08

SAT-Crafted

Normal 5226 5120 5056 2429 2155 1752 1.25
Log-Normal 5226 5120 5184 3359 3235 3184 1.04
Exponential 5226 5120 5072 1958 1819 1523 1.21

ASP

Normal 2496 1239 1072 1657 705 557 1.46
Log-Normal 2496 1239 1128 3136 1173 678 1.90
Exponential 2496 1239 1324 1648 710 555 1.20

Table 1: Comparison of set qualities of the base sets I and benchmark sets I∗

generated by Algorithm 1; evaluated with Q∗-Scores with I1 = I∗, I2 = I, clasp
as algorithm A and PAR10-scores as performance metric m

half of the representative solvers have a timeout while the other half solve the
instance in nearly no time, has an average runtime of half of the runtime cutoff.
Therefore, the instance is medium hard and will be likely selected by using the
normal distribution.

In Table 1, we compare the benchmark sets we obtained from the base sets
SAT-Application, SAT-Crafted and ASP when using these three types of distri-
butions, based on their Q∗-scores. On the left of the table, we show the PAR10
performance on the base set I of the default configuration of clasp (cdef ; we use
this as a baseline), the configuration cI found on the base set I, and the con-
figuration cI∗ found on the selected set I∗; this is followed by the performance
on the benchmark sets I∗ generated using our new algorithm. The last column
reports the Q∗-score values for the pairs of sets I and I∗.

For all three instance sets, the Q∗-scores obtained via the normal distribution
were larger than 1.0, indicating that cI∗ performed better than cI and the set
obtained from our benchmark selection algorithm, I∗, proved to be a good alter-
native to the entire base set I. Although on the ASP set, by using the log-normal
distribution a larger Q∗-score (1.90) was obtained than for the normal distri-
bution (1.46), on the SAT-Application set, using the log-normal distribution
did not produce good benchmark sets. When using exponential distributions,
Q∗-scores are larger than 1.0 in all three cases, but smaller than those obtained
with normal distributions.

When using the normal distribution, configuration cI∗ performed better than
cI on both sets I and I∗ (implying QI1(I2) > 1.0). Therefore, configuration on
the selected set I∗ leads to faster (and more robust) configurations than on
the base set I. Furthermore, the benchmark sets produced by our algorithm
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Fig. 1: Boxplots indicating the median, quartiles minimum and maximum
speedup achieved on the instance clusters within the base set SAT-Application;
(left) compares cdefault and cI (high values are favourable for cI); (right) com-
pares cdefault and cI∗ (high values are favourable for cI∗); special clusters: Sf

uncompleted feature computation; Se too easy, Sh too hard;

are smaller and easier than the respective base sets. Hence, less CPU time is
necessary to assess the performance of an algorithm on those benchmark sets.
For instance, the default configuration of clasp needed 215 CPU hours on the
base ASP set and only 25 CPU hours on the benchmark set ASP∗. For developing
a new algorithm or configuring an algorithm (manually or automatically), fast
and informative assessment, as facilitated by our new benchmark set generation
algorithm, is very important.

Cluster Assessment. An additional advantage of Algorithm 1 is the fact that it
produces a feature-based instance clustering, which can be further used to assess
more precisely the performance of algorithms (or configurations). Normally, the
performance of an algorithm is assessed over an entire instance set, but with the
help of instance clusters, the performance can be assessed on different types of
instances. This is useful, for example, in the context of developing a robust solver
which should perform equally well across different types of instances. An example
for such a solver is the CPLEX solver for mixed integer programming (MIP)
problems, which is designed to perform well over a broad range of application
contexts, each of which gives rise to different types of MIP instances.

The box plots in Figure 1 show the speedups (y-axis) of the configurations cI
(left) and cI∗ (right; while sampling with a normal distribution) against the
default configuration cdef of clasp on each cluster S1..13 (x-axis) within the
SAT-Application base set. Furthermore, three special clusters contain the in-
stances that were discarded in Algorithm 1 because, feature computation could
not be completed (Sf ), they were too easy (Se), or too hard (Sh).

The comparison against a common baseline, here: the default configuration,
helps to determine whether the new algorithm improved only on some types of
instance or on all. For instance, configuration cI (configured on the base set;



left plot) improved the performance by two orders of magnitude on cluster S8

but is slightly slower on S9. However, configuration cI∗ (configured on the set
generated by Algorithm 1; right plot) achieved better median performance on all
clusters except for Sf . In addition, the comparison between both plots reveals
that cI∗ produces fewer outliers than cI , especially on clusters S6, S9, S11 and
S13. Similar results (not shown here) were obtained for SAT-Crafted and ASP.
Therefore, cI∗ can be considered to be a more robust improvement over cdef than
cI .

We believe that the reason for the robustness of configuration cI∗ lies in the
fact that the (automatic) configuration process tends to be biased by instance
types that are highly represented in a given training set. Since Algorithm 1
produces sets I∗ that cover instance clusters more evenly than the respective
base sets I, the configuration process is naturally guided more towards robust
performance improvements across all clusters.

Particular attention should be paid to the special clusters Sf , Se and Sh for
the assessment of cI∗ , because the instances contained in these clusters are not
at all represented in I∗. On none of our experiments with the three types of
sampling distributions did we ever observe that the performance of cI∗ on the
too hard instances Sh decreased; in fact, it sometimes increased. In contrast, the
performance on the too easy instances Se and instances with no features Sf was
less consistent, and we observed speedups between 300 and 0.1 in comparison
to cI . Therefore, the threshold for filtering too easy instances e should be set
conservatively (below 10%), to ensure that not too many too easy instances are
discarded (we note that this is in contrast to common practice in SAT competi-
tions).

Furthermore, our Algorithm 1 ensures that no cluster is over-represented, but
does not ensure a sufficient representation of all clusters in the selected set. For
instance, cluster S4 has 141 instances in the base ASP set but only one instance
in ASP∗ set (with normal distribution). Nevertheless, a low representation of a
cluster in the selected set did not necessarily harm the configuration process,
and in most observed cases, the configuration cI∗ performed as well as cI on the
under-represented clusters.

6 Conclusions and Future Work

In this work, we have introduced an algorithm for selecting instances from a base
set or distribution to form an effective and efficient benchmark set. We consider a
benchmark set to be effective, if a solver configured on it performs at least as well
as when configured on the original set, and we consider it to be efficient, if the
instances in it are on average easier to solve than those in the base set. By using
such benchmark sets, the computational resources required for assessing the
performance of a solver can be reduced substantially. Our benchmark selection
procedure can use arbitrary sampling distributions; yet, in our experiments, we
found that using a normal (Gaussian) distribution is particularly effective. Since
our approach filters out instances considered too easy or too hard for the solver



under consideration, it can lead to a situation where the performance of a given
solver, when configured on the benchmark set, becomes worse on those discarded
instances. However, the risk of worsening the performance on too hard instances
can be reduced by setting the runtime cutoff of the selection process higher
than in the actual benchmark. Then, the selected set contains very challenging
instances under the runtime cutoff in the benchmark, which are yet known to
be solvable. We have also demonstrated that clustering of instances based on
instance features facilitates diagnostic assessments of the degree to which a solver
performs well on specific types of instances or across an entire, heterogeneous
benchmark set. Our work reported here is primarily motivated by the desire
to develop solvers that perform robustly well across a wide range of problem
instances, as has been (and continues to be) the focus in developing solvers for
many hard combinatorial problems.

In future work, it may be interesting to ensure that semantically different
types of instances, such as satisfiable and unsatisfiable instances in the case of
SAT, are represented evenly or equivalently as in a given base set. Furthermore,
one could consider more sophisticated ways to assess the over-representation of
feature-based clusters and to automatically adjust the sampling process based
on the number of clusters and their sizes. Finally, we believe that it would be
interesting to study criteria for assessing the robustness of solver performance
across clusters and to use such criteria for automatic algorithm configuration.
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